1
|
Li X, Zhang J, Zhang J, Wang L, Tian J, Tang H, Mossa-Basha M, Zhao B, Wan J, Xu J, Zhou Y, Sun B, Zhao H, Zhu C. Optimizing timing for quantification of intracranial aneurysm enhancement: a multi-phase contrast-enhanced vessel wall MRI study. Eur Radiol 2024; 34:7953-7961. [PMID: 38856782 PMCID: PMC11560626 DOI: 10.1007/s00330-024-10827-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 06/11/2024]
Abstract
OBJECTIVES Aneurysm wall enhancement (AWE) on high-resolution contrast-enhanced vessel wall MRI (VWMRI) is an emerging biomarker for intracranial aneurysms (IAs) stability. Quantification methods of AWE in the literature, however, are variable. We aimed to determine the optimal post-contrast timing to quantify AWE in both saccular and fusiform IAs. MATERIALS AND METHODS Consecutive patients with unruptured IAs were prospectively recruited. VWMRI was acquired on 1 pre-contrast and 4 consecutive post-contrast phases (each phase was 9 min). Signal intensity values of cerebrospinal fluid (CSF) and aneurysm wall on pre- and 4 post-contrast phases were measured to determine the aneurysm wall enhancement index (WEI). AWE was also qualitatively analyzed on post-contrast images using previous grading criteria. The dynamic changes of AWE grade and WEI were analyzed for both saccular and fusiform IAs. RESULTS Thirty-four patients with 42 IAs (27 saccular IAs and 15 fusiform IAs) were included. The changes in AWE grade occurred in 8 (30%) saccular IAs and 6 (40%) in fusiform IAs during the 4 post-contrast phases. The WEI of fusiform IAs decreased 22.0% over time after contrast enhancement (p = 0.009), while the WEI of saccular IAs kept constant during the 4 post-contrast phases (p > 0.05). CONCLUSIONS When performing quantitative analysis of AWE, acquiring post-contrast VWMRI immediately after contrast injection achieves the strongest AWE for fusiform IAs. While the AWE degree is stable for 36 min after contrast injection for saccular IAs. CLINICAL RELEVANCE STATEMENT The standardization of imaging protocols and analysis methods for AWE will be helpful for imaging surveillance and further treatment decisions of patients with unruptured IAs. KEY POINTS Imaging protocols and measurements of intracranial aneurysm wall enhancement are reported heterogeneously. Aneurysm wall enhancement for fusiform intracranial aneurysms (IAs) is strongest immediately post-contrast, and stable for 36 min for saccular IAs. Future multi-center studies should investigate aneurysm wall enhancement as an emerging marker of aneurysm growth and rupture.
Collapse
Affiliation(s)
- Xiao Li
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianjian Zhang
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Zhang
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingling Wang
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaqi Tian
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Tang
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Bing Zhao
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieqing Wan
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianrong Xu
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhou
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beibei Sun
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Huilin Zhao
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chengcheng Zhu
- Department of Radiology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Gomyo M, Tsuchiya K, Yokoyama K. Vessel Wall Imaging of Intracranial Arteries: Fundamentals and Clinical Applications. Magn Reson Med Sci 2023; 22:447-458. [PMID: 36328569 PMCID: PMC10552670 DOI: 10.2463/mrms.rev.2021-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 08/11/2022] [Indexed: 10/03/2023] Open
Abstract
With the increasing use of 3-tesla MRI scanners and the development of applicable sequences, it has become possible to achieve high-resolution, good contrast imaging, which has enabled the imaging of the walls of small-diameter intracranial arteries. In recent years, the usefulness of vessel wall imaging has been reported for numerous intracranial arterial diseases, such as for the detection of vulnerable plaque in atherosclerosis, diagnosis of cerebral arterial dissection, prediction of the rupture of cerebral aneurysms, and status of moyamoya disease and cerebral vasculitis. In this review, we introduce the histological characteristics of the intracranial artery, discuss intracranial vessel wall imaging methods, and review the findings of vessel wall imaging for various major intracranial arterial diseases.
