1
|
Zhang Y, Liu X, Li Z, Li H, Miao Z, Wan B, Xu X. Advances on the Mechanisms and Therapeutic Strategies in Non-coding CGG Repeat Expansion Diseases. Mol Neurobiol 2024; 61:10722-10735. [PMID: 38780719 DOI: 10.1007/s12035-024-04239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Non-coding CGG repeat expansions within the 5' untranslated region are implicated in a range of neurological disorders, including fragile X-associated tremor/ataxia syndrome, oculopharyngeal myopathy with leukodystrophy, and oculopharyngodistal myopathy. This review outlined the general characteristics of diseases associated with non-coding CGG repeat expansions, detailing their clinical manifestations and neuroimaging patterns, which often overlap and indicate shared pathophysiological traits. We summarized the underlying molecular mechanisms of these disorders, providing new insights into the roles that DNA, RNA, and toxic proteins play. Understanding these mechanisms is crucial for the development of targeted therapeutic strategies. These strategies include a range of approaches, such as antisense oligonucleotides, RNA interference, genomic DNA editing, small molecule interventions, and other treatments aimed at correcting the dysregulated processes inherent in these disorders. A deeper understanding of the shared mechanisms among non-coding CGG repeat expansion disorders may hold the potential to catalyze the development of innovative therapies, ultimately offering relief to individuals grappling with these debilitating neurological conditions.
Collapse
Affiliation(s)
- Yutong Zhang
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Xuan Liu
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Zeheng Li
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Hao Li
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
- Department of Neurology, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215124, China
| | - Zhigang Miao
- The Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Bo Wan
- The Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Xingshun Xu
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China.
- The Institute of Neuroscience, Soochow University, Suzhou City, China.
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
2
|
Seritan AL. Advances in the Diagnosis and Management of Psychotic Symptoms in Neurodegenerative Diseases: A Narrative Review. J Geriatr Psychiatry Neurol 2023; 36:435-460. [PMID: 36941085 PMCID: PMC10578041 DOI: 10.1177/08919887231164357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Background: Approximately 15% of older adults may experience psychotic phenomena. Primary psychiatric disorders that manifest with psychosis (delusions, hallucinations, and disorganized thought or behavior) account for less than half. Up to 60% of late-life psychotic symptoms are due to systemic medical or neurological conditions, particularly neurodegenerative diseases. A thorough medical workup including laboratory tests, additional procedures if indicated, and neuroimaging studies is recommended. This narrative review summarizes current evidence regarding the epidemiology and phenomenology of psychotic symptoms encountered as part of the neurodegenerative disease continuum (including prodromal and manifest stages). Results: Prodromes are constellations of symptoms that precede the onset of overt neurodegenerative syndromes. Prodromal psychotic features, particularly delusions, have been associated with an increased likelihood of receiving a neurodegenerative disease diagnosis within several years. Prompt prodrome recognition is crucial for early intervention. The management of psychosis associated with neurodegenerative diseases includes behavioral and somatic strategies, although evidence is scarce and mostly limited to case reports, case series, or expert consensus guidelines, with few randomized controlled trials. Conclusion: The complexity of psychotic manifestations warrants management by interprofessional teams that provide coordinated, integrated care.
