1
|
Cieri MB, Ramos AJ. Astrocytes, reactive astrogliosis, and glial scar formation in traumatic brain injury. Neural Regen Res 2025; 20:973-989. [PMID: 38989932 PMCID: PMC11438322 DOI: 10.4103/nrr.nrr-d-23-02091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/14/2024] [Indexed: 07/12/2024] Open
Abstract
Traumatic brain injury is a global health crisis, causing significant death and disability worldwide. Neuroinflammation that follows traumatic brain injury has serious consequences for neuronal survival and cognitive impairments, with astrocytes involved in this response. Following traumatic brain injury, astrocytes rapidly become reactive, and astrogliosis propagates from the injury core to distant brain regions. Homeostatic astroglial proteins are downregulated near the traumatic brain injury core, while pro-inflammatory astroglial genes are overexpressed. This altered gene expression is considered a pathological remodeling of astrocytes that produces serious consequences for neuronal survival and cognitive recovery. In addition, glial scar formed by reactive astrocytes is initially necessary to limit immune cell infiltration, but in the long term impedes axonal reconnection and functional recovery. Current therapeutic strategies for traumatic brain injury are focused on preventing acute complications. Statins, cannabinoids, progesterone, beta-blockers, and cerebrolysin demonstrate neuroprotective benefits but most of them have not been studied in the context of astrocytes. In this review, we discuss the cell signaling pathways activated in reactive astrocytes following traumatic brain injury and we discuss some of the potential new strategies aimed to modulate astroglial responses in traumatic brain injury, especially using cell-targeted strategies with miRNAs or lncRNA, viral vectors, and repurposed drugs.
Collapse
Affiliation(s)
- María Belén Cieri
- Laboratorio de Neuropatología Molecular, IBCN UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
2
|
Hummel R, Dorochow E, Zander S, Ritter K, Hahnefeld L, Gurke R, Tegeder I, Schäfer MKE. Valproic Acid Treatment after Traumatic Brain Injury in Mice Alleviates Neuronal Death and Inflammation in Association with Increased Plasma Lysophosphatidylcholines. Cells 2024; 13:734. [PMID: 38727269 PMCID: PMC11083124 DOI: 10.3390/cells13090734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
The histone deacetylase inhibitor (HDACi) valproic acid (VPA) has neuroprotective and anti-inflammatory effects in experimental traumatic brain injury (TBI), which have been partially attributed to the epigenetic disinhibition of the transcription repressor RE1-Silencing Transcription Factor/Neuron-Restrictive Silencer Factor (REST/NRSF). Additionally, VPA changes post-traumatic brain injury (TBI) brain metabolism to create a neuroprotective environment. To address the interconnection of neuroprotection, metabolism, inflammation and REST/NRSF after TBI, we subjected C57BL/6N mice to experimental TBI and intraperitoneal VPA administration or vehicle solution at 15 min, 1, 2, and 3 days post-injury (dpi). At 7 dpi, TBI-induced an up-regulation of REST/NRSF gene expression and HDACi function of VPA on histone H3 acetylation were confirmed. Neurological deficits, brain lesion size, blood-brain barrier permeability, or astrogliosis were not affected, and REST/NRSF target genes were only marginally influenced by VPA. However, VPA attenuated structural damage in the hippocampus, microgliosis and expression of the pro-inflammatory marker genes. Analyses of plasma lipidomic and polar metabolomic patterns revealed that VPA treatment increased lysophosphatidylcholines (LPCs), which were inversely associated with interleukin 1 beta (Il1b) and tumor necrosis factor (Tnf) gene expression in the brain. The results show that VPA has mild neuroprotective and anti-inflammatory effects likely originating from favorable systemic metabolic changes resulting in increased plasma LPCs that are known to be actively taken up by the brain and function as carriers for neuroprotective polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Regina Hummel
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (R.H.); (K.R.)
| | - Erika Dorochow
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University Frankfurt, 60596 Frankfurt am Main, Germany; (E.D.); (L.H.); (R.G.)
| | - Sonja Zander
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (R.H.); (K.R.)
| | - Katharina Ritter
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (R.H.); (K.R.)
