1
|
Fellner A, Wenger C, Heshmat A, Rattay F. Auditory nerve fiber excitability for alternative electrode placement in the obstructed human cochlea: electrode insertion in scala vestibuli versus scala tympani. J Neural Eng 2024; 21:046034. [PMID: 39029505 DOI: 10.1088/1741-2552/ad6597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/19/2024] [Indexed: 07/21/2024]
Abstract
Objective. The cochlear implant (CI) belongs to the most successful neuro-prostheses. Traditionally, the stimulating electrode arrays are inserted into the scala tympani (ST), the lower cochlear cavity, which enables simple surgical access. However, often deep insertion is blocked, e.g. by ossification, and the auditory nerve fibers (ANFs) of lower frequency regions cannot be stimulated causing severe restrictions in speech understanding. As an alternative, the CI can be inserted into the scala vestibuli (SV), the other upper cochlear cavity.Approach. In this computational study, the excitability of 25 ANFs are compared for stimulation with ST and SV implants. We employed a 3-dimensional realistic human cochlear model with lateral wall electrodes based on aμ-CT dataset and manually traced fibers. A finite element approach in combination with a compartment model of a spiral ganglion cell was used to simulate monophasic stimulation with anodic (ANO) and cathodic (CAT) pulses of 50μs.Main results. ANO thresholds are lower in ST (mean/std =μ/σ= 189/55μA) stimulation compared to SV (μ/σ= 323/119μA) stimulation. Contrary, CAT thresholds are higher for the ST array (μ/σ= 165/42μA) compared to the SV array (μ/σ= 122/46μA). The threshold amplitude depends on the specific fiber-electrode spatial relationship, such as lateral distance from the cochlear axis, the angle between electrode and target ANF, and the curvature of the peripheral process. For CAT stimulation the SV electrodes show a higher selectivity leading to less cross-stimulation of additional fibers from different cochlear areas.Significance. We present a first simulation study with a human cochlear model that investigates an additional CI placement into the SV and its impact on the excitation behavior. Results predict comparable outcomes to ST electrodes which confirms that SV implantation might be an alternative for patients with a highly obstructed ST.
Collapse
Affiliation(s)
- Andreas Fellner
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria
| | - Cornelia Wenger
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria
| | - Amirreza Heshmat
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Frank Rattay
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
2
|
Adenis V, Partouche E, Stahl P, Gnansia D, Huetz C, Edeline JM. Asymmetric pulses delivered by a cochlear implant allow a reduction in evoked firing rate and in spatial activation in the guinea pig auditory cortex. Hear Res 2024; 447:109027. [PMID: 38723386 DOI: 10.1016/j.heares.2024.109027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Despite that fact that the cochlear implant (CI) is one of the most successful neuro-prosthetic devices which allows hearing restoration, several aspects still need to be improved. Interactions between stimulating electrodes through current spread occurring within the cochlea drastically limit the number of discriminable frequency channels and thus can ultimately result in poor speech perception. One potential solution relies on the use of new pulse shapes, such as asymmetric pulses, which can potentially reduce the current spread within the cochlea. The present study characterized the impact of changing electrical pulse shapes from the standard biphasic symmetric to the asymmetrical shape by quantifying the evoked firing rate and the spatial activation in the guinea pig primary auditory cortex (A1). At a fixed charge, the firing rate and the spatial activation in A1 decreased by 15 to 25 % when asymmetric pulses were used to activate the auditory nerve fibers, suggesting a potential reduction of the spread of excitation inside the cochlea. A strong "polarity-order" effect was found as the reduction was more pronounced when the first phase of the pulse was cathodic with high amplitude. These results suggest that the use of asymmetrical pulse shapes in clinical settings can potentially reduce the channel interactions in CI users.
Collapse
Affiliation(s)
- V Adenis
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), France; CNRS UMR 9197, 91405 Orsay cedex, France; Université Paris-Saclay, 91405 Orsay cedex, France
| | - E Partouche
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), France; CNRS UMR 9197, 91405 Orsay cedex, France; Université Paris-Saclay, 91405 Orsay cedex, France
| | - P Stahl
- Oticon Medical, Vallauris, France
| | | | - C Huetz
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), France; CNRS UMR 9197, 91405 Orsay cedex, France; Université Paris-Saclay, 91405 Orsay cedex, France
| | - J-M Edeline
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), France; CNRS UMR 9197, 91405 Orsay cedex, France; Université Paris-Saclay, 91405 Orsay cedex, France.
