1
|
Ran L, Liu J, Lan X, Zhou X, Tan Y, Zhang J, Tang Y, Tang L, Zhang J, Liu D. White matter microstructure damage measured by automated fiber quantification correlates with pain symptoms in lung cancer patients. Brain Imaging Behav 2024; 18:1524-1535. [PMID: 39356440 DOI: 10.1007/s11682-024-00942-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/03/2024]
Abstract
To investigative the white matter (WM) alterations in lung cancer patients with cancer pain (CP+), and explore the correlations between damaged WM fiber tracts and clinical indicators. Twenty-six CP+, 26 lung cancer patients without CP (CP-), and 31 healthy controls (HC) were recruited. All participants underwent diffusion tensor imaging (DTI) and clinical assessments. Automated fiber quantification (AFQ) technique was performed to identify the 20 WM fiber bundles, and the fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were extracted. Intergroup comparisons of these diffusion metrics were conducted based on the entire fiber bundle level and 100 node levels along each tract. The associations between altered diffusion metrics and the numeric rating scale (NRS) scores, as well as the pain duration, were analyzed. At the entire level, the CP + group showed impaired WM structure in the right cingulum hippocampus (CH_R). At the pointwise level, the CP + group exhibited extensive nodal FA reduction or MD, RD, and AD elevation. In addition, the AD of the posterior portion of the right inferior longitudinal fasciculus (ILF_R, nodes 71-75) in the CP + group was positively correlated with the pain duration, and the FA of CH_R (nodes 22-38) was negatively correlated with NRS score. Extensive WM microstructural damage may be a pattern of brain abnormalities in lung cancer patients with CP, and in particular, specific nodal disruption along pain-related fiber tracts may be a sensitive imaging biomarker to characterize the severity and duration of CP.
Collapse
Affiliation(s)
- Li Ran
- Department of Radiology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181, Hanyu Road, Shapingba District, Chongqing, China
| | - Jiang Liu
- Department of Radiology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181, Hanyu Road, Shapingba District, Chongqing, China
| | - Xiaosong Lan
- Department of Radiology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181, Hanyu Road, Shapingba District, Chongqing, China
| | - Xiaoyu Zhou
- Department of Radiology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181, Hanyu Road, Shapingba District, Chongqing, China
| | - Yong Tan
- Department of Radiology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181, Hanyu Road, Shapingba District, Chongqing, China
| | - Jing Zhang
- Department of Radiology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181, Hanyu Road, Shapingba District, Chongqing, China
| | - Yu Tang
- Department of Radiology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181, Hanyu Road, Shapingba District, Chongqing, China
| | - Lin Tang
- Department of Radiology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181, Hanyu Road, Shapingba District, Chongqing, China
| | - Jiuquan Zhang
- Department of Radiology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181, Hanyu Road, Shapingba District, Chongqing, China.
| | - Daihong Liu
- Department of Radiology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181, Hanyu Road, Shapingba District, Chongqing, China.
| |
Collapse
|
2
|
Yan Q, Liu M, Xie Y, Lin Y, Fu P, Pu Y, Wang B. Kidney-brain axis in the pathogenesis of cognitive impairment. Neurobiol Dis 2024; 200:106626. [PMID: 39122123 DOI: 10.1016/j.nbd.2024.106626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The kidney-brain axis is a bidirectional communication network connecting the kidneys and the brain, potentially affected by inflammation, uremic toxin, vascular injury, neuronal degeneration, and so on, leading to a range of diseases. Numerous studies emphasize the disruptions of the kidney-brain axis may contribute to the high morbidity of neurological disorders, such as cognitive impairment (CI) in the natural course of chronic kidney disease (CKD). Although the pathophysiology of the kidney-brain axis has not been fully elucidated, epidemiological data indicate that patients at all stages of CKD have a higher risk of developing CI compared with the general population. In contrast to other reviews, we mentioned some commonly used medicines in CKD that may play a pivotal role in the pathogenesis of CI. Revealing the pathophysiology interactions between kidney damage and brain function can reduce the potential risk of future CI. This review will deeply explore the characteristics, indicators, and potential pathophysiological mechanisms of CKD-related CI. It will provide a theoretical basis for identifying CI that progresses during CKD and ultimately prevents and treats CKD-related CI.
