1
|
Ron-Angevin R, Fernández-Rodríguez Á, Velasco-Álvarez F, Lespinet-Najib V, André JM. Evaluation of Different Types of Stimuli in an Event-Related Potential-Based Brain-Computer Interface Speller under Rapid Serial Visual Presentation. SENSORS (BASEL, SWITZERLAND) 2024; 24:3315. [PMID: 38894107 PMCID: PMC11174573 DOI: 10.3390/s24113315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Rapid serial visual presentation (RSVP) is currently a suitable gaze-independent paradigm for controlling visual brain-computer interfaces (BCIs) based on event-related potentials (ERPs), especially for users with limited eye movement control. However, unlike gaze-dependent paradigms, gaze-independent ones have received less attention concerning the specific choice of visual stimuli that are used. In gaze-dependent BCIs, images of faces-particularly those tinted red-have been shown to be effective stimuli. This study aims to evaluate whether the colour of faces used as visual stimuli influences ERP-BCI performance under RSVP. Fifteen participants tested four conditions that varied only in the visual stimulus used: grey letters (GL), red famous faces with letters (RFF), green famous faces with letters (GFF), and blue famous faces with letters (BFF). The results indicated significant accuracy differences only between the GL and GFF conditions, unlike prior gaze-dependent studies. Additionally, GL achieved higher comfort ratings compared with other face-related conditions. This study highlights that the choice of stimulus type impacts both performance and user comfort, suggesting implications for future ERP-BCI designs for users requiring gaze-independent systems.
Collapse
Affiliation(s)
- Ricardo Ron-Angevin
- Departamento de Tecnología Electrónica, Instituto Universitario de Investigación en Telecomunicación de la Universidad de Málaga (TELMA), Universidad de Málaga, 29071 Malaga, Spain; (Á.F.-R.); (F.V.-Á.)
| | - Álvaro Fernández-Rodríguez
- Departamento de Tecnología Electrónica, Instituto Universitario de Investigación en Telecomunicación de la Universidad de Málaga (TELMA), Universidad de Málaga, 29071 Malaga, Spain; (Á.F.-R.); (F.V.-Á.)
| | - Francisco Velasco-Álvarez
- Departamento de Tecnología Electrónica, Instituto Universitario de Investigación en Telecomunicación de la Universidad de Málaga (TELMA), Universidad de Málaga, 29071 Malaga, Spain; (Á.F.-R.); (F.V.-Á.)
| | - Véronique Lespinet-Najib
- Laboratoire IMS, CNRS UMR 5218, Cognitive Team, Bordeaux INP-ENSC, 33400 Bordeaux, France; (V.L.-N.); (J.-M.A.)
| | - Jean-Marc André
- Laboratoire IMS, CNRS UMR 5218, Cognitive Team, Bordeaux INP-ENSC, 33400 Bordeaux, France; (V.L.-N.); (J.-M.A.)
| |
Collapse
|
2
|
Reichert C, Sweeney-Reed CM, Hinrichs H, Dürschmid S. A toolbox for decoding BCI commands based on event-related potentials. Front Hum Neurosci 2024; 18:1358809. [PMID: 38505100 PMCID: PMC10949531 DOI: 10.3389/fnhum.2024.1358809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Commands in brain-computer interface (BCI) applications often rely on the decoding of event-related potentials (ERP). For instance, the P300 potential is frequently used as a marker of attention to an oddball event. Error-related potentials and the N2pc signal are further examples of ERPs used for BCI control. One challenge in decoding brain activity from the electroencephalogram (EEG) is the selection of the most suitable channels and appropriate features for a particular classification approach. Here we introduce a toolbox that enables ERP-based decoding using the full set of channels, while automatically extracting informative components from relevant channels. The strength of our approach is that it handles sequences of stimuli that encode multiple items using binary classification, such as target vs. nontarget events typically used in ERP-based spellers. We demonstrate examples of application scenarios and evaluate the performance of four openly available datasets: a P300-based matrix speller, a P300-based rapid serial visual presentation (RSVP) speller, a binary BCI based on the N2pc, and a dataset capturing error potentials. We show that our approach achieves performances comparable to those in the original papers, with the advantage that only conventional preprocessing is required by the user, while channel weighting and decoding algorithms are internally performed. Thus, we provide a tool to reliably decode ERPs for BCI use with minimal programming requirements.
