1
|
Tsintzas E, Niccoli T. Using Drosophila amyloid toxicity models to study Alzheimer's disease. Ann Hum Genet 2024; 88:349-363. [PMID: 38517001 DOI: 10.1111/ahg.12554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 03/23/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia and is characterised by a progressive loss of neurons, which manifests as gradual memory decline, followed by cognitive loss. Despite the significant progress in identifying novel biomarkers and understanding the prodromal pathology and symptomatology, AD remains a significant unmet clinical need. Lecanemab and aducanumab, the only Food and Drug Administration approved drugs to exhibit some disease-modifying clinical efficacy, target Aβ amyloid, underscoring the importance of this protein in disease aetiology. Nevertheless, in the absence of a definitive cure, the utilisation of preclinical models remains imperative for the identification of novel therapeutic targets and the evaluation of potential therapeutic agents. Drosophila melanogaster is a model system that can be used as a research tool to investigate neurodegeneration and therapeutic interventions. The short lifespan, low price and ease of husbandry/rearing make Drosophila an advantageous model organism from a practical perspective. However, it is the highly conserved genome and similarity of Drosophila and human neurobiology which make flies a powerful tool to investigate neurodegenerative mechanisms. In addition, the ease of transgenic modifications allows for early proof of principle studies for future therapeutic approaches in neurodegenerative research. This mini review will specifically focus on utilising Drosophila as an in vivo model of amyloid toxicity in AD.
Collapse
Affiliation(s)
- Elli Tsintzas
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK
| | - Teresa Niccoli
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK
| |
Collapse
|
2
|
El-Saghier AM, Enaili SS, Kadry AM, Abdou A, Gad MA. Green synthesis, biological and molecular docking of some novel sulfonamide thiadiazole derivatives as potential insecticidal against Spodoptera littoralis. Sci Rep 2023; 13:19142. [PMID: 37932428 PMCID: PMC10628220 DOI: 10.1038/s41598-023-46602-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023] Open
Abstract
Although crop plants provide the majority of human food, pests and insects frequently cause huge economic losses. In order to develop innovative insecticidal compounds with low toxicity and a positive environmental impact, we developed new N-(4-sulfamoylphenyl)-1,3,4-thiadiazole-2-carboxamide derivatives (2-12). With the use of spectroscopic techniques and elemental data, the chemical structure of these new compounds was meticulously clarified. The toxicological and biological effects of the synthesized compound of the cotton leafworm Spodoptera littoralis (Boisduval, 1833) under laboratory conditions were also investigated. Regarding the determined LC50 values, compounds 3, 7, 8, and 10 showed the most potent toxic effect with LC50 values of 29.60, 30.06, 27.65 and 29.01 ppm, respectively. A molecular docking investigation of twelve synthetic compounds (from compound 2 to compound 12) was performed against AChE (Acetylcholinesterase). There was a wide range of binding affinities shown by these compounds. This work suggests that these substances may have insecticidal and AChE inhibitory properties, and it may be possible to further explore them in the process of creating pesticides that target AChE.
Collapse
Affiliation(s)
- Ahmed M El-Saghier
- Chemistry Department, Faculty of Science, Sohag University, Sohag, 282524, Egypt.
| | - Souhaila S Enaili
- Chemistry Department, Faculty of Science, Sohag University, Sohag, 282524, Egypt
- Chemistry Department, Faculty of Science, Al Zawiya University, Al Zawiya, Libya
| | - Asmaa M Kadry
- Chemistry Department, Faculty of Science, Sohag University, Sohag, 282524, Egypt
| | - Aly Abdou
- Chemistry Department, Faculty of Science, Sohag University, Sohag, 282524, Egypt
| | - Mohamed A Gad
- Research Institute of Plant Protection, Agricultural Research Center, Giza, 12619, Egypt
| |
Collapse
|
3
|
Siddique YH, Naz F, Rahul, Varshney H, I M, Shahid M. Effect of donepezil hydrochloride on the transgenic Drosophila expressing human Aβ-42. Int J Neurosci 2023:1-39. [PMID: 37733478 DOI: 10.1080/00207454.2023.2262109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/17/2023] [Indexed: 09/23/2023]
Abstract
CONCLUSION The results suggest that donepezil hydrochloride is potent enough to reduce the AD symptoms being mimicked in transgenic flies.
Collapse
Affiliation(s)
- Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| | - Falaq Naz
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| | - Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| | - Himanshi Varshney
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| | - Mantasha I
- Department of Chemistry, Faculty of Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - M Shahid
- Department of Chemistry, Faculty of Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
4
|
Li X, Li T, Zhang P, Li X, Lu L, Sun Y, Zhang B, Allen S, White L, Phillips J, Zhu Z, Yao H, Xu J. Discovery of novel hybrids containing clioquinol−1-benzyl-1,2,3,6-tetrahydropyridine as multi-target-directed ligands (MTDLs) against Alzheimer's disease. Eur J Med Chem 2022; 244:114841. [DOI: 10.1016/j.ejmech.2022.114841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/04/2022]
|
5
|
Development of p-Tau Differentiated Cell Model of Alzheimer's Disease to Screen Novel Acetylcholinesterase Inhibitors. Int J Mol Sci 2022; 23:ijms232314794. [PMID: 36499118 PMCID: PMC9741399 DOI: 10.3390/ijms232314794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/30/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by an initial accumulation of amyloid plaques and neurofibrillary tangles, along with the depletion of cholinergic markers. The currently available therapies for AD do not present any disease-modifying effects, with the available in vitro platforms to study either AD drug candidates or basic biology not fully recapitulating the main features of the disease or being extremely costly, such as iPSC-derived neurons. In the present work, we developed and validated a novel cell-based AD model featuring Tau hyperphosphorylation and degenerative neuronal morphology. Using the model, we evaluated the efficacy of three different groups of newly synthesized acetylcholinesterase (AChE) inhibitors, along with a new dual acetylcholinesterase/glycogen synthase kinase 3 inhibitor, as potential AD treatment on differentiated SH-SY5Y cells treated with glyceraldehyde to induce Tau hyperphosphorylation, and subsequently neurite degeneration and cell death. Testing of such compounds on the newly developed model revealed an overall improvement of the induced defects by inhibition of AChE alone, showing a reduction of S396 aberrant phosphorylation along with a moderate amelioration of the neuron-like morphology. Finally, simultaneous AChE/GSK3 inhibition further enhanced the limited effects observed by AChE inhibition alone, resulting in an improvement of all the key parameters, such as cell viability, morphology, and Tau abnormal phosphorylation.