Collapse
Affiliation(s)
- Qianqian Yan
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Mengyuan Liu
- Department of Anesthesiology, Air Force Hospital of Western Theater Command, PLA, Chengdu 610011, China
| | - Yiling Xie
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yimi Lin
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ping Fu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yaoyu Pu
- Department of Rheumatology and Immunology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Bo Wang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Zhang H, Zhao J, Fan L, Wu X, Li F, Liu J, Bai C, Li X, Li B, Zhang T. Exploring the Structural Plasticity Mechanism of Corticospinal Tract during Stroke Rehabilitation Based Automated Fiber Quantification Tractography. Neurorehabil Neural Repair 2024; 38:425-436. [PMID: 38676561 DOI: 10.1177/15459683241249115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
BACKGROUND Corticospinal tract (CST) is the principal motor pathway; we aim to explore the structural plasticity mechanism in CST during stroke rehabilitation. METHODS A total of 25 patients underwent diffusion tensor imaging before rehabilitation (T1), 1-month post-rehabilitation (T2), 2 months post-rehabilitation (T3), and 1-year post-discharge (T4). The CST was segmented, and fractional anisotropy (FA), axial diffusion (AD), mean diffusivity (MD), and radial diffusivity (RD) were determined using automated fiber quantification tractography. Baseline level of laterality index (LI) and motor function for correlation analysis. RESULTS The FA values of all segments in the ipsilesional CST (IL-CST) were lower compared with normal CST. Repeated measures analysis of variance showed time-related effects on FA, AD, and MD of the IL-CST, and there were similar dynamic trends in these 3 parameters. At T1, FA, AD, and MD values of the mid-upper segments of IL-CST (around the core lesions) were the lowest; at T2 and T3, values for the mid-lower segments were lower than those at T1, while the values for the mid-upper segments gradually increased; at T4, the values for almost entire IL-CST were higher than before. The highest LI was observed at T2, with a predominance in contralesional CST. The LIs for the FA and AD at T1 were positively correlated with the change rate of motor function. CONCLUSIONS IL-CST showed aggravation followed by improvement from around the lesion to the distal end. Balance of interhemispheric CST may be closely related to motor function, and LIs for FA and AD may have predictive value for mild-to-moderate stroke rehabilitation. Clinical Trial Registration. URL: http://www.chictr.org.cn; Unique Identifier: ChiCTR1800019474.
Collapse
Affiliation(s)
- Haojie Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neurological Rehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Jun Zhao
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurology, China Rehabilitation Research Center, Beijing, China
| | - Lingzhong Fan
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xia Wu
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fang Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurology, China Rehabilitation Research Center, Beijing, China
| | - Jingya Liu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of occupational therapy, China Rehabilitation Research Center, Beijing, China
| | - Chen Bai
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neurological Rehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Xingzhu Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neurological Rehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Bingjie Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurology, China Rehabilitation Research Center, Beijing, China
| | - Tong Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neurological Rehabilitation, China Rehabilitation Research Center, Beijing, China
| |
Collapse
|
4
|
Zhang P, Feng Y, Xu T, Li Y, Xia J, Zhang H, Sun Z, Tian W, Zhang J. Brain white matter microstructural alterations in patients with systemic lupus erythematosus: an automated fiber quantification study. Brain Imaging Behav 2024; 18:622-629. [PMID: 38332385 DOI: 10.1007/s11682-024-00861-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
This study aimed to identify damaged segments of brain white matter fiber tracts in patients with systemic lupus erythematosus (SLE) using diffusion tensor imaging (DTI)-based automated fiber quantification (AFQ), and analyze their relationship with cognitive impairment. Clinical and imaging data for 39 female patients with SLE and for 44 female healthy controls (HCs) were collected. AFQ was used to track whole-brain white matter tracts in each participant, and each tract was segmented into 100 equally spaced nodes. DTI metrics including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated at each node. Correlations were also explored between DTI metrics in the damaged segments of white matter fiber tracts and neuropsychological test scores of patients with SLE. Compared with HCs, SLE patients exhibited significantly lower FA values, and significantly higher MD, AD, RD values in many white matter tracts (all P < 0.05, false discovery rate-corrected). FA values in nodes 97-100 of the left inferior fronto-occipital fasciculus (IFOF) positively correlated with the mini-mental state examination score. AFQ enables precise and accurate identification of damage to white matter fiber tracts in brains of patients with SLE. FA values in the left IFOF correlate with cognitive impairment in SLE.