Collapse
Affiliation(s)
- Christoph Reichert
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Catherine M. Sweeney-Reed
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany
| | - Hermann Hinrichs
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Stefan Dürschmid
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
3
|
Van de Wauw C, Riecke L, Goebel R, Kaas A, Sorger B. Talking with hands and feet: Selective somatosensory attention and fMRI enable robust and convenient brain-based communication. Neuroimage 2023; 276:120172. [PMID: 37230207 DOI: 10.1016/j.neuroimage.2023.120172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/07/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
In brain-based communication, voluntarily modulated brain signals (instead of motor output) are utilized to interact with the outside world. The possibility to circumvent the motor system constitutes an important alternative option for severely paralyzed. Most communication brain-computer interface (BCI) paradigms require intact visual capabilities and impose a high cognitive load, but for some patients, these requirements are not given. In these situations, a better-suited, less cognitively demanding information-encoding approach may exploit auditorily-cued selective somatosensory attention to vibrotactile stimulation. Here, we propose, validate and optimize a novel communication-BCI paradigm using differential fMRI activation patterns evoked by selective somatosensory attention to tactile stimulation of the right hand or left foot. Using cytoarchitectonic probability maps and multi-voxel pattern analysis (MVPA), we show that the locus of selective somatosensory attention can be decoded from fMRI-signal patterns in (especially primary) somatosensory cortex with high accuracy and reliability, with the highest classification accuracy (85.93%) achieved when using Brodmann area 2 (SI-BA2) at a probability level of 0.2. Based on this outcome, we developed and validated a novel somatosensory attention-based yes/no communication procedure and demonstrated its high effectiveness even when using only a limited amount of (MVPA) training data. For the BCI user, the paradigm is straightforward, eye-independent, and requires only limited cognitive functioning. In addition, it is BCI-operator friendly given its objective and expertise-independent procedure. For these reasons, our novel communication paradigm has high potential for clinical applications.
Collapse
Affiliation(s)
- Cynthia Van de Wauw
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Lars Riecke
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Neuroimaging and Neuromodeling, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Amanda Kaas
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Bettina Sorger
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
4
|
Fernández-Rodríguez Á, Darves-Bornoz A, Velasco-Álvarez F, Ron-Angevin R. Effect of Stimulus Size in a Visual ERP-Based BCI under RSVP. SENSORS (BASEL, SWITZERLAND) 2022; 22:9505. [PMID: 36502205 PMCID: PMC9741214 DOI: 10.3390/s22239505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Rapid serial visual presentation (RSVP) is currently one of the most suitable paradigms for use with a visual brain-computer interface based on event-related potentials (ERP-BCI) by patients with a lack of ocular motility. However, gaze-independent paradigms have not been studied as closely as gaze-dependent ones, and variables such as the sizes of the stimuli presented have not yet been explored under RSVP. Hence, the aim of the present work is to assess whether stimulus size has an impact on ERP-BCI performance under the RSVP paradigm. Twelve participants tested the ERP-BCI under RSVP using three different stimulus sizes: small (0.1 × 0.1 cm), medium (1.9 × 1.8 cm), and large (20.05 × 19.9 cm) at 60 cm. The results showed significant differences in accuracy between the conditions; the larger the stimulus, the better the accuracy obtained. It was also shown that these differences were not due to incorrect perception of the stimuli since there was no effect from the size in a perceptual discrimination task. The present work therefore shows that stimulus size has an impact on the performance of an ERP-BCI under RSVP. This finding should be considered by future ERP-BCI proposals aimed at users who need gaze-independent systems.