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University Frankfurt, 60596 Frankfurt am Main, Germany; (E.D.); (L.H.); (R.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University Frankfurt, 60596 Frankfurt am Main, Germany; (E.D.); (L.H.); (R.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University Frankfurt, 60596 Frankfurt am Main, Germany; (E.D.); (L.H.); (R.G.)
| | - Michael K. E. Schäfer
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (R.H.); (K.R.)
- Focus Program Translational Neurosciences (FTN), Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Research Center for Immunotherapy (FZI), Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| |
Collapse
|
3
|
Ritter K, Somnuke P, Hu L, Griemert EV, Schäfer MKE. Current state of neuroprotective therapy using antibiotics in human traumatic brain injury and animal models. BMC Neurosci 2024; 25:10. [PMID: 38424488 PMCID: PMC10905838 DOI: 10.1186/s12868-024-00851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
TBI is a leading cause of death and disability in young people and older adults worldwide. There is no gold standard treatment for TBI besides surgical interventions and symptomatic relief. Post-injury infections, such as lower respiratory tract and surgical site infections or meningitis are frequent complications following TBI. Whether the use of preventive and/or symptomatic antibiotic therapy improves patient mortality and outcome is an ongoing matter of debate. In contrast, results from animal models of TBI suggest translational perspectives and support the hypothesis that antibiotics, independent of their anti-microbial activity, alleviate secondary injury and improve neurological outcomes. These beneficial effects were largely attributed to the inhibition of neuroinflammation and neuronal cell death. In this review, we briefly outline current treatment options, including antibiotic therapy, for patients with TBI. We then summarize the therapeutic effects of the most commonly tested antibiotics in TBI animal models, highlight studies identifying molecular targets of antibiotics, and discuss similarities and differences in their mechanistic modes of action.
Collapse
Affiliation(s)
- Katharina Ritter
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), Mainz, 55131, Germany
| | - Pawit Somnuke
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), Mainz, 55131, Germany
- Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Lingjiao Hu
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), Mainz, 55131, Germany
- Department of Gastroenterology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Eva-Verena Griemert
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), Mainz, 55131, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), Mainz, 55131, Germany.
- Focus Program Translational Neurosciences (FTN, Johannes Gutenberg-University Mainz, Mainz, Germany.
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg- University Mainz, Mainz, Germany.
| |
Collapse
|
4
|
Huang L, Xia L, Nie T, Cui B, Lu J, Lu F, Fan F, Ren D, Lu Y, Gao G, Yang Q. Maintaining Drosha expression with Cdk5 inhibitors as a potential therapeutic strategy for early intervention after TBI. Exp Mol Med 2024; 56:210-219. [PMID: 38200156 PMCID: PMC10834983 DOI: 10.1038/s12276-023-01152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/23/2023] [Accepted: 10/26/2023] [Indexed: 01/12/2024] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability in adults. The pathological process of TBI involves a multifactorial cascade in which kinases have been proven contribute to interactions between relevant factors and amplification of signaling cascades. Cyclin-dependent kinase 5 (Cdk5) is a promising kinase that has been implicated in various brain disorders, including TBI. However, the mechanism by which Cdk5 induces neuronal damage remains unclear. Here, we show for the first time that Drosha, a key enzyme in microRNA biogenesis, is a pivotal substrate of abnormally activated Cdk5. Cdk5-mediated phosphorylation decreases Drosha expression and exacerbates nerve injury in TBI. We proved that maintaining Drosha expression via the administration of repurposed Cdk5 inhibitors that were previously studied in clinical trials is a promising approach for the early treatment of TBI. Together, our work identifies Drosha as a novel target for neuroprotective strategies after TBI and suggests Cdk5-mediated regulation of Drosha expression as a potential therapeutic strategy for early TBI intervention.