Collapse
Affiliation(s)
- Peng Zhang
- Graduate School of Dalian Medical University, Liaoning, 116044, China
- The First Affiliated Hospital of Baotou Medical College, Baotou, 014010, China
| | - Yanhong Feng
- Graduate School of Dalian Medical University, Liaoning, 116044, China
| | - Tianye Xu
- Graduate School of Dalian Medical University, Liaoning, 116044, China
| | - Yifan Li
- School of Medicine, Nantong University, Jiangsu, 226019, China
| | - Jianguo Xia
- Department of Imaging, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Jiangsu, 225300, China.
| | - Hongxia Zhang
- Department of Imaging, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Jiangsu, 225300, China.
| | - Zhongru Sun
- Department of Imaging, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Jiangsu, 225300, China
| | - Weizhong Tian
- Department of Imaging, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Jiangsu, 225300, China
| | - Ji Zhang
- Department of Imaging, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Jiangsu, 225300, China
| |
Collapse
|
5
|
Ding S, Shi Z, Huang K, Fan X, Li X, Zheng H, Wang L, Yan Z, Cai J. Aberrant white matter microstructure detected by automatic fiber quantification in pediatric myelin oligodendrocyte glycoprotein antibody-associated disease. Mult Scler Relat Disord 2024; 84:105483. [PMID: 38354445 DOI: 10.1016/j.msard.2024.105483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND AND OBJECTIVES Myelin oligodendrocyte glycoprotein antibody-associated diseases (MOGAD) is an idiopathic inflammatory demyelinating disorder in children, for which the precise damage patterns of the white matter (WM) fibers remain unclear. Herein, we utilized diffusion tensor imaging (DTI)-based automated fiber quantification (AFQ) to identify patterns of fiber damage and to investigate the clinical significance of MOGAD-affected fiber tracts. METHODS A total of 28 children with MOGAD and 31 healthy controls were included in this study. The AFQ approach was employed to track WM fiber with 100 equidistant nodes defined along each tract for statistical analysis of DTI metrics in both the entire and nodal manner. The feature selection method was used to further screen significantly aberrant DTI metrics of the affected fiber tracts or segments for eight common machine learning (ML) to evaluate their potential in identifying MOGAD. These metrics were then correlated with clinical scales to assess their potential as imaging biomarkers. RESULTS In the entire manner, significantly reduced fractional anisotropy (FA) was shown in the left anterior thalamic radiation, arcuate fasciculus, and the posterior and anterior forceps of corpus callosum in MOGAD (all p < 0.05). In the nodal manner, significant DTI metrics alterations were widely observed across 37 segments in 10 fiber tracts (all p < 0.05), mainly characterized by decreased FA and increased radial diffusivity (RD). Among them, 14 DTI metrics in seven fiber tracts were selected as important features to establish ML models, and satisfactory discrimination of MOGAD was obtained in all models (all AUC > 0.85), with the best performance in the logistic regression model (AUC = 0.952). For those features, the FA of left cingulum cingulate and the RD of right inferior frontal-occipital fasciculus were negatively and positively correlated with the expanded disability status scale (r = -0.54, p = 0.014; r = 0.43, p = 0.03), respectively. CONCLUSION Pediatric MOGAD exhibits extensive WM fiber tract aberration detected by AFQ. Certain fiber tracts exhibit specific patterns of DTI metrics that hold promising potential as biomarkers.
Collapse
Affiliation(s)
- Shuang Ding
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Zhuowei Shi
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Kaiping Huang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Xiao Fan
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Xiujuan Li
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Helin Zheng
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Longlun Wang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Zichun Yan
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Jinhua Cai
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China.