Collapse
Affiliation(s)
| | | | | | - Ricardo Ron-Angevin
- Departamento de Tecnología Electrónica, Universidad de Málaga, 29071 Malaga, Spain
| |
Collapse
|
5
|
Xu W, Gao P, He F, Qi H. Improving the performance of a gaze independent P300-BCI by using the expectancy wave. J Neural Eng 2022; 19. [PMID: 35325878 DOI: 10.1088/1741-2552/ac60c8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/24/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE A P300-BCI conveys a subject's intention through recognition of their ERPs. However, in the case of visual stimuli, its performance depends strongly on eye gaze. When eye movement is impaired, it becomes difficult to focus attention on a target stimulus, and the quality of the ERP declines greatly, thereby affecting recognition efficiency. APPROACH In this paper, the expectancy wave (E-wave) is proposed to improve signal quality and thereby improve identification of visual targets under the covert attention. The stimuli of the P300-BCI described here are presented in a fixed sequence, so the subjects can predict the next target stimulus and establish a stable expectancy effect of the target stimulus through training. Features from the E-wave that occurred 0~300ms before a stimulus were added to the post-stimulus ERP components for intention recognition. MAIN RESULTS Comparisons of 10 healthy subjects before and after training demonstrated that the expectancy wave generated before target stimulus could be used with the P300 component to improve character recognition accuracy (CRA) from 85% to 92.4%. In addition, CRA using only the expectancy component can reach 68.2%, which is significantly greater than random probability (16.7%). The results of this study indicate that the expectancy wave can be used to improve recognition efficiency for a gaze-independent P300-BCI, and that training contributes to induction and recognition of the potential. SIGNIFICANCE This study proposes an effective approach to an efficient gaze-independent P300-BCI system.
Collapse
Affiliation(s)
- Wei Xu
- Tianjin University, 92 Weijin Road,Nankai District,Tianjin,China, Tianjin, 300072, CHINA
| | - Pin Gao
- Tianjin University, 92 Weijin Road, Nankai District,Tianjin,China, Tianjin, Tianjin, 300072, CHINA
| | - Feng He
- Tianjin University, 92 Weijin Road, Nankai District,Tianjin,China, Tianjin, Tianjin, 300072, CHINA
| | - Hongzhi Qi
- Tianjin University, 92 Weijin Road,Nankai District,Tianjin,China, Tianjin, Tianjin, 300072, CHINA
| |
Collapse
|
6
|
Wang Y, Luo Z, Zhao S, Xie L, Xu M, Ming D, Yin E. Spatial localization in target detection based on decoding N2pc component. J Neurosci Methods 2021; 369:109440. [PMID: 34979193 DOI: 10.1016/j.jneumeth.2021.109440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/08/2021] [Accepted: 12/11/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND The Gaze-independent BCI system is used to restore communication in patients with eye movement disorders. One available control mechanism is the utilization of spatial attention. However, spatial information is mostly used to simply answer the "True/False" target recognition question and is seldom used to improve the efficiency of target detection. Therefore, it is necessary to utilize the potential advantages of spatial attention to improving the target detection efficiency. NEW METHOD We found that N2pc could be used to assess spatial attention shift and determine target position. It was a negative wave in the posterior brain on the contralateral target stimulus. From this, we designed a novel spatial coding paradigm to achieve two main purposes at each stimulus presentation: target recognition and spatial localization. COMPARISON WITH EXISTING METHODS We used a two-step classification framework to decode the P300 and N2pc components. RESULTS The average decoding accuracy of fourteen subjects was 84.43% (σ = 1.14%), and the classification accuracy of six subjects was more than 85%. The information transfer rate of the spatial coding paradigm could reach 60.52 bits/min. Compared with the single stimulus paradigm, the target detection efficiency was successfully improved by approximately 10%. CONCLUSIONS The spatial coding paradigm proposed in this paper answered both "True/False" and "Left/Right" questions by decoding spatial attention information. This method could significantly improve image detection efficiencies, such as visual search tasks, Internet image screening, or military target determination.
Collapse
Affiliation(s)
- Yijing Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Zhiguo Luo
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing100071, China; Tianjin Artificial Intelligence Innovation Center (TAIIC),Tianjin 300450, China
| | - Shaokai Zhao
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin 300071, China
| | - Liang Xie
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing100071, China; Tianjin Artificial Intelligence Innovation Center (TAIIC),Tianjin 300450, China
| | - Minpeng Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Erwei Yin
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing100071, China; Tianjin Artificial Intelligence Innovation Center (TAIIC),Tianjin 300450, China.