Collapse
Affiliation(s)
- Andreea L. Seritan
- University of California, San Francisco Department of Psychiatry and UCSF Weill Institute for Neurosciences, CA, USA
| |
Collapse
|
3
|
Piergiorge RM, da Silva Francisco Junior R, de Vasconcelos ATR, Santos-Rebouças CB. Multi-layered transcriptomic analysis reveals a pivotal role of FMR1 and other developmental genes in Alzheimer's disease-associated brain ceRNA network. Comput Biol Med 2023; 166:107494. [PMID: 37769462 DOI: 10.1016/j.compbiomed.2023.107494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
Alzheimer's disease (AD) is an increasingly neurodegenerative disorder that causes progressive cognitive decline and memory impairment. Despite extensive research, the underlying causes of late-onset AD (LOAD) are still in progress. This study aimed to establish a network of competing regulatory interactions involving circular RNAs (circRNAs), microRNAs (miRNAs), RNA-binding proteins (RBPs), and messenger RNAs (mRNAs) connected to LOAD. A systematic analysis of publicly available expression data was conducted to identify integrated differentially expressed genes (DEGs) from the hippocampus of LOAD patients. Subsequently, gene co-expression analysis identified modules comprising highly expressed DEGs that act cooperatively. The competition between co-expressed DEGs and miRNAs/RBPs and the simultaneous interactions between circRNA and miRNA/RBP revealed a complex ceRNA network responsible for post-transcriptional regulation in LOAD. Hippocampal expression data for miRNAs, circRNAs, and RBPs were used to filter relevant relationships for AD. An integrated topological score was used to identify the highly connected hub gene, from which a brain core ceRNA subnetwork was generated. The Fragile X Messenger Ribonucleoprotein 1 (FMR1) coding for the RBP FMRP emerged as the prominent driver gene in this subnetwork. FMRP has been previously related to AD but not in a ceRNA network context. Also, the substantial number of neurodevelopmental genes in the ceRNA subnetwork and their related biological pathways strengthen that AD shares common pathological mechanisms with developmental conditions. Our results enhance the current knowledge about the convergent ceRNA regulatory pathways underlying AD and provide potential targets for identifying early biomarkers and developing novel therapeutic interventions.
Collapse
Affiliation(s)
- Rafael Mina Piergiorge
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Cíntia Barros Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Salcedo-Arellano MJ, Johnson MD, McLennan YA, Hwang YH, Juarez P, McBride EL, Pantoja AP, Durbin-Johnson B, Tassone F, Hagerman RJ, Martínez-Cerdeño V. Brain Metabolomics in Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS). Cells 2023; 12:2132. [PMID: 37681866 PMCID: PMC10487256 DOI: 10.3390/cells12172132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
The course of pathophysiological mechanisms involved in fragile X-associated tremor/ataxia syndrome (FXTAS) remains largely unknown. Previous proteomics and metabolomics studies conducted in blood samples collected from FMR1 premutation carriers with FXTAS reported abnormalities in energy metabolism, and precursors of gluconeogenesis showed significant changes in plasma expression levels in FMR1 premutation carriers who developed FXTAS. We conducted an analysis of postmortem human brain tissues from 44 donors, 25 brains with FXTAS, and 19 matched controls. We quantified the metabolite relative abundance in the inferior temporal gyrus and the cerebellum using untargeted mass spectrometry (MS)-based metabolomics. We investigated how the metabolite type and abundance relate to the number of cytosine-guanine-guanine (CGG) repeats, to markers of neurodegeneration, and to the symptoms of FXTAS. A metabolomic analysis identified 191 primary metabolites, the data were log-transformed and normalized prior to the analysis, and the relative abundance was compared between the groups. The changes in the relative abundance of a set of metabolites were region-specific with some overlapping results; 22 metabolites showed alterations in the inferior temporal gyrus, while 21 showed differences in the cerebellum. The relative abundance of cytidine was decreased in the inferior temporal gyrus, and a lower abundance was found in the cases with larger CGG expansions; oleamide was significantly decreased in the cerebellum. The abundance of 11 metabolites was influenced by changes in the CGG repeat number. A histological evaluation found an association between the presence of microhemorrhages in the inferior temporal gyrus and a lower abundance of 2,5-dihydroxypyrazine. Our study identified alterations in the metabolites involved in the oxidative-stress response and bioenergetics in the brains of individuals with FXTAS. Significant changes in the abundance of cytidine and oleamide suggest their potential as biomarkers and therapeutic targets for FXTAS.
Collapse
Affiliation(s)
- Maria Jimena Salcedo-Arellano
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA; (M.J.S.-A.); (M.D.J.); (Y.A.M.); (P.J.); (E.L.M.); (A.P.P.); (V.M.-C.)
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA 95616, USA; (M.J.S.-A.); (F.T.); (R.J.H.); (V.M.-C.)