| |
Collapse
|
3
|
Sriperumbudur KK, Appali R, Gummer AW, van Rienen U. Understanding the impact of modiolus porosity on stimulation of spiral ganglion neurons by cochlear implants. Sci Rep 2024; 14:9593. [PMID: 38671022 PMCID: PMC11053021 DOI: 10.1038/s41598-024-59347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Moderate-to-profound sensorineural hearing loss in humans is treatable by electrically stimulating the auditory nerve (AN) with a cochlear implant (CI). In the cochlea, the modiolus presents a porous bony interface between the CI electrode and the AN. New bone growth caused by the presence of the CI electrode or neural degeneration inflicted by ageing or otological diseases might change the effective porosity of the modiolus and, thereby, alter its electrical material properties. Using a volume conductor description of the cochlea, with the aid of a 'mapped conductivity' method and an ad-hoc 'regionally kinetic' equation system, we show that even a slight variation in modiolus porosity or pore distribution can disproportionately affect AN stimulation. Hence, because of porosity changes, an inconsistent CI performance might occur if neural degeneration or new bone growth progress after implantation. Appropriate electrical material properties in accordance with modiolar morphology and pathology should be considered in patient-specific studies. The present first-of-its-kind in-silico study advocates for contextual experimental studies to further explore the utility of modiolus porous morphology in optimising the CI outcome.
Collapse
Affiliation(s)
- Kiran K Sriperumbudur
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany.
- Research and Development, MED-EL Medical Electronics GmbH, Innsbruck, Austria.
| | - Revathi Appali
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
- Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Anthony W Gummer
- Department of Otolaryngology, University of Tübingen, Tübingen, Germany.
- Department of Otolaryngology, University of Melbourne, Melbourne, Australia.
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
- Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
- Life, Light and Matter, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
4
|
Hughes ML. Electrically evoked compound action potential polarity sensitivity, refractory-recovery, and behavioral multi-pulse integration as potential indices of neural health in cochlear-implant recipients. Hear Res 2023; 433:108764. [PMID: 37062161 PMCID: PMC10322179 DOI: 10.1016/j.heares.2023.108764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 03/26/2023] [Accepted: 04/05/2023] [Indexed: 04/18/2023]
Affiliation(s)
- Michelle L Hughes
- University of Nebraska-Lincoln, Dept. of Special Education and Communication Disorders, 276 Barkley Memorial Center, 4072 East Campus Loop, Lincoln, NE, 68583, USA.
| |
Collapse
|
5
|
Alvarez F, Kipping D, Nogueira W. A computational model to simulate spectral modulation and speech perception experiments of cochlear implant users. Front Neuroinform 2023; 17:934472. [PMID: 37006637 PMCID: PMC10061543 DOI: 10.3389/fninf.2023.934472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 02/15/2023] [Indexed: 03/11/2023] Open
Abstract
Speech understanding in cochlear implant (CI) users presents large intersubject variability that may be related to different aspects of the peripheral auditory system, such as the electrode-nerve interface and neural health conditions. This variability makes it more challenging to proof differences in performance between different CI sound coding strategies in regular clinical studies, nevertheless, computational models can be helpful to assess the speech performance of CI users in an environment where all these physiological aspects can be controlled. In this study, differences in performance between three variants of the HiRes Fidelity 120 (F120) sound coding strategy are studied with a computational model. The computational model consists of (i) a processing stage with the sound coding strategy, (ii) a three-dimensional electrode-nerve interface that accounts for auditory nerve fiber (ANF) degeneration, (iii) a population of phenomenological ANF models, and (iv) a feature extractor algorithm to obtain the internal representation (IR) of the neural activity. As the back-end, the simulation framework for auditory discrimination experiments (FADE) was chosen. Two experiments relevant to speech understanding were performed: one related to spectral modulation threshold (SMT), and the other one related to speech reception threshold (SRT). These experiments included three different neural health conditions (healthy ANFs, and moderate and severe ANF degeneration). The F120 was configured to use sequential stimulation (F120-S), and simultaneous stimulation with two (F120-P) and three (F120-T) simultaneously active channels. Simultaneous stimulation causes electric interaction that smears the spectrotemporal information transmitted to the ANFs, and it has been hypothesized to lead to even worse information transmission in poor neural health conditions. In general, worse neural health conditions led to worse predicted performance; nevertheless, the detriment was small compared to clinical data. Results in SRT experiments indicated that performance with simultaneous stimulation, especially F120-T, were more affected by neural degeneration than with sequential stimulation. Results in SMT experiments showed no significant difference in performance. Although the proposed model in its current state is able to perform SMT and SRT experiments, it is not reliable to predict real CI users' performance yet. Nevertheless, improvements related to the ANF model, feature extraction, and predictor algorithm are discussed.
