1
|
Bagheri S, Taghvaei M, Familiar A, Haldar D, Zandifar A, Khalili N, Vossough A, Nabavizadeh A. Statistical plots in oncologic imaging, a primer for neuroradiologists. Neuroradiol J 2024; 37:418-433. [PMID: 37529843 PMCID: PMC11366205 DOI: 10.1177/19714009231193158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
The simplest approach to convey the results of scientific analysis, which can include complex comparisons, is typically through the use of visual items, including figures and plots. These statistical plots play a critical role in scientific studies, making data more accessible, engaging, and informative. A growing number of visual representations have been utilized recently to graphically display the results of oncologic imaging, including radiomic and radiogenomic studies. Here, we review the applications, distinct properties, benefits, and drawbacks of various statistical plots. Furthermore, we provide neuroradiologists with a comprehensive understanding of how to use these plots to effectively communicate analytical results based on imaging data.
Collapse
Affiliation(s)
- Sina Bagheri
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Data-Driven Discovery in Biomedicine (D3b), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mohammad Taghvaei
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ariana Familiar
- Center for Data-Driven Discovery in Biomedicine (D3b), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Debanjan Haldar
- Center for Data-Driven Discovery in Biomedicine (D3b), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alireza Zandifar
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nastaran Khalili
- Center for Data-Driven Discovery in Biomedicine (D3b), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Arastoo Vossough
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Data-Driven Discovery in Biomedicine (D3b), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ali Nabavizadeh
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Data-Driven Discovery in Biomedicine (D3b), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
2
|
Nalepa J, Kotowski K, Machura B, Adamski S, Bozek O, Eksner B, Kokoszka B, Pekala T, Radom M, Strzelczak M, Zarudzki L, Krason A, Arcadu F, Tessier J. Deep learning automates bidimensional and volumetric tumor burden measurement from MRI in pre- and post-operative glioblastoma patients. Comput Biol Med 2023; 154:106603. [PMID: 36738710 DOI: 10.1016/j.compbiomed.2023.106603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
Tumor burden assessment by magnetic resonance imaging (MRI) is central to the evaluation of treatment response for glioblastoma. This assessment is, however, complex to perform and associated with high variability due to the high heterogeneity and complexity of the disease. In this work, we tackle this issue and propose a deep learning pipeline for the fully automated end-to-end analysis of glioblastoma patients. Our approach simultaneously identifies tumor sub-regions, including the enhancing tumor, peritumoral edema and surgical cavity in the first step, and then calculates the volumetric and bidimensional measurements that follow the current Response Assessment in Neuro-Oncology (RANO) criteria. Also, we introduce a rigorous manual annotation process which was followed to delineate the tumor sub-regions by the human experts, and to capture their segmentation confidences that are later used while training deep learning models. The results of our extensive experimental study performed over 760 pre-operative and 504 post-operative adult patients with glioma obtained from the public database (acquired at 19 sites in years 2021-2020) and from a clinical treatment trial (47 and 69 sites for pre-/post-operative patients, 2009-2011) and backed up with thorough quantitative, qualitative and statistical analysis revealed that our pipeline performs accurate segmentation of pre- and post-operative MRIs in a fraction of the manual delineation time (up to 20 times faster than humans). Volumetric measurements were in strong agreement with experts with the Intraclass Correlation Coefficient (ICC): 0.959, 0.703, 0.960 for ET, ED, and cavity. Similarly, automated RANO compared favorably with experienced readers (ICC: 0.681 and 0.866) producing consistent and accurate results. Additionally, we showed that RANO measurements are not always sufficient to quantify tumor burden. The high performance of the automated tumor burden measurement highlights the potential of the tool for considerably improving and simplifying radiological evaluation of glioblastoma in clinical trials and clinical practice.
Collapse
Affiliation(s)
- Jakub Nalepa
- Graylight Imaging, Gliwice, Poland; Department of Algorithmics and Software, Silesian University of Technology, Gliwice, Poland.