Collapse
Affiliation(s)
- Miho Gomyo
- Department of Radiology, Faculty of Medicine, Kyorin University, Mitaka, Tokyo, Japan
| | | | - Kenichi Yokoyama
- Department of Radiology, Faculty of Medicine, Kyorin University, Mitaka, Tokyo, Japan
| |
Collapse
|
3
|
Semin KS, Zakharova NE, Eliava SS, Konovalov AN, Kheireddin AS, Kalaeva DB, Batalov AI, Pronin IN. [Magnetic resonance imaging of saccular intracranial aneurysm wall]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2023; 87:55-62. [PMID: 37830469 DOI: 10.17116/neiro20238705155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
BACKGROUND Hemorrhage from intracranial aneurysms is associated with high risk of adverse outcomes. In this regard, surgical treatment of unruptured asymptomatic aneurysms has been actively developed in recent decades. One of the objectives is searching for predictors of aneurysm rupture to clarify the indications for surgery. Non-invasive analysis of vascular wall is actively discussed in last years. OBJECTIVE To evaluate the possibilities of MRI of ruptured and unruptured intracranial aneurysm walls and determine clinical significance of certain morphological patterns. MATERIAL AND METHODS The study included 111 patients with 158 ruptured and unruptured saccular aneurysms who underwent MRI according to a special protocol between November 2020 and September 2023. We analyzed each aneurysm regarding features of contrast enhancement and changes in SWAN images. After that, we compared these data with ruptures. RESULTS Wall of ruptured and unruptured aneurysms can accumulate contrast agent. We found 5 types of contrast enhancement. Thick-layer contrast enhancement was accompanied by 9.6-fold higher risk of aneurysm rupture compared to aneurysms without contrast enhancement. Dark MR signal from intracranial aneurysm wall in SWAN imaging is a significant sign of rupture. CONCLUSION MRI of the vascular wall is valuable to verify ruptured aneurysms. Unruptured aneurysms can accumulate contrast agent inside the wall, and pattern of accumulation differs from ruptured aneurysms. Morphological analysis is needed to confirm contrast enhancement as a marker of aneurysm rupture.
Collapse
Affiliation(s)
- K S Semin
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | | | | | | | - D B Kalaeva
- Burdenko Neurosurgical Center, Moscow, Russia
| | - A I Batalov
- Burdenko Neurosurgical Center, Moscow, Russia
| | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
4
|
Wu XB, Zhong JL, Wang SW, Su Y, Chen PS, Li ZJ, Xiang C, Cai WQ, Shi ZS. Circumferential wall enhancement with contrast ratio measurement in unruptured intracranial aneurysm for aneurysm instability. Brain Behav 2022; 12:e2568. [PMID: 35531771 PMCID: PMC9120725 DOI: 10.1002/brb3.2568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Aneurysm wall enhancement on high-resolution vessel wall imaging (HR-VWI) may represent vessel wall inflammation for unruptured intracranial aneurysms (UIAs). Further evidence for the role of circumferential aneurysm wall enhancement (CAWE) in evaluating the instability of UIAs is required, especially in small aneurysms (<7 mm). METHODS We analyzed patients with saccular UIAs who prospectively underwent HR-VWI on a 3.0 T MRI scanner in our center from September 2017 to August 2021. The presence of AWE was identified and quantitatively measured using the aneurysm-to-pituitary stalk contrast ratio (CRstalk) with maximal signal intensity value. The PHASES and ELAPSS scores were used to assess the risk of aneurysm rupture and growth. We evaluated the association of CAWE and CRstalk value with intracranial aneurysm instability. RESULTS One hundred patients with 109 saccular UIAs were included in this study. Eighty-three UIAs (76.1%) had a size smaller than 7 mm. PHASES and ELAPSS scores were significantly higher in UIAs with CAWE than in UIAs without CAWE (p < .01). The association of CAWE with PHASES and ELAPSS scores remained in small UIAs (<7 mm). The optimal cutoff value of CRstalk for CAWE was 0.5. PHASES and ELAPSS scores were significantly higher in UIAs with CRstalk ≥0.5 than in UIAs with CRstalk <0.5 (p < .01). CONCLUSIONS CAWE on HR-VWI is a valuable imaging marker for aneurysm instability in UIAs. CRstalk value ≥0.5 may be associated with a higher risk of intracranial aneurysm rupture and growth.