Collapse
Affiliation(s)
- Franklin Alvarez
- Medizinische Hochschule Hannover, Hannover, Germany
- Cluster of Excellence “Hearing4All”, Hannover, Germany
| | - Daniel Kipping
- Medizinische Hochschule Hannover, Hannover, Germany
- Cluster of Excellence “Hearing4All”, Hannover, Germany
| | - Waldo Nogueira
- Medizinische Hochschule Hannover, Hannover, Germany
- Cluster of Excellence “Hearing4All”, Hannover, Germany
| |
Collapse
|
6
|
Konerding WS, Baumhoff P, Kral A. Anodic Polarity Minimizes Facial Nerve Stimulation as a Side Effect of Cochlear Implantation. J Assoc Res Otolaryngol 2023; 24:31-46. [PMID: 36459250 PMCID: PMC9971531 DOI: 10.1007/s10162-022-00878-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 11/05/2022] [Indexed: 12/03/2022] Open
Abstract
One severe side effect of the use of cochlear implants (CI) is coincidental facial nerve stimulation (FNS). Clinical methods to alleviate FNS range from the reprogramming of processor settings to revision surgery. We systematically assessed different changes in CI stimulation modes that have been discussed in the literature as "rescue factors" from FNS: electrode configuration (broad to focused), pulse shape (symmetric biphasic to pseudo-monophasic), and pulse polarity (cathodic to anodic). An FNS was assessed, based on electrophysiological thresholds, in 204 electrically evoked compound action potential (eCAP) input/output functions recorded from 33 ears of 26 guinea pigs. The stimulation level difference between auditory nerve eCAP threshold and FNS threshold was expressed as the eCAP-to-FNS offset. Coincidental FNS occurred in all animals and in 45% of all recordings. A change from monopolar to focused (bipolar, tripolar) configurations minimized FNS. The Euclidean distance between the CI contacts and the facial nerve explained no more than 33% of the variance in FNS thresholds. For both the FNS threshold and the eCAP-to-FNS offset, the change from cathodic to anodic pulse polarity significantly reduced FNS and permitted a gain of 14-71% of the dynamic range of the eCAP response. This "anodic rescue effect" was stronger for pseudo-monophasic pulses as compared to the symmetric biphasic pulse shape. These results provide possible mechanisms underlying recent clinical interventions to alleviate FNS. The "anodic-rescue effect" may offer a non-invasive therapeutic option for FNS in human CI users that should be tested clinically, preferably in combination with current-focusing methods.
Collapse
Affiliation(s)
- Wiebke S. Konerding
- Department of Experimental Otology, Hannover Medical School, Nife Stadtfelddamm 34, 30559 Hannover, Germany
| | - Peter Baumhoff
- Department of Experimental Otology, Hannover Medical School, Nife Stadtfelddamm 34, 30559 Hannover, Germany
| | - Andrej Kral
- Department of Experimental Otology, Hannover Medical School, Nife Stadtfelddamm 34, 30559 Hannover, Germany ,Cluster of Excellence “Hearing 4 All” (DFG Exc. 2177), Hannover, Germany
| |
Collapse
|
7
|
Comparison of response properties of the electrically stimulated auditory nerve reported in human listeners and in animal models. Hear Res 2022; 426:108643. [PMID: 36343534 PMCID: PMC9986845 DOI: 10.1016/j.heares.2022.108643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/29/2022] [Accepted: 10/20/2022] [Indexed: 11/04/2022]
Abstract
Cochlear implants (CIs) provide acoustic information to implanted patients by electrically stimulating nearby auditory nerve fibers (ANFs) which then transmit the information to higher-level neural structures for further processing and interpretation. Computational models that simulate ANF responses to CI stimuli enable the exploration of the mechanisms underlying CI performance beyond the capacity of in vivo experimentation alone. However, all ANF models developed to date utilize to some extent anatomical/morphometric data, biophysical properties and/or physiological data measured in non-human animal models. This review compares response properties of the electrically stimulated auditory nerve (AN) in human listeners and different mammalian models. Properties of AN responses to single pulse stimulation, paired-pulse stimulation, and pulse-train stimulation are presented. While some AN response properties are similar between human listeners and animal models (e.g., increased AN sensitivity to single pulse stimuli with long interphase gaps), there are some significant differences. For example, the AN of most animal models is typically more sensitive to cathodic stimulation while the AN of human listeners is generally more sensitive to anodic stimulation. Additionally, there are substantial differences in the speed of recovery from neural adaptation between animal models and human listeners. Therefore, results from animal models cannot be simply translated to human listeners. Recognizing the differences in responses of the AN to electrical stimulation between humans and other mammals is an important step for creating ANF models that are more applicable to various human CI patient populations.