Collapse
Affiliation(s)
- Lu Huang
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
- Department of Anesthesiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Li Xia
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Tiejian Nie
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Bozhou Cui
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Jianjun Lu
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Fangfang Lu
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Feiyan Fan
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Dongni Ren
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Yuan Lu
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
5
|
Hennigan K, Lavik E. Nature vs. Manmade: Comparing Exosomes and Liposomes for Traumatic Brain Injury. AAPS J 2023; 25:83. [PMID: 37610471 DOI: 10.1208/s12248-023-00849-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023] Open
Abstract
Traumatic brain injury (TBI) of all severities is a significant public health burden, causing a range of effects that can lead to death or a diminished quality of life. Liposomes and mesenchymal stem cell-derived exosomes are two drug delivery agents with potential to be leveraged in the treatment of TBI by increasing the efficacy of drug therapies as well as having additional therapeutic effects. They exhibit several physical similarities, but key differences affect their performances as nanocarriers. Liposomes can be produced commercially at scale, and liposomes achieve higher encapsulation efficiency. Meanwhile, the intrinsic cargo and targeting moieties of exosomes, which liposomes lack, give exosomes a greater ability to facilitate neural regeneration, and exosomes do not trigger the infusion reactions that liposomes can. However, there are concerns about both exosomes and liposomes regarding interactions with tumors. The same routes of administration can be used for both exosomes and liposomes, resulting in somewhat different distribution throughout the body. While the effect of the nanocarrier type on accumulation in the brain is not concrete, targeting leads to increased accumulation of both exosomes and liposomes in the brain, upon which on-demand release can be used for both drug deliverers. Although neither have been applied to TBI in humans, preclinical trials have shown their immense potential, as have clinical trials pertaining to other brain injuries and conditions. While questions remain, research thus far shows that the various differences make exosomes a better choice of nanocarrier for TBI.
Collapse
Affiliation(s)
- Kate Hennigan
- Marriotts Ridge High School, Ellicott City, Maryland, 21042, USA
| | - Erin Lavik
- University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland, 21250, USA.
| |
Collapse
|
6
|
Husn M, Amin Z, Ali Y, Kanwal L, Sabir K, Shah SA, Shah SF. Neuroprotective effects of vitamin B1 on memory impairment and suppression of pro-inflammatory cytokines in traumatic brain injury. Metab Brain Dis 2023; 38:2175-2184. [PMID: 37314619 DOI: 10.1007/s11011-023-01245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Traumatic Brain Injury (TBI) remains one of the prevailing disorders that affect millions of people around the globe. There is a cascade of secondary attributes attached to TBI including excitotoxicity, axonal degeneration, neuroinflammation, oxidative stress, and apoptosis. Neuroinflammation is caused due to the activation of microglia along with pro-inflammatory cytokines. The activation of microglia triggers TNF-α which sequentially results in the triggering and upregulation of NF-kB. The aim of the current research was to investigate vitamin B1's potential as neuroprotective agent against TBI-induced neuroinflammation arbitrated memory impairment together with pre- and post-synaptic dysfunction in an adult albino male mice model. TBI was induced using the weight-drop method which caused the microglial activation resulting in neuroinflammation along with synaptic dysfunction leading to the memory impairment of the adult mice. Vitamin B1 was administered for seven days via the intraperitoneal pathway. To analyze the memory impairment and efficacy of vitamin B1, Morris water maze and Y-maze tests were performed. The escape latency time and short-term memories of the experimental mice treated with vitamin B1 were significantly different from the reference mice. The western blot results showed that vitamin B1 has reduced neuroinflammation by downregulating proinflammatory cytokines (NFκ-B, TNF- α). Vitamin B1 also proved its worthiness as a convincing neuroprotective agent by reducing memory dysfunction and recovering the activities of pre- and post-synapse via upregulation of synaptophysin and Postsynaptic density protein 95 (PSD-95).
Collapse
Affiliation(s)
- Mansoor Husn
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan
- Neuro Molecular Medicine Research Center (NMMRC), Ring Road Peshawar, Pakistan
| | - Zarnosh Amin
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan
- Neuro Molecular Medicine Research Center (NMMRC), Ring Road Peshawar, Pakistan
| | - Yousaf Ali
- Department of Chemistry, Federal Government College Batkhela, FGEIs (C/G), Khyber Pakhtunkhwa, Pakistan.