- Institute for Pediatric Regenerative Medicine at Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA; (M.J.S.-A.); (M.D.J.); (Y.A.M.); (P.J.); (E.L.M.); (A.P.P.); (V.M.-C.)
| | - Michael D. Johnson
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA; (M.J.S.-A.); (M.D.J.); (Y.A.M.); (P.J.); (E.L.M.); (A.P.P.); (V.M.-C.)
- Institute for Pediatric Regenerative Medicine at Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA; (M.J.S.-A.); (M.D.J.); (Y.A.M.); (P.J.); (E.L.M.); (A.P.P.); (V.M.-C.)
| | - Yingratana A. McLennan
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA; (M.J.S.-A.); (M.D.J.); (Y.A.M.); (P.J.); (E.L.M.); (A.P.P.); (V.M.-C.)
- Institute for Pediatric Regenerative Medicine at Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA; (M.J.S.-A.); (M.D.J.); (Y.A.M.); (P.J.); (E.L.M.); (A.P.P.); (V.M.-C.)
| | - Ye Hyun Hwang
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA; (Y.H.H.); (F.T.)
| | - Pablo Juarez
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA; (M.J.S.-A.); (M.D.J.); (Y.A.M.); (P.J.); (E.L.M.); (A.P.P.); (V.M.-C.)
- Institute for Pediatric Regenerative Medicine at Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA; (M.J.S.-A.); (M.D.J.); (Y.A.M.); (P.J.); (E.L.M.); (A.P.P.); (V.M.-C.)
| | - Erin Lucille McBride
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA; (M.J.S.-A.); (M.D.J.); (Y.A.M.); (P.J.); (E.L.M.); (A.P.P.); (V.M.-C.)
- Institute for Pediatric Regenerative Medicine at Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA; (M.J.S.-A.); (M.D.J.); (Y.A.M.); (P.J.); (E.L.M.); (A.P.P.); (V.M.-C.)
| | - Adriana P. Pantoja
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA; (M.J.S.-A.); (M.D.J.); (Y.A.M.); (P.J.); (E.L.M.); (A.P.P.); (V.M.-C.)
- Institute for Pediatric Regenerative Medicine at Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA; (M.J.S.-A.); (M.D.J.); (Y.A.M.); (P.J.); (E.L.M.); (A.P.P.); (V.M.-C.)
| | - Blythe Durbin-Johnson
- Division of Biostatistics, Department of Public Health Sciences, UC Davis School of Medicine, Sacramento, CA 95817, USA;
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA 95616, USA; (M.J.S.-A.); (F.T.); (R.J.H.); (V.M.-C.)
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA; (Y.H.H.); (F.T.)
| | - Randi J. Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA 95616, USA; (M.J.S.-A.); (F.T.); (R.J.H.); (V.M.-C.)
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA 95817, USA;
| | - Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA; (M.J.S.-A.); (M.D.J.); (Y.A.M.); (P.J.); (E.L.M.); (A.P.P.); (V.M.-C.)
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA 95616, USA; (M.J.S.-A.); (F.T.); (R.J.H.); (V.M.-C.)
- Institute for Pediatric Regenerative Medicine at Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA; (M.J.S.-A.); (M.D.J.); (Y.A.M.); (P.J.); (E.L.M.); (A.P.P.); (V.M.-C.)