| |
Collapse
|
6
|
Wang X, Yin Y, Wang X, Xu G, Tian J, Ma X. White matter microstructural alterations in patients with anti-N-methyl-D-aspartate receptor encephalitis: A tract-based spatial statistics study. Mult Scler Relat Disord 2024; 84:105500. [PMID: 38368748 DOI: 10.1016/j.msard.2024.105500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Cognitive impairment is common in patients with anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis; however, neural mechanisms underlying this impairment remain unclear. Diffusion tensor imaging (DTI) is a potential method for studying the condition of white matter fibers in patients with anti-NMDAR encephalitis, allowing for an analysis of the neuroimaging mechanisms of cognitive impairment in conjunction with cognitive scales. This study aimed to explore white matter microstructural alterations and their correlation with cognitive function in patients with anti-NMDAR encephalitis. METHODS DTI data were collected from 22 patients with anti-NMDAR encephalitis (aged 29.00(19.75, 39.50) years; 12 males, 10 females) and 20 healthy controls (HCs) (aged 24.50(21.25, 32.00); 12 males, 8 females) matched for age, sex, and educational level. Changes in the white matter microstructure were analyzed using tract-based spatial statistics. Pearson correlation analysis was used to explore the correlation between white matter integrity and neuropsychological scores. RESULTS Compared with HCs, patients with anti-NMDAR encephalitis showed decreased fractional anisotropy and increased mean diffusivity values in extensive white matter regions, which were associated with disease severity, memory, and executive and visuospatial functions. CONCLUSION Widespread impairment of the structural integrity of the white matter in the brain is significantly associated with cognitive dysfunction in patients with anti-NMDAR encephalitis, providing neuroimaging evidence for studying the underlying mechanisms.
Collapse
Affiliation(s)
- Xiaoxuan Wang
- Department of Nuclear Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, PR China
| | - Yi Yin
- Department of Medical imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China
| | - Xinzhi Wang
- Department of Medical imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China
| | - Guang Xu
- Department of Neurology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China
| | - Junzhang Tian
- Department of Nuclear Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, PR China; The Second School of Clinical Medicine, Southern Medial University, Guangzhou, PR China
| | - Xiaofen Ma
- Department of Nuclear Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, PR China; The Second School of Clinical Medicine, Southern Medial University, Guangzhou, PR China.
| |
Collapse
|
7
|
Liu Y, Jiang Y, Du W, Gao B, Gao J, Hu S, Song Q, Wang W, Miao Y. White matter microstructure alterations in type 2 diabetes mellitus and its correlation with cerebral small vessel disease and cognitive performance. Sci Rep 2024; 14:270. [PMID: 38167604 PMCID: PMC10762026 DOI: 10.1038/s41598-023-50768-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
Microstructural abnormalities of white matter fiber tracts are considered as one of the etiology of diabetes-induced neurological disorders. We explored the cerebral white matter microstructure alteration accurately, and to analyze its correlation between cerebral small vessel disease (CSVD) burden and cognitive performance in type 2 diabetes mellitus (T2DM). The clinical-laboratory data, cognitive scores [including mini-mental state examination (MMSE), Montreal cognitive assessment (MoCA), California verbal learning test (CVLT), and symbol digit modalities test (SDMT)], CSVD burden scores of the T2DM group (n = 34) and healthy control (HC) group (n = 21) were collected prospectively. Automatic fiber quantification (AFQ) was applied to generate bundle profiles along primary white matter fiber tracts. Diffusion tensor images (DTI) metrics and 100 nodes of white matter fiber tracts between groups were compared. Multiple regression analysis was used to analyze the relationship between DTI metrics and cognitive scores and CSVD burden scores. For fiber-wise and node-wise, DTI metrics in some commissural and association fibers were increased in T2DM. Some white matter fiber tracts DTI metrics were independent predictors of cognitive scores and CSVD burden scores. White matter fiber tracts damage in patients with T2DM may be characterized in specific location, especially commissural and association fibers. Aberrational specific white matter fiber tracts are associated with visuospatial function and CSVD burden.
Collapse
Affiliation(s)
- Yangyingqiu Liu
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang, Dalian, China
- Department of Radiology, Zibo Central Hospital, 54 Gongqingtuan Road, Zhangdian, Zibo, China
| | - Yuhan Jiang
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang, Dalian, China
| | - Wei Du
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang, Dalian, China
| | - Bingbing Gao
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang, Dalian, China
| | - Jie Gao
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang, Dalian, China
| | - Shuai Hu
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang, Dalian, China
| | - Qingwei Song
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang, Dalian, China
| | - Weiwei Wang
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang, Dalian, China.
| | - Yanwei Miao
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang, Dalian, China.