| | | | | | | | - Oskar Bozek
- Department of Radiodiagnostics and Invasive Radiology, School of Medicine in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Bartosz Eksner
- Department of Radiology and Nuclear Medicine, ZSM Chorzów, Chorzów, Poland
| | - Bartosz Kokoszka
- Department of Radiodiagnostics, Interventional Radiology and Nuclear Medicine, University Clinical Centre, Katowice, Poland
| | - Tomasz Pekala
- Department of Radiodiagnostics, Interventional Radiology and Nuclear Medicine, University Clinical Centre, Katowice, Poland
| | - Mateusz Radom
- Department of Radiology and Diagnostic Imaging, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Marek Strzelczak
- Department of Radiology and Diagnostic Imaging, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Lukasz Zarudzki
- Department of Radiology and Diagnostic Imaging, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Agata Krason
- Roche Pharmaceutical Research & Early Development, Early Clinical Development Oncology, Roche Innovation Center Basel, Basel, Switzerland
| | - Filippo Arcadu
- Roche Pharmaceutical Research & Early Development, Early Clinical Development Informatics, Roche Innovation Center Basel, Basel, Switzerland
| | - Jean Tessier
- Roche Pharmaceutical Research & Early Development, Early Clinical Development Oncology, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
3
|
Differentiating Glioblastoma Multiforme from Brain Metastases Using Multidimensional Radiomics Features Derived from MRI and Multiple Machine Learning Models. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2016006. [PMID: 36212721 PMCID: PMC9534611 DOI: 10.1155/2022/2016006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/06/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022]
Abstract
Due to different treatment strategies, it is extremely important to differentiate between glioblastoma multiforme (GBM) and brain metastases (MET). It often proves difficult to distinguish between GBM and MET using MRI due to their similar appearance on the imaging modalities. Surgical methods are still necessary for definitive diagnosis, despite the importance of magnetic resonance imaging in detecting, characterizing, and monitoring brain tumors. We introduced an accurate, convenient, and user-friendly method to differentiate between GBM and MET through routine MRI sequence and radiomics analyses. We collected 91 patients from one institution, including 50 with GBM and 41 with MET, which were proven pathologically. The tumors separately were segmented on all MRI images (T1-weighted imaging (T1WI), contrast-enhanced T1-weighted imaging (T1C), T2-weighted imaging (T2WI), and fluid-attenuated inversion recovery (FLAIR)) to form the volume of interest (VOI). Eight ML models and feature reduction strategies were evaluated using routine MRI sequences (T1W, T2W, T1-CE, and FLAIR) in two methods with (second model) and without wavelet transform (first model) radiomics. The optimal model was selected based on each model’s accuracy, AUC-roc, and F1-score values. In this study, we have achieved the result of 0.98, 0.99, and 0.98 percent for accuracy, AUC-roc, and F1-score, respectively, which have yielded a better result than the first model. In most investigated models, there were significant improvements in the multidimensional wavelets model compared to the non-multidimensional wavelets model. Multidimensional discrete wavelet transform can analyze hidden features of the MRI from a different perspective and generate accurate features which are highly correlated with the model accuracy.
Collapse
|
4
|
Zhang Y, Zhuang Y, Ge Y, Wu PY, Zhao J, Wang H, Song B. MRI whole-lesion texture analysis on ADC maps for the prognostic assessment of ischemic stroke. BMC Med Imaging 2022; 22:115. [PMID: 35778678 PMCID: PMC9250246 DOI: 10.1186/s12880-022-00845-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022] Open
Abstract
Background This study aims is to explore whether it is feasible to use magnetic resonance texture analysis (MRTA) in order to distinguish favorable from unfavorable function outcomes and determine the prognostic factors associated with favorable outcomes of stroke. Methods The retrospective study included 103 consecutive patients who confirmed unilateral anterior circulation subacute ischemic stroke by computed tomography angiography between January 2018 and September 2019. Patients were divided into favorable outcome (modified Rankin scale, mRS ≤ 2) and unfavorable outcome (mRS > 2) groups according to mRS scores at day 90. Two radiologists manually segmented the infarction lesions based on diffusion-weighted imaging and transferred the images to corresponding apparent diffusion coefficient (ADC) maps in order to extract texture features. The prediction models including clinical characteristics and texture features were built using multiple logistic regression. A univariate analysis was conducted to assess the performance of the mean ADC value of the infarction lesion. A Delong’s test was used to compare the predictive performance of models through the receiver operating characteristic curve. Results The mean ADC performance was moderate [AUC = 0.60, 95% confidence interval (CI) 0.49–0.71]. The texture feature model of the ADC map (tADC), contained seven texture features, and presented good prediction performance (AUC = 0.83, 95%CI 0.75–0.91). The energy obtained after wavelet transform, and the kurtosis and skewness obtained after Laplacian of Gaussian transformation were identified as independent prognostic factors for the favorable stroke outcomes. In addition, the combination of the tADC model and clinical characteristics (hypertension, diabetes mellitus, smoking, and atrial fibrillation) exhibited a subtly better performance (AUC = 0.86, 95%CI 0.79–0.93; P > 0.05, Delong’s). Conclusion The models based on MRTA on ADC maps are useful to evaluate the clinical function outcomes in patients with unilateral anterior circulation ischemic stroke. Energy obtained after wavelet transform, kurtosis obtained after Laplacian of Gaussian transform, and skewness obtained after Laplacian of Gaussian transform were identified as independent prognostic factors for favorable stroke outcomes.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Radiology, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, People's Republic of China
| | - Yuzhong Zhuang
- Department of Radiology, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, People's Republic of China
| | - Yaqiong Ge
- Department of Medicine, GE Healthcare, Shanghai, People's Republic of China
| | - Pu-Yeh Wu
- Department of Medicine, GE Healthcare, Beijing, People's Republic of China
| | - Jing Zhao
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hao Wang
- Department of Radiology, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, People's Republic of China.
| | - Bin Song
- Department of Radiology, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, People's Republic of China.
| |
Collapse
|