Collapse
|
8
|
Croner AM, Heshmat A, Schrott-Fischer A, Glueckert R, Hemmert W, Bai S. Effects of Degrees of Degeneration on the Electrical Excitation of Human Spiral Ganglion Neurons Based on a High-Resolution Computer Model. Front Neurosci 2022; 16:914876. [PMID: 35873813 PMCID: PMC9298973 DOI: 10.3389/fnins.2022.914876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
After hearing loss retrograde degeneration of spiral ganglion neurons (SGNs) has been described. Studies modeling the effects of degeneration mostly omitted peripheral processes (dendrites). Recent experimental observations indicated that degenerating SGNs manifested also a reduced diameter of their dendrites. We simulated populations of 400 SGNs inside a high resolution cochlear model with a cochlear implant, based on μCT scans of a human temporal bone. Cochlear implant stimuli were delivered as biphasic pulses in a monopolar configuration. Three SGN situations were simulated, based on our previous measurements of human SGN dendrites: (A) SGNs with intact dendrites (before degeneration), (B) degenerating SGNs, dendrites with a smaller diameter but original length, (C) degenerating SGNs, dendrites omitted. SGN fibers were mapped to characteristic frequency, and place pitch was estimated from excitation profiles. Results from degenerating SGNs (B, C) were similar. Most action potentials were initiated in the somatic area for all cases (A, B, C), except for areas near stimulating electrodes in the apex with intact SGNs (A), where action potentials were initiated in the distal dendrite. In most cases, degenerating SGNs had lower thresholds than intact SGNs (A) (down to -2 dB). Excitation profiles showed increased ectopic activation, i.e., activation of unintended neuronal regions, as well as similar neuronal regions excited by different apical electrodes, for degenerating SGNs (B, C). The estimated pitch showed cases of pitch reversals in apical electrodes for intact SGNs (A), as well as mostly identical pitches evoked by the four most apical electrodes for degenerating SGNs (B, C). In conclusion, neuronal excitation profiles to electrical stimulation exhibited similar traits in both ways of modeling SGN degeneration. Models showed degeneration of dendrites caused increased ectopic activation, as well as similar excitation profiles and pitch evoked by different apical electrodes. Therefore, insertion of electrodes beyond approximately 450° may not provide any benefit if SGN dendrites are degenerated.
Collapse
Affiliation(s)
- Albert M Croner
- Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany.,Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Amirreza Heshmat
- Laboratory for Inner Ear Biology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Rudolf Glueckert
- Laboratory for Inner Ear Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Werner Hemmert
- Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany.,Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Siwei Bai
- Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany.,Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| |
Collapse
|
9
|
Rattay F, Tanzer T. Impact of electrode position on the dynamic range of a human auditory nerve fiber. J Neural Eng 2022; 19. [PMID: 35105835 DOI: 10.1088/1741-2552/ac50bf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 02/01/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Electrodes of a cochlear implant generate spikes in auditory nerve fibers (ANFs). While the insertion depth of each of the electrodes is linked to a frequency section of the acoustic signal, the amplitude of the stimulating pulses controls the loudness of the related frequency band. However, in comparison to acoustic stimulation the dynamic range of an electrically stimulated ANF is quite small. APPROACH The dynamic range of an electrically stimulated ANF is defined as the interval of stimulus amplitudes that causes firing probabilities between 10% and 90%. A compartment model that includes sodium ion current fluctuations as the stochastic key component for spiking was evaluated for different electrode placements and fiber diameters. MAIN RESULTS The dynamic range is reversely related to ANF diameter. An increased dynamic range is expected to improve the quality of auditory perception for cochlear implant users. Electrodes are often placed as close to the center axis of the cochlea as possible. The analysis of the simulated auditory nerve firing showed that this placement is disadvantageous for the dynamic range of a selected ANF. SIGNIFICANCE Five times larger dynamic ranges are expected for electrodes close to the terminal of the dendrite or at mid-dendritic placement as opposed to electrodes close to the modiolus.
Collapse
Affiliation(s)
- Frank Rattay
- Institut fuer Analysis und Scientific Computing, Technische Universitaet Wien, Wiedner Hauptstr. 8-10, 1040 Wien, Vienna, 1040, AUSTRIA
| | - Thomas Tanzer
- Institute of Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstrasse 8, Vienna, 1040, AUSTRIA
| |
Collapse
|