Collapse
Affiliation(s)
- Xiao-Bing Wu
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing-Lian Zhong
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sheng-Wen Wang
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yun Su
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pei-Sheng Chen
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhong-Jun Li
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chun Xiang
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wang-Qing Cai
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhong-Song Shi
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Morel S, Bijlenga P, Kwak BR. Intracranial aneurysm wall (in)stability-current state of knowledge and clinical perspectives. Neurosurg Rev 2022; 45:1233-1253. [PMID: 34743248 PMCID: PMC8976821 DOI: 10.1007/s10143-021-01672-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/15/2021] [Accepted: 10/05/2021] [Indexed: 12/19/2022]
Abstract
Intracranial aneurysm (IA), a local outpouching of cerebral arteries, is present in 3 to 5% of the population. Once formed, an IA can remain stable, grow, or rupture. Determining the evolution of IAs is almost impossible. Rupture of an IA leads to subarachnoid hemorrhage and affects mostly young people with heavy consequences in terms of death, disabilities, and socioeconomic burden. Even if the large majority of IAs will never rupture, it is critical to determine which IA might be at risk of rupture. IA (in)stability is dependent on the composition of its wall and on its ability to repair. The biology of the IA wall is complex and not completely understood. Nowadays, the risk of rupture of an IA is estimated in clinics by using scores based on the characteristics of the IA itself and on the anamnesis of the patient. Classification and prediction using these scores are not satisfying and decisions whether a patient should be observed or treated need to be better informed by more reliable biomarkers. In the present review, the effects of known risk factors for rupture, as well as the effects of biomechanical forces on the IA wall composition, will be summarized. Moreover, recent advances in high-resolution vessel wall magnetic resonance imaging, which are promising tools to discriminate between stable and unstable IAs, will be described. Common data elements recently defined to improve IA disease knowledge and disease management will be presented. Finally, recent findings in genetics will be introduced and future directions in the field of IA will be exposed.
Collapse
Affiliation(s)
- Sandrine Morel
- Department of Pathology and Immunology, Faculty of Medicine, Centre Medical Universitaire, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland.
- Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.
| | - Philippe Bijlenga
- Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, Faculty of Medicine, Centre Medical Universitaire, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| |
Collapse
|
6
|
Maupu C, Lebas H, Boulaftali Y. Imaging Modalities for Intracranial Aneurysm: More Than Meets the Eye. Front Cardiovasc Med 2022; 9:793072. [PMID: 35242823 PMCID: PMC8885801 DOI: 10.3389/fcvm.2022.793072] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022] Open
Abstract
Intracranial aneurysms (IA) are often asymptomatic and have a prevalence of 3 to 5% in the adult population. The risk of IA rupture is low, however when it occurs half of the patients dies from subarachnoid hemorrhage (SAH). To avoid this fatal evolution, the main treatment is an invasive surgical procedure, which is considered to be at high risk of rupture. This risk score of IA rupture is evaluated mainly according to its size and location. Therefore, angiography and anatomic imaging of the intracranial aneurysm are crucial for its diagnosis. Moreover, it has become obvious in recent years that several other factors are implied in this complication, such as the blood flow complexity or inflammation. These recent findings lead to the development of new IA imaging tools such as vessel wall imaging, 4D-MRI, or molecular MRI to visualize inflammation at the site of IA in human and animal models. In this review, we will summarize IA imaging techniques used for the patients and those currently in development.
Collapse
|
7
|
Liu Q, Zhang Y, Zhu C, Liu W, Ma X, Chen J, Mo S, Dong L, Wang N, Wu J, Liu P, He H, Wang S. Serum IL-1, Pyroptosis and Intracranial Aneurysm Wall Enhancement: Analysis Integrating Radiology, Serum Cytokines and Histology. Front Cardiovasc Med 2022; 9:818789. [PMID: 35155635 PMCID: PMC8829005 DOI: 10.3389/fcvm.2022.818789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/04/2022] [Indexed: 12/30/2022] Open
Abstract
Background and Purpose Aneurysm wall enhancement (AWE) is correlated with the rupture and growth risk of unruptured intracranial aneurysms (UIAs). Pyroptosis is a proinflammation mode of lytic cell death, mediated by pyroptosis-related proteins, i.e., gasdermin D and interleukin 1 β (IL-1β). Integrating serum cytokines and histology, this study aimed to investigate the correlation between AWE and pyroptosis in UIAs. Methods UIA patients receiving microsurgical clipping were prospectively enrolled from January 2017 and June 2020. UIA samples were collected, as well as the corresponding blood samples. In this study, high-resolution magnetic resonance was employed to identify the AWE. The serum 46-cytokines examination and the histological analysis were conducted to determine pyroptosis, CD68 and MMP2. The IL-1 ra/beta ratio was determined by complying with the serum IL-1β and IL-1.ra. A comparison was drawn in the differences between UIAs with and without AWE. Lastly, the correlation between inflammation in UIA samples and serums was investigated. Results This study included 34 UIA patients. The serum proinflammatory cytokines [IL-1β (P < 0.001) and TNF-α (P < 0.001)] were up-regulated, and serum anti-inflammatory cytokine (IL-1.ra, P = 0.042) were down-regulated in patients with AWE UIAs. The patients with AWE UIAs achieved a higher IL-1.ra/beta ratio (P < 0.001). The multivariate logistic analysis demonstrated IL-1β [odds ratio (OR), 1.15; 95% confidence interval (CI), 1.02–1.30; P = 0.028] and IL-1.ra (OR, 0.998; 95% CI, 0.997–1.000; P = 0.017) as the risk factors correlated with the AWE. IL-1.ra/beta ratio achieved the highest predictive accuracy [area under the curve (AUC), 0.96] for AWE, followed by IL-1.ra (AUC, 0.90), IL-1β (AUC, 0.88) and TNF-α (AUC, 0.85). As compared with the UIAs without AWE, the AWE UIAs were manifested as a severer wall remodeling, with higher relative levels of pyroptosis-related proteins, CD68 and MMP2. The serum IL-1β, IL-1.ra and IL-1.ra/beta ratio had a positive correlation with the relative levels of pyroptosis-related proteins, CD68 and MMP2 in UIA tissues. Conclusion The serum IL-1β and IL-1.ra were correlated with the AWE. More pyroptosis-related proteins were identified in UIAs with AWE. The serum IL-1β and IL-1.ra were correlated with the pyroptosis-related proteins in aneurysm tissues.