| |
Collapse
|
7
|
Gutierrez-Martinez J, Mercado-Gutierrez JA, Carvajal-Gámez BE, Rosas-Trigueros JL, Contreras-Martinez AE. Artificial Intelligence Algorithms in Visual Evoked Potential-Based Brain-Computer Interfaces for Motor Rehabilitation Applications: Systematic Review and Future Directions. Front Hum Neurosci 2021; 15:772837. [PMID: 34899220 PMCID: PMC8656949 DOI: 10.3389/fnhum.2021.772837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Brain-Computer Interface (BCI) is a technology that uses electroencephalographic (EEG) signals to control external devices, such as Functional Electrical Stimulation (FES). Visual BCI paradigms based on P300 and Steady State Visually Evoked potentials (SSVEP) have shown high potential for clinical purposes. Numerous studies have been published on P300- and SSVEP-based non-invasive BCIs, but many of them present two shortcomings: (1) they are not aimed for motor rehabilitation applications, and (2) they do not report in detail the artificial intelligence (AI) methods used for classification, or their performance metrics. To address this gap, in this paper the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology was applied to prepare a systematic literature review (SLR). Papers older than 10 years, repeated or not related to a motor rehabilitation application, were excluded. Of all the studies, 51.02% referred to theoretical analysis of classification algorithms. Of the remaining, 28.48% were for spelling, 12.73% for diverse applications (control of wheelchair or home appliances), and only 7.77% were focused on motor rehabilitation. After the inclusion and exclusion criteria were applied and quality screening was performed, 34 articles were selected. Of them, 26.47% used the P300 and 55.8% the SSVEP signal. Five applications categories were established: Rehabilitation Systems (17.64%), Virtual Reality environments (23.52%), FES (17.64%), Orthosis (29.41%), and Prosthesis (11.76%). Of all the works, only four performed tests with patients. The most reported machine learning (ML) algorithms used for classification were linear discriminant analysis (LDA) (48.64%) and support vector machine (16.21%), while only one study used a deep learning algorithm: a Convolutional Neural Network (CNN). The reported accuracy ranged from 38.02 to 100%, and the Information Transfer Rate from 1.55 to 49.25 bits per minute. While LDA is still the most used AI algorithm, CNN has shown promising results, but due to their high technical implementation requirements, many researchers do not justify its implementation as worthwile. To achieve quick and accurate online BCIs for motor rehabilitation applications, future works on SSVEP-, P300-based and hybrid BCIs should focus on optimizing the visual stimulation module and the training stage of ML and DL algorithms.
Collapse
Affiliation(s)
- Josefina Gutierrez-Martinez
- División de Investigación en Ingeniería Médica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Jorge A. Mercado-Gutierrez
- División de Investigación en Ingeniería Médica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | | | | | | |
Collapse
|
8
|
Shahbakhti M, Beiramvand M, Nazari M, Broniec-Wojcik A, Augustyniak P, Rodrigues AS, Wierzchon M, Marozas V. VME-DWT: An Efficient Algorithm for Detection and Elimination of Eye Blink From Short Segments of Single EEG Channel. IEEE Trans Neural Syst Rehabil Eng 2021; 29:408-417. [PMID: 33497337 DOI: 10.1109/tnsre.2021.3054733] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Recent advances in development of low-cost single-channel electroencephalography (EEG) headbands have opened new possibilities for applications in health monitoring and brain-computer interface (BCI) systems. These recorded EEG signals, however, are often contaminated by eye blink artifacts that can yield the fallacious interpretation of the brain activity. This paper proposes an efficient algorithm, VME-DWT, to remove eye blinks in a short segment of the single EEG channel. METHOD The proposed algorithm: (a) locates eye blink intervals using Variational Mode Extraction (VME) and (b) filters only contaminated EEG interval using an automatic Discrete Wavelet Transform (DWT) algorithm. The performance of VME-DWT is compared with an automatic Variational Mode Decomposition (AVMD) and a DWT-based algorithms, proposed for suppressing eye blinks in a short segment of the single EEG channel. RESULTS The VME-DWT detects and filters 95% of the eye blinks from the contaminated EEG signals with SNR ranging from -8 to +3 dB. The VME-DWT shows superiority to the AVMD and DWT with the higher mean value of correlation coefficient (0.92 vs. 0.83, 0.58) and lower mean value of RRMSE (0.42 vs. 0.59, 0.87). SIGNIFICANCE The VME-DWT can be a suitable algorithm for removal of eye blinks in low-cost single-channel EEG systems as it is: (a) computationally-efficient, the contaminated EEG signal is filtered in millisecond time resolution, (b) automatic, no human intervention is required, (c) low-invasive, EEG intervals without contamination remained unaltered, and (d) low-complexity, without need to the artifact reference.
Collapse
|