| |
Collapse
|
5
|
Wang JY, Sonico GJ, Salcedo-Arellano MJ, Hagerman RJ, Martinez-Cerdeno V. A Postmortem MRI Study of Cerebrovascular Disease and Iron Content at End-Stage of Fragile X-Associated Tremor/Ataxia Syndrome. Cells 2023; 12:1898. [PMID: 37508562 PMCID: PMC10377990 DOI: 10.3390/cells12141898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Brain changes at the end-stage of fragile X-associated tremor/ataxia syndrome (FXTAS) are largely unknown due to mobility impairment. We conducted a postmortem MRI study of FXTAS to quantify cerebrovascular disease, brain atrophy and iron content, and examined their relationships using principal component analysis (PCA). Intracranial hemorrhage (ICH) was observed in 4/17 FXTAS cases, among which one was confirmed by histologic staining. Compared with seven control brains, FXTAS cases showed higher ratings of T2-hyperintensities (indicating cerebral small vessel disease) in the cerebellum, globus pallidus and frontoparietal white matter, and significant atrophy in the cerebellar white matter, red nucleus and dentate nucleus. PCA of FXTAS cases revealed negative associations of T2-hyperintensity ratings with anatomic volumes and iron content in the white matter, hippocampus and amygdala, that were independent from a highly correlated number of regions with ICH and iron content in subcortical nuclei. Post-hoc analysis confirmed PCA findings and further revealed increased iron content in the white matter, hippocampus and amygdala in FXTAS cases compared to controls, after adjusting for T2-hyperintensity ratings. These findings indicate that both ischemic and hemorrhagic brain damage may occur in FXTAS, with the former being marked by demyelination/iron depletion and atrophy, and the latter by ICH and iron accumulation in basal ganglia.
Collapse
Affiliation(s)
- Jun Yi Wang
- Center for Mind and Brain, University of California Davis, Davis, CA 95618, USA
| | - Gerard J. Sonico
- Imaging Research Center, University of California Davis, Sacramento, CA 95817, USA;
| | - Maria Jimena Salcedo-Arellano
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA;
- MIND Institute, University of California Davis Health, Sacramento, CA 95817, USA;
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA
| | - Randi J. Hagerman
- MIND Institute, University of California Davis Health, Sacramento, CA 95817, USA;
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Veronica Martinez-Cerdeno
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA;
- MIND Institute, University of California Davis Health, Sacramento, CA 95817, USA;
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA
| |
Collapse
|
6
|
Napoli E. Molecular, Translational and Clinical Research on the Two Most Common Forms of Neurodegenerative Dementia: Alzheimer's Disease and Dementia with Lewy Bodies. Int J Mol Sci 2023; 24:ijms24097996. [PMID: 37175703 PMCID: PMC10178392 DOI: 10.3390/ijms24097996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
While not a specific disease, dementia is a term used to describe the deterioration of cognitive function beyond what would be expected because of natural biological aging [...].
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
7
|
Wang JY, Sonico GJ, Salcedo-Arellano MJ, Hagerman RJ, Martínez-Cerdeño V. A postmortem MRI study of cerebrovascular disease and iron content at end-stage of fragile X-associated tremor/ataxia syndrome. RESEARCH SQUARE 2023:rs.3.rs-2440612. [PMID: 36711694 PMCID: PMC9882645 DOI: 10.21203/rs.3.rs-2440612/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Brain changes at end-stage of fragile X-associated tremor/ataxia syndrome (FXTAS) are largely unknown due to mobility impairment. We conducted a postmortem MRI study of FXTAS to quantify cerebrovascular disease, brain atrophy, and iron content and examined their relationships using principal component analysis (PCA). Intracranial hemorrhage (ICH) was observed in 4/17 FXTAS cases among which one was confirmed by histologic staining. Compared with seven control brains, FXTAS cases showed higher ratings of T2-hyperintensities (indicating cerebral small vessel disease) in the cerebellum, globus pallidus, and frontoparietal white matter and significant atrophy in cerebellar white matter, red nucleus, and dentate nucleus. PCA of FXTAS cases revealed negative associations of T2-hyperintensity ratings with anatomic volumes and iron content in the white matter, hippocampus, and amygdala, that were independent from highly correlated number of regions with ICH and iron content in subcortical nuclei. Post hoc analysis confirmed PCA findings and further revealed increased iron content in the white matter, hippocampus, and amygdala in FXTAS cases than controls after adjusting for T2-hyperintensity ratings. These findings indicate that both ischemic and hemorrhagic brain damage may occur in FXTAS, with the former marked by demyelination/iron depletion and atrophy and the latter, ICH and iron accumulation in basal ganglia.