Collapse
Affiliation(s)
- Qingyuan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yisen Zhang
- Department of Neurointevention, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Neurosurgical Institution, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chengcheng Zhu
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Weiqi Liu
- Medical Image Center, Tongxinyilian (Unimed), Tsinghua Tongfang Science and Technology Mansion, Beijing, China
| | - Xuesheng Ma
- Medical Image Center, Tongxinyilian (Unimed), Tsinghua Tongfang Science and Technology Mansion, Beijing, China
| | - Jingang Chen
- Medical Image Center, Tongxinyilian (Unimed), Tsinghua Tongfang Science and Technology Mansion, Beijing, China
| | - Shaohua Mo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Linggen Dong
- Department of Neurointevention, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Nuochuan Wang
- Department of Blood Transfusion, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jun Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peng Liu
- Department of Neurointevention, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Neurosurgical Institution, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Peng Liu
| | - Hongwei He
- Department of Neurointevention, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Neurosurgical Institution, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Hongwei He
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- *Correspondence: Shuo Wang
| |
Collapse
|
8
|
Raghuram A, Varon A, Roa JA, Ishii D, Lu Y, Raghavan ML, Wu C, Magnotta VA, Hasan DM, Koscik TR, Samaniego EA. Semiautomated 3D mapping of aneurysmal wall enhancement with 7T-MRI. Sci Rep 2021; 11:18344. [PMID: 34526579 PMCID: PMC8443635 DOI: 10.1038/s41598-021-97727-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023] Open
Abstract
Aneurysm wall enhancement (AWE) after the administration of contrast gadolinium is a potential biomarker of unstable intracranial aneurysms. While most studies determine AWE subjectively, this study comprehensively quantified AWE in 3D imaging using a semi-automated method. Thirty patients with 33 unruptured intracranial aneurysms prospectively underwent high-resolution imaging with 7T-MRI. The signal intensity (SI) of the aneurysm wall was mapped and normalized to the pituitary stalk (PS) and corpus callosum (CC). The CC proved to be a more reliable normalizing structure in detecting contrast enhancement (p < 0.0001). 3D-heatmaps and histogram analysis of AWE were used to generate the following metrics: specific aneurysm wall enhancement (SAWE), general aneurysm wall enhancement (GAWE) and focal aneurysm wall enhancement (FAWE). GAWE was more accurate in detecting known morphological determinants of aneurysm instability such as size ≥ 7 mm (p = 0.049), size ratio (p = 0.01) and aspect ratio (p = 0.002). SAWE and FAWE were aneurysm specific metrics used to characterize enhancement patterns within the aneurysm wall and the distribution of enhancement along the aneurysm. Blebs were easily identified on 3D-heatmaps and were more enhancing than aneurysm sacs (p = 0.0017). 3D-AWE mapping may be a powerful objective tool in characterizing different biological processes of the aneurysm wall.
Collapse
Affiliation(s)
- Ashrita Raghuram
- Department of Neurology, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, 52246, USA
| | - Alberto Varon
- Department of Neurology, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, 52246, USA
| | - Jorge A Roa
- Department of Neurology, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, 52246, USA.,Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Daizo Ishii
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Yongjun Lu
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Madhavan L Raghavan
- Roy J Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Chaorong Wu
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA, USA
| | - Vincent A Magnotta
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - David M Hasan
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Timothy R Koscik
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Edgar A Samaniego
- Department of Neurology, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, 52246, USA. .,Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA. .,Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|