Collapse
|
6
|
Siddique YH, Naz F, Rahul, Varshney H. Comparative study of rivastigmine and galantamine on the transgenic Drosophila model of Alzheimer's disease. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100120. [PMID: 35992376 PMCID: PMC9389239 DOI: 10.1016/j.crphar.2022.100120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's Disease (AD) is characterized as a progressive neurodegenerative disease most commonly associated with memory deficits and cognitive decline. The formation of amyloid plaques and neurofibrillary tangles are important pathological markers of AD. The accumulation of amyloid plaques and neurofibrillary tangles leads to the loss of neurons including the cholinergic neurons thus decreasing the levels of acetylcholine (a neurotransmitter). To reduce the AD symptoms cholinesterase inhibitors are widely used to decrease the hydrolysis of acetylcholine released from presynaptic neurons. In the present study we have studied the effect of rivastigmine and galantamine (commonly used cholinesterase inhibitors) on the transgenic Drosophila model of AD expressing human Aβ-42 in the neurons. The effect of similar doses of rivastigmine and galantamine (i.e. 0.1,1 and 10 mM) was studied on the climbing ability, lifespan, oxidative stress markers, caspase 9 and 3, acetylcholinesterase activity and on the formation of Aβ-42 aggregates. The results suggest that the rivastigmine is more potent in reducing the oxidative stress and improving climbing ability of AD flies. Both the drugs were found to be effective in increasing the lifespan of AD flies. Galantamine was found to be a more potent inhibitor of acetylcholinesterase compared to rivastigmine. Galantamine prevents the formation of Aβ-42 aggregates more effectively compared to rivastigmine.
Collapse
Affiliation(s)
- Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| | - Falaq Naz
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| | - Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| | - Himanshi Varshney
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| |
Collapse
|
7
|
Identification of a Hydrogen-Sulfide-Releasing Isochroman-4-One Hybrid as a Cardioprotective Candidate for the Treatment of Cardiac Hypertrophy. Molecules 2022; 27:molecules27134114. [PMID: 35807360 PMCID: PMC9268299 DOI: 10.3390/molecules27134114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
Cardiac pathological hypertrophy is associated with undesirable epigenetic changes and causes maladaptive cardiac remodeling and heart failure, leading to high mortality rates. Specific drugs for the treatment of cardiac hypertrophy are still in urgent need. In the present study, a hydrogen-sulfide-releasing hybrid 13-E was designed and synthesized by appending p-hydroxythiobenzamide (TBZ), an H2S-releasing donor, to an analog of our previously discovered cardioprotective natural product XJP, 7,8-dihydroxy-3-methyl-isochromanone-4. This hybrid 13-E exhibited excellent H2S-generating ability and low cellular toxicity. The 13-E protected against cardiomyocyte hypertrophy In Vitro and reduced the induction of Anp and Bnp. More importantly, 13-E could reduce TAC-induced cardiac hypertrophy In Vivo, alleviate cardiac interstitial fibrosis and restore cardiac function. Unbiased transcriptomic analysis showed that 13-E regulated the AMPK signaling pathway and influenced fatty acid metabolic processes, which may be attributed to its cardioprotective activities.
Collapse
|
8
|
Liu Y, Uras G, Onuwaje I, Li W, Yao H, Xu S, Li X, Li X, Phillips J, Allen S, Gong Q, Zhang H, Zhu Z, Liu J, Xu J. Novel inhibitors of AChE and Aβ aggregation with neuroprotective properties as lead compounds for the treatment of Alzheimer's disease. Eur J Med Chem 2022; 235:114305. [DOI: 10.1016/j.ejmech.2022.114305] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/26/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023]
|
9
|
Elovsson G, Bergkvist L, Brorsson AC. Exploring Aβ Proteotoxicity and Therapeutic Candidates Using Drosophila melanogaster. Int J Mol Sci 2021; 22:ijms221910448. [PMID: 34638786 PMCID: PMC8508956 DOI: 10.3390/ijms221910448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/30/2022] Open
Abstract
Alzheimer’s disease is a widespread and devastating neurological disorder associated with proteotoxic events caused by the misfolding and aggregation of the amyloid-β peptide. To find therapeutic strategies to combat this disease, Drosophila melanogaster has proved to be an excellent model organism that is able to uncover anti-proteotoxic candidates due to its outstanding genetic toolbox and resemblance to human disease genes. In this review, we highlight the use of Drosophila melanogaster to both study the proteotoxicity of the amyloid-β peptide and to screen for drug candidates. Expanding the knowledge of how the etiology of Alzheimer’s disease is related to proteotoxicity and how drugs can be used to block disease progression will hopefully shed further light on the field in the search for disease-modifying treatments.
Collapse
Affiliation(s)
- Greta Elovsson
- Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden;
| | - Liza Bergkvist
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, 17164 Solna, Sweden;
| | - Ann-Christin Brorsson
- Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden;
- Correspondence:
| |
Collapse
|