| |
Collapse
|
8
|
Chen HJ, Qiu J, Xu X, Guo Y, Fu L, Fu Q, Wu Y, Qi Y, Chen F. Abnormal white matter along fibers by automated fiber quantification in patients undergoing hemodialysis. Neurol Sci 2023; 44:4499-4509. [PMID: 37393206 DOI: 10.1007/s10072-023-06912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Abnormal white matter has been reported in patients with end-stage renal disease (ESRD). However, few studies have investigated the relationship between specific damage segments and cognition in ESRD. This study aimed to delineate white matter alterations in ESRD and its relationship with cognition. METHODS A total of 36 patients undergoing hemodialysis and 25 healthy controls underwent diffusion tensor imaging (DTI) and a series of neuropsychiatric tests. Automated fiber quantification was used to extract distinct DTI indices, and the relationship between the specific segment of the white matter and clinical properties was investigated. Furthermore, a support vector machine was applied to differentiate patients with ESRD from healthy controls. RESULTS Fractional anisotropy values decreased in multiple fiber bundles, including bilateral thalamic radiata, cingulum cingulate, inferior fronto-occipital fasciculus (IFOF), uncinate, Callosum_Forceps_Major/Callosum_Forceps_Minor (CFMaj/CFMin), and left uncinate from the tract level in patients with ESRD. Specific damaged segments were detected in 8 fiber bundles, including bilateral thalamic radiation, cingulum cingulate, IFOF, CFMin, and left corticospinal tract. Few alterations in these fiber bundles were correlated with cognition impairment and hemoglobin levels. The tract profiles of the left thalamic radiata and left cingulum cingulate could be used to differentiate hemodialysis patients from healthy controls, with an accuracy of 76.9% and 67.6%, respectively. CONCLUSIONS This study revealed white matter damage in hemodialysis patients. This damage occurred in specific segments of the tract, especially in the left thalamic radiata and left cingulum cingulate, which might become a new biomarker for patients with ESRD and cognition impairment.
Collapse
Affiliation(s)
- Hui Juan Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dis, Haikou, Hainan, 570311, People's Republic of China
| | - Jie Qiu
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dis, Haikou, Hainan, 570311, People's Republic of China
| | - Xiaoling Xu
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dis, Haikou, Hainan, 570311, People's Republic of China
| | - Yihao Guo
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dis, Haikou, Hainan, 570311, People's Republic of China
| | - Lili Fu
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dis, Haikou, Hainan, 570311, People's Republic of China
| | - Qingqing Fu
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dis, Haikou, Hainan, 570311, People's Republic of China
| | - Yanglei Wu
- MR Collaboration, Siemens Healthineers Ltd, Beijing, China
| | - Yonghui Qi
- Blood Purification Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dis, Haikou, Hainan, 570311, People's Republic of China.
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dis, Haikou, Hainan, 570311, People's Republic of China.
| |
Collapse
|
9
|
Yu Z, Pang H, Yu H, Wu Z, Ding Z, Fan G. Segmental disturbance of white matter microstructure in predicting mild cognitive impairment in idiopathic Parkinson's disease: An individualized study based on automated fiber quantification tractography. Parkinsonism Relat Disord 2023; 115:105802. [PMID: 37734997 DOI: 10.1016/j.parkreldis.2023.105802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE The neurobiological mechanisms and an early identification of MCI in idiopathic Parkinson's disease (IPD) remain unclear. To investigate the abnormalities of types of white matter (WM) fiber tracts segmentally and establish reliable indicator in IPD-MCI. METHODS Forty IPD with normal cognition (IPD-NCI), thirty IPD-MCI, and thirty healthy controls were included. Automated fiber quantification was applied to extract the fractional anisotropy (FA) and mean diffusivity (MD) values at 100 locations along the major fibers. Partial correlation was performed between diffusion values and cognitive performance. Furthermore, machine learning analyses were conducted to determine the imaging biomarker of MCI. Permutation tests were performed to evaluate the pointwise differences under the FWE correction. RESULTS IPD-MCI had similar but more severe and widespread WM degeneration in the association, projection, and commissural fibers compared with IPD-NCI. Meanwhile, IPD-MCI showed distinct degeneration pattern in the association fibers. The FA of the anterior segment of right inferior fronto-occipital fasciculus (IFOF) was positively correlated with MoCA (P < 0.05) and executive function (P < 0.05). The MD of the middle and posterior segment of left superior longitudinal fasciculus (SLF) was negatively correlated with MoCA P < 0.05), executive (P < 0.05), visuospatial function (P < 0.05). Furthermore, the AUC of support vector machine model was 0.80 in the validation dataset. The FA of anterior segment of right IFOF contribute the most. CONCLUSION This study demonstrated that regional tract-specific microstructural degeneration, especially the association fibers, can be used to predict MCI in IPD. Especially, the right IFOF may be a significant imaging biomarker in predicting IPD with MCI.