- Faculty of Allied Health Sciences, Iqra National University Swat Campus, Khyber Pakhtunkhwa, Pakistan.
| | - Lubna Kanwal
- Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Science and Technology, Islamabad, 0000-0003-2618-3004, Pakistan
| | - Kehkashan Sabir
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan
- Neuro Molecular Medicine Research Center (NMMRC), Ring Road Peshawar, Pakistan
| | - Shahid Ali Shah
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan
- Neuro Molecular Medicine Research Center (NMMRC), Ring Road Peshawar, Pakistan
- Department of Biology The University of Haripur, Haripur, Pakistan
| | - Syed Farhan Shah
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan
- Neuro Molecular Medicine Research Center (NMMRC), Ring Road Peshawar, Pakistan
| |
Collapse
|
7
|
Hameed MQ, Hodgson N, Lee HHC, Pascual-Leone A, MacMullin PC, Jannati A, Dhamne SC, Hensch TK, Rotenberg A. N-acetylcysteine treatment mitigates loss of cortical parvalbumin-positive interneuron and perineuronal net integrity resulting from persistent oxidative stress in a rat TBI model. Cereb Cortex 2023; 33:4070-4084. [PMID: 36130098 PMCID: PMC10068300 DOI: 10.1093/cercor/bhac327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) increases cerebral reactive oxygen species production, which leads to continuing secondary neuronal injury after the initial insult. Cortical parvalbumin-positive interneurons (PVIs; neurons responsible for maintaining cortical inhibitory tone) are particularly vulnerable to oxidative stress and are thus disproportionately affected by TBI. Systemic N-acetylcysteine (NAC) treatment may restore cerebral glutathione equilibrium, thus preventing post-traumatic cortical PVI loss. We therefore tested whether weeks-long post-traumatic NAC treatment mitigates cortical oxidative stress, and whether such treatment preserves PVI counts and related markers of PVI integrity and prevents pathologic electroencephalographic (EEG) changes, 3 and 6 weeks after fluid percussion injury in rats. We find that moderate TBI results in persistent oxidative stress for at least 6 weeks after injury and leads to the loss of PVIs and the perineuronal net (PNN) that surrounds them as well as of per-cell parvalbumin expression. Prolonged post-TBI NAC treatment normalizes the cortical redox state, mitigates PVI and PNN loss, and - in surviving PVIs - increases per-cell parvalbumin expression. NAC treatment also preserves normal spectral EEG measures after TBI. We cautiously conclude that weeks-long NAC treatment after TBI may be a practical and well-tolerated treatment strategy to preserve cortical inhibitory tone post-TBI.
Collapse
Affiliation(s)
- Mustafa Q Hameed
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Nathaniel Hodgson
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Henry H C Lee
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Andres Pascual-Leone
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Paul C MacMullin
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Ali Jannati
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Sameer C Dhamne
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Takao K Hensch
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Department of Molecular & Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, United States
| | - Alexander Rotenberg
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| |
Collapse
|
8
|
Townsend JM, Kiyotake EA, Easley J, Seim HB, Stewart HL, Fung KM, Detamore MS. Comparison of a Thiolated Demineralized Bone Matrix Hydrogel to a Clinical Product Control for Regeneration of Large Sheep Cranial Defects. MATERIALIA 2023; 27:101690. [PMID: 36743831 PMCID: PMC9897238 DOI: 10.1016/j.mtla.2023.101690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Regeneration of calvarial bone remains a major challenge in the clinic as available options do not sufficiently regenerate bone in larger defect sizes. Calvarial bone regeneration cases involving secondary medical conditions, such as brain herniation during traumatic brain injury (TBI) treatment, further exacerbate treatment options. Hydrogels are well-positioned for severe TBI treatment, given their innate flexibility and potential for bone regeneration to treat TBI in a single-stage surgery. The current study evaluated a photocrosslinking pentenoate-modified hyaluronic acid polymer with thiolated demineralized bone matrix (i.e., TDBM hydrogel) capable of forming a completely interconnected hydrogel matrix for calvarial bone regeneration. The TDBM hydrogel demonstrated a setting time of 120 s, working time of 3 to 7 days, negligible change in setting temperature, physiological setting pH, and negligible cytotoxicity, illustrating suitable performance for in vivo application. Side-by-side ovine calvarial bone defects (19 mm diameter) were employed to compare the TDBM hydrogel to the standard-of-care control material DBX®. After 16 weeks, the TDBM hydrogel had comparable healing to DBX® as demonstrated by mechanical push-out testing (~800 N) and histology. Although DBX® had 59% greater new bone volume compared to the TDBM hydrogel via micro-computed tomography, both demonstrated minimal bone regeneration overall (15 to 25% of defect volume). The current work presents a method for comparing the regenerative potential of new materials to clinical products using a side-by-side cranial bone defect model. Comparison of novel biomaterials to a clinical product control (i.e., standard-of-care) provides an important baseline for successful regeneration and potential for clinical translation.