Collapse
|
8
|
Elias-Mas A, Potrony M, Bague J, Cutler DJ, Alvarez-Mora MI, Torres T, Barcos T, Puig-Butille JA, Rubio M, Madrigal I, Puig S, Allen EG, Rodriguez-Revenga L. Evaluation of AQP4 functional variants and its association with fragile X-associated tremor/ataxia syndrome. Front Aging Neurosci 2023; 14:1073258. [PMID: 36688175 PMCID: PMC9853890 DOI: 10.3389/fnagi.2022.1073258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Fragile X-associated tremor/ataxia syndrome (FXTAS, OMIM# 300623) is a late-onset neurodegenerative disorder with reduced penetrance that appears in adult FMR1 premutation carriers (55-200 CGGs). Clinical symptoms in FXTAS patients usually begin with an action tremor. After that, different findings including ataxia, and more variably, loss of sensation in the distal lower extremities and autonomic dysfunction, may occur, and gradually progress. Cognitive deficits are also observed, and include memory problems and executive function deficits, with a gradual progression to dementia in some individuals. Aquaporin 4 (AQP4) is a commonly distributed water channel in astrocytes of the central nervous system. Changes in AQP4 activity and expression have been implicated in several central nervous system disorders. Previous studies have suggested the associations of AQP4 single nucleotide polymorphisms (SNPs) with brain-water homeostasis, and neurodegeneration disease. To date, this association has not been studied in FXTAS. Methods To investigate the association of AQP4 SNPs with the risk of presenting FXTAS, a total of seven common AQP4 SNPs were selected and genotyped in 95 FMR1 premutation carriers with FXTAS and in 65 FMR1 premutation carriers without FXTAS. Results The frequency of AQP4-haplotype was compared between groups, denoting 26 heterozygous individuals and 5 homozygotes as carriers of the minor allele in the FXTAS group and 25 heterozygous and 2 homozygotes in the no-FXTAS group. Statistical analyses showed no significant associations between AQP4 SNPs/haplotypes and development of FXTAS. Discussion Although AQP4 has been implicated in a wide range of brain disorders, its involvement in FXTAS remains unclear. The identification of novel genetic markers predisposing to FXTAS or modulating disease progression is critical for future research involving predictors and treatments.
Collapse
Affiliation(s)
- Andrea Elias-Mas
- Radiology Department, Hospital Universitari Mútua de Terrassa, Terrassa, Barcelona, Spain
- Institute for Research and Innovation Parc Taulí (I3PT), Sabadell, Spain
- Genetics Doctorate Program, Universitat de Barcelona (UB), Barcelona, Spain
| | - Miriam Potrony
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Jaume Bague
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - David J. Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Maria Isabel Alvarez-Mora
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Teresa Torres
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Tamara Barcos
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Joan Anton Puig-Butille
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Molecular Biology CORE, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Marta Rubio
- Institute for Research and Innovation Parc Taulí (I3PT), Sabadell, Spain
- Department of Neurology, Parc Taulí Hospital Universitari, Sabadell, Spain
| | - Irene Madrigal
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Susana Puig
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Emily G. Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Laia Rodriguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
9
|
Salcedo-Arellano MJ, Hagerman RJ. Recent research in fragile X-associated tremor/ataxia syndrome. Curr Opin Neurobiol 2021; 72:155-159. [PMID: 34890957 DOI: 10.1016/j.conb.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/22/2021] [Accepted: 11/02/2021] [Indexed: 11/18/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a cytosine-guanine-guanine repeat expansion neurological disease that occurs in a subset of aging carriers of the premutation (55-200 cytosine-guanine-guanine repeats) in the FMR1 gene located on the X chromosome. The clinical core involves intention tremor and gait ataxia. Current research seeks to clarify the pathophysiology and neuropathology of FXTAS, as well as the development of useful biomarkers to track the progression of FXTAS. Efforts to implement quantitative measures of clinical features, such as kinematics and cognitive measures, are of special interest, in addition to characterize the differences in progression in males compared with females and the efficacy of new treatments.
Collapse
Affiliation(s)
- Maria Jimena Salcedo-Arellano
- Department of Pediatrics, University of California Davis, Sacramento, CA, USA; Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA
| | - Randi J Hagerman
- Department of Pediatrics, University of California Davis, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|