Collapse
Affiliation(s)
- Ziyang Yu
- School of Medicine, Xiamen University, Xiamen, Fujian Province, China; Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Huize Pang
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Hongmei Yu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China.
| | - Ziqian Wu
- School of Medicine, Xiamen University, Xiamen, Fujian Province, China.
| | - Zhi Ding
- School of Medicine, Xiamen University, Xiamen, Fujian Province, China.
| | - Guoguang Fan
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
10
|
Wang A, Wei T, Wu H, Yang Y, Ding Y, Wang Y, Zhang C, Yang W. Lesions in White Matter in Wilson's Disease and Correlation with Clinical Characteristics. Can J Neurol Sci 2023; 50:710-718. [PMID: 35959686 DOI: 10.1017/cjn.2022.286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Neuroimaging studies in Wilson's disease (WD) have identified various alterations in white matter (WM) microstructural organization. However, it remains unclear whether these alterations are localized to specific regions of fiber tracts, and what diagnostic value they might have. The purpose of this study is to explore the spatial profile of WM abnormalities along defined fiber tracts in WD and its clinical relevance. METHODS Ninety-nine patients with WD (62 men and 37 women) and 91 age- and sex-matched controls (59 men and 32 women) were recruited to take part in experiments of diffusion-weighted imaging with 64 gradient vectors. The data were calculated by FMRIB Software Library (FSL) software and Automated Fiber Quantification (AFQ) software. After registration, patient groups and normal groups were compared by Mann-Whitney U test analysis. RESULTS Compared with the controls, the patients with WD showed widespread fractional anisotropy reduction and mean diffusivity, radial diffusivity elevation of identified fiber tracts. Significant correlations between diffusion tensor imaging (DTI) parameters and the neurological Unified Wilson's Disease Rating Scale (UWDRS-N), serum ceruloplasmin, and 24-h urinary copper excretion were found. CONCLUSIONS The present study has provided evidence that the metrics of DTI could be utilized as a potential biomarker of neuropathological symptoms in WD. Damage to the microstructure of callosum forceps and corticospinal tract may be involved in the pathophysiological process of neurological symptoms in WD patients, such as gait and balance disturbances, involuntary movements, dysphagia, and autonomic dysfunction.
Collapse
Affiliation(s)
- Anqin Wang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230601, China
| | - Taohua Wei
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230601, China
| | - Hongli Wu
- Anhui University of Chinese Medicine, Hefei, Anhui 230601, China
| | - Yulong Yang
- Anhui University of Chinese Medicine, Hefei, Anhui 230601, China
| | - Yufeng Ding
- Anhui University of Chinese Medicine, Hefei, Anhui 230601, China
| | - Yi Wang
- Anhui University of Chinese Medicine, Hefei, Anhui 230601, China
| | - Chuanfeng Zhang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230601, China
| | - Wenming Yang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230601, China
| |
Collapse
|
11
|
Hu R, Tan F, Chen W, Wu Y, Jiang Y, Du W, Zuo Y, Gao B, Song Q, Miao Y. Microstructure abnormalities of the diffusion quantities in children with attention-deficit/hyperactivity disorder: an AFQ and TBSS study. Front Psychiatry 2023; 14:1237113. [PMID: 37674550 PMCID: PMC10477457 DOI: 10.3389/fpsyt.2023.1237113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023] Open
Abstract
Objective To explore the specific alterations of white matter microstructure in children with attention-deficit/hyperactivity disorder (ADHD) by automated fiber quantification (AFQ) and tract-based spatial statistics (TBSS), and to analyze the correlation between white matter abnormality and impairment of executive function. Methods In this prospective study, a total of twenty-seven patients diagnosed with ADHD (20 males, 7 females; mean age of 8.89 ± 1.67 years) and twenty-two healthy control (HC) individuals (11 males, 11 females, mean age of 9.82 ± 2.13 years) were included. All participants were scanned with diffusion kurtosis imaging (DKI) and assessed for executive functions. AFQ and TBSS analysis methods were used to investigate the white matter fiber impairment of ADHD patients, respectively. Axial diffusivity (AD), radial diffusivity (RD), mean diffusivity (MD) and fractional anisotropy (FA) of 17 fiber properties were calculated using the AFQ. The