Collapse
Affiliation(s)
| | - Emi A. Kiyotake
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019
| | - Jeremiah Easley
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO 80523
| | - Howard B. Seim
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO 80523
| | - Holly L. Stewart
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO 80523
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Michael S. Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019
| |
Collapse
|
9
|
Zargari M, Meyer LJ, Riess ML, Li Z, Barajas MB. P188 Therapy in In Vitro Models of Traumatic Brain Injury. Int J Mol Sci 2023; 24:3334. [PMID: 36834743 PMCID: PMC9961452 DOI: 10.3390/ijms24043334] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of morbidity and mortality worldwide. Varied mechanisms of injury contribute to the heterogeneity of this patient population as demonstrated by the multiple published grading scales and diverse required criteria leading to diagnoses from mild to severe. TBI pathophysiology is classically separated into a primary injury that is characterized by local tissue destruction as a result of the initial blow, followed by a secondary phase of injury constituted by a score of incompletely understood cellular processes including reperfusion injury, disruption to the blood-brain barrier, excitotoxicity, and metabolic dysregulation. There are currently no effective pharmacological treatments in the wide-spread use for TBI, in large part due to challenges associated with the development of clinically representative in vitro and in vivo models. Poloxamer 188 (P188), a Food and Drug Administration-approved amphiphilic triblock copolymer embeds itself into the plasma membrane of damaged cells. P188 has been shown to have neuroprotective properties on various cell types. The objective of this review is to provide a summary of the current literature on in vitro models of TBI treated with P188.
Collapse
Affiliation(s)
- Michael Zargari
- Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | - Matthias L. Riess
- TVHS VA Medical Center, Anesthesiology, Nashville, TN 37212, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Zhu Li
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Matthew B. Barajas
- TVHS VA Medical Center, Anesthesiology, Nashville, TN 37212, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
10
|
Xu XJ, Liu BY, Dong JQ, Ge QQ, Lu SH, Yang MS, Zhuang Y, Zhang B, Niu F. Tandem Mass Tag-based proteomics analysis reveals the vital role of inflammation in traumatic brain injury in a mouse model. Neural Regen Res 2023. [PMID: 35799536 PMCID: PMC9241417 DOI: 10.4103/1673-5374.343886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
11
|
Kulkarni R, Thakur A, Kumar H. Microtubule Dynamics Following Central and Peripheral Nervous System Axotomy. ACS Chem Neurosci 2022; 13:1358-1369. [PMID: 35451811 DOI: 10.1021/acschemneuro.2c00189] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Disturbance in the neuronal network leads to instability in the microtubule (MT) railroad of axons, causing hindrance in the intra-axonal transport and making it difficult to re-establish the broken network. Peripheral nervous system (PNS) neurons can stabilize their MTs, leading to the formation of regeneration-promoting structures called "growth cones". However, central nervous system (CNS) neurons lack this intrinsic reparative capability and, instead, form growth-incompetent structures called "retraction bulbs", which have a disarrayed MT network. It is evident from various studies that although axonal regeneration depends on both cell-extrinsic and cell-intrinsic factors, any therapy that aims at axonal regeneration ultimately converges onto MTs. Understanding the neuronal MT dynamics will help develop effective therapeutic strategies in diseases where the MT network gets disrupted, such as spinal cord injury, traumatic brain injury, multiple sclerosis, and amyotrophic lateral sclerosis. It is also essential to know the factors that aid or inhibit MT stabilization. In this review, we have discussed the MT dynamics postaxotomy in the CNS and PNS, and factors that can directly influence MT stability in various diseases.
Collapse
Affiliation(s)
- Riya Kulkarni
- National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Akshata Thakur
- National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Hemant Kumar
- National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
12
|
Batool S, Furqan T, Hasan Mahmood MS, Tweedie D, Kamal MA, Greig NH. In Silico and Ex Vivo Analyses of the Inhibitory Action of the Alzheimer Drug Posiphen and Primary Metabolites with Human Acetyl- and Butyrylcholinesterase Enzymes. ACS Pharmacol Transl Sci 2022; 5:70-79. [PMID: 35178511 PMCID: PMC8845043 DOI: 10.1021/acsptsci.1c00200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Indexed: 02/08/2023]
Abstract
![]()
Alzheimer’s
disease (AD) is the most common neurodegenerative
disorder worldwide. Ongoing research to develop AD treatments has
characterized multiple drug targets including the cholinergic system,
amyloid-β peptide, phosphorylated tau, and neuroinflammation.
These systems have the potential to interact to either drive or slow
AD progression. Promising agents that simultaneously impact many of
these drug targets are the AD experimental drug Posiphen and its enantiomer
phenserine that, currently, are separately being evaluated in clinical
trials. To define the cholinergic component of these agents, the anticholinesterase
activities of a ligand dataset comprising Posiphen and primary metabolites
((+)-N1-norPosiphen, (+)-N8-norPosiphen, and (+)-N1,N8-bisnorPosiphen)
were characterized and compared to those of the enantiomer phenserine.
The “target” dataset involved the human cholinesterase
enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE).
Binding interactions between the ligands and targets were analyzed
using Autodock 4.2. The computationally determined inhibitory action
of these ligands was then compared to ex vivo laboratory-measured
values versus human AChE and BChE. While Posiphen lacked AChE inhibitory
action, its major and minor metabolites (+)-N1-norPosiphen and (+)-N1,N8-bisnorPosiphen,
respectively, possessed modest AChE inhibitory activity, and Posiphen
and all metabolites lacked BChE action. Phenserine, as a positive
control, demonstrated AChE-selective inhibitory action. In light of
AChE inhibitory action deriving from a major and minor Posiphen metabolite,
current Posiphen clinical trials in AD and related disorders should
additionally evaluate AChE inhibition; particularly if Posiphen should
be combined with a known anticholinesterase, since this drug class
is clinically approved and the standard of care for AD subjects, and
excessive AChE inhibition may impact drug tolerability.
Collapse
Affiliation(s)
- Sidra Batool
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Tiyyaba Furqan
- Department of Biosciences, COMSATS University, Park Road, Chak Shahzad, Islamabad 45550, Pakistan
| | | | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Mohammad A. Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Khagan, Dhaka 1340, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| |
Collapse
|
13
|
Cai S, Lu Z. Effect of Mild Hypothermia after Craniotomy on the Function of Related Organs in Patients with Traumatic Brain Injury. Emerg Med Int 2021; 2021:4105406. [PMID: 34659832 PMCID: PMC8519674 DOI: 10.1155/2021/4105406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To investigate the effect of mild hypothermia after craniotomy on the function of related organs in patients with traumatic brain injury. METHOD A total of 240 patients with craniocerebral injury from January 2017 to December 2020 were retrospectively analyzed. Patients were randomly divided into a control group and an experimental group, with 120 cases in each group. The control group was treated with craniotomy decompression, and the experimental group was treated with early mild hypothermia based on craniotomy decompression. Patients' venous blood was collected before operation (T 0), at the end of operation (T 1), 24 h after operation (T 2), and 2 weeks after operation (T 3) to detect the serum levels of the beta-subunit of S100 protein (S100-β); soluble growth stimulation expressed gene 2 (sST2), neutrophil gelatinase-associated lipocalin (NGAL), and interleukin 6 (IL-6). The prognostic effect was evaluated after 2 weeks of treatment. RESULTS After mild hypothermia treatment after craniotomy and decompression, the patients' serum S100-β, sST2, NGAL, and IL-6 levels at different time points were significantly lower than the control group, and the total effective rate was higher than that of the control group. CONCLUSION The treatment of mild hypothermia after craniotomy can reduce the related organs function damage indicators and inflammatory stress response, thus improving clinical efficacy and prognosis.