mean kurtosis (MK), axial kurtosis (AK), radial kurtosis (RK), mean diffusivity (MDDKI), axial diffusivity (ADDKI), radial diffusivity (RDDKI) and fractional anisotropy (FADKI) of DKI and AD, RD, MD, and FA of diffusion tensor imaging (DTI) assessed the integrity of the white matter based on TBSS. Partial correlation analyses were conducted to evaluate the correlation between white matter abnormalities and clinical test scores in ADHD while taking age, gender, and education years into account. The analyses were all family-wise error rate (FWE) corrected. Results ADHD patients performed worse on the Behavior Rating Inventory of Executive Function (BRIEF) test (p < 0.05). Minor variances existed in gender and age between ADHD and HC, but these variances did not yield statistically significant distinctions. There were no significant differences in TBSS for DKI and DTI parameters (p > 0.05, TFCE-corrected). Compared to HC volunteers, the mean AD value of right cingulum bundle (CB_R) fiber tract showed a significantly higher level in ADHD patients following the correction of FWE. As a result of the point-wise comparison between groups, significant alterations (FWE correction, p < 0.05) were mainly located in AD (nodes 36-38, nodes 83-97) and MD (nodes 92-95) of CB_R. There was no significant correlation between white matter diffusion parameters and clinical test scores in ADHD while taking age, gender, and education years into account. Conclusion The AFQ method can detect ADHD white matter abnormalities in a specific location with greater sensitivity, and the CB_R played a critical role. Our findings may be helpful in further studying the relationship between focal white matter abnormalities and ADHD.
Collapse
Affiliation(s)
- Rui Hu
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Fan Tan
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wen Chen
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yong Wu
- Department of Paediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yuhan Jiang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Du
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuchen Zuo
- Department of Paediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Bingbing Gao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qingwei Song
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanwei Miao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
12
|
Yan Z, Wang X, Zhu Q, Shi Z, Chen X, Han Y, Zheng Q, Wei Y, Wang J, Li Y. Alterations in White Matter Fiber Tracts Characterized by Automated Fiber-Tract Quantification and Their Correlations With Cognitive Impairment in Neuromyelitis Optica Spectrum Disorder Patients. Front Neurosci 2022; 16:904309. [PMID: 35844220 PMCID: PMC9283762 DOI: 10.3389/fnins.2022.904309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives To investigate whether patients with neuromyelitis optica spectrum disorder (NMOSD) have tract-specific alterations in the white matter (WM) and the correlations between the alterations and cognitive impairment. Materials and Methods In total, 40 patients with NMOSD and 20 healthy controls (HCs) who underwent diffusion tensor imaging (DTI) scan and neuropsychological scale assessments were enrolled. Automated fiber-tract quantification (AFQ) was applied to identify and quantify 100 equally spaced nodes of 18 specific WM fiber tracts for each participant. Then the group comparisons in DTI metrics and correlations between different DTI metrics and neuropsychological scales were performed. Results Regardless of the entire or pointwise level in WM fiber tracts, patients with NMOSD exhibited a decreased fractional anisotropy (FA) in the left inferior fronto-occipital fasciculus (L_IFOF) and widespread increased mean diffusion (MD), axial diffusivity (AD), and radial diffusivity (RD), especially for the thalamic radiation (TR), corticospinal tract (CST), IFOF, inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF) [p < 0.05, false discovery rate (FDR) correction], and the pointwise analyses performed more sensitive. Furthermore, the negative correlations among MD, AD, RD, and symbol digit modalities test (SDMT) scores in the left TR (L_TR) were found in NMOSD. Conclusion Patients with NMOSD exhibited the specific nodes of WM fiber tract damage, which can enhance our understanding of WM microstructural abnormalities in NMOSD. In addition, the altered DTI metrics were correlated with cognitive impairment, which can be used as imaging markers for the early identification of NMOSD cognitive impairment.
Collapse
|