Collapse
Affiliation(s)
- Shu Cai
- Department of Neurosurgery, Affiliated Haian Hospital of Nantong University, Haian 226600, Nantong, Jiangsu, China
| | - Zheng Lu
- Department of Neurosurgery, Affiliated Haian Hospital of Nantong University, Haian 226600, Nantong, Jiangsu, China
| |
Collapse
|
14
|
Ho MH, Yen CH, Hsieh TH, Kao TJ, Chiu JY, Chiang YH, Hoffer BJ, Chang WC, Chou SY. CCL5 via GPX1 activation protects hippocampal memory function after mild traumatic brain injury. Redox Biol 2021; 46:102067. [PMID: 34315111 PMCID: PMC8327355 DOI: 10.1016/j.redox.2021.102067] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/12/2021] [Accepted: 07/08/2021] [Indexed: 12/23/2022] Open
Abstract
Traumatic brain injury (TBI) is a prevalent head injury worldwide which increases the risk of neurodegenerative diseases. Increased reactive oxygen species (ROS) and inflammatory chemokines after TBI induces secondary effects which damage neurons. Targeting NADPH oxidase or increasing redox systems are ways to reduce ROS and damage. Earlier studies show that C–C motif chemokine ligand 5 (CCL5) has neurotrophic functions such as promoting neurite outgrowth as well as reducing apoptosis. Although CCL5 levels in blood are associated with severity in TBI patients, the function of CCL5 after brain injury is unclear. In the current study, we induced mild brain injury in C57BL/6 (wildtype, WT) mice and CCL5 knockout (CCL5-KO) mice using a weight-drop model. Cognitive and memory functions in mice were analyzed by Novel-object-recognition and Barnes Maze tests. The memory performance of both WT and KO mice were impaired after mild injury. Cognition and memory function in WT mice quickly recovered after 7 days but recovery took more than 14 days in CCL5-KO mice. FJC, NeuN and Hypoxyprobe staining revealed large numbers of neurons damaged by oxidative stress in CCL5-KO mice after mTBI. NADPH oxidase activity show increased ROS generation together with reduced glutathione peroxidase-1 (GPX1) and glutathione (GSH) activity in CCL5-KO mice; this was opposite to that seen in WT mice. CCL5 increased GPX1 expression and reduced intracellular ROS levels which subsequently increased cell survival both in primary neuron cultures and in an overexpression model using SHSY5Y cell. Memory impairment in CCL5-KO mice induced by TBI could be rescued by i.p. injection of the GSH precursor – N-acetylcysteine (NAC) or intranasal delivery of recombinant CCL5 into mice after injury. We conclude that CCL5 is an important molecule for GPX1 antioxidant activation during post-injury day 1–3, and protects hippocampal neurons from ROS as well as improves memory function after trauma.
Collapse
Affiliation(s)
- Man-Hau Ho
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research, Taiwan; Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu, Pingtung, 91201, Taiwan
| | - Chia-Hung Yen
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu, Pingtung, 91201, Taiwan
| | - Tsung-Hsun Hsieh
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Tzu-Jen Kao
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research, Taiwan; Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jing-Yuan Chiu
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yung-Hsiao Chiang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, 11031, Taiwan; Department of Neurosurgery, Taipei Medical University Hospital, Taipei, 11031, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, 11031, Taiwan
| | - Barry J Hoffer
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research, Taiwan; Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, 11031, Taiwan; Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Scientist Emeritus, National Institutes of Health, USA
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Szu-Yi Chou
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research, Taiwan; Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|