1
|
Valjakka JS, Paasonen J, Salo RA, Paasonen E, Stenroos P, Gureviciene I, Kettunen M, Idiyatullin D, Tanila H, Michaeli S, Mangia S, Gröhn O. Correlation of zero echo time functional MRI with neuronal activity in rats. J Cereb Blood Flow Metab 2025:271678X251314682. [PMID: 39846159 PMCID: PMC11758440 DOI: 10.1177/0271678x251314682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 01/24/2025]
Abstract
Zero echo time (zero-TE) pulse sequences provide a quiet and artifact-free alternative to conventional functional magnetic resonance imaging (fMRI) pulse sequences. The fast readouts (<1 ms) utilized in zero-TE fMRI produce an image contrast with negligible contributions from blood oxygenation level-dependent (BOLD) mechanisms, yet the zero-TE contrast is highly sensitive to brain function. However, the precise relationship between the zero-TE contrast and neuronal activity has not been determined. Therefore, we aimed to derive a function to model the temporal dynamics of the zero-TE fMRI signal in response to neuronal activity. Furthermore, we examined the correlation of zero-TE fMRI with neuronal activity across stimulation frequencies. To these ends, we performed simultaneous electrophysiological recordings and zero-TE fMRI in rats subjected to whisker stimulation. The presented impulse response function provides a basis for the statistical modeling of neuronal activity-induced changes in the zero-TE fMRI signal. The temporal characteristics of the zero-TE fMRI response were found to be consistent with the previously postulated non-BOLD hemodynamic origin of the functional contrast. The zero-TE fMRI signal was well predicted by electrophysiological recordings, although systematic stimulation-dependent residuals were also observed, suggesting nonlinearities in neurovascular coupling. We conclude that zero-TE fMRI provides a robust proxy for neuronal activity.
Collapse
Affiliation(s)
- Juha S Valjakka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Jaakko Paasonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Raimo A Salo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ekaterina Paasonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neurocenter, Kuopio University Hospital, Kuopio, Finland
| | - Petteri Stenroos
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Irina Gureviciene
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko Kettunen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Djaudat Idiyatullin
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Heikki Tanila
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Shalom Michaeli
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Silvia Mangia
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Olli Gröhn
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
2
|
Colins Rodriguez A, Loft MSE, Schiessl I, Maravall M, Petersen RS. Sensory adaptation in the barrel cortex during active sensation in the behaving mouse. Sci Rep 2024; 14:21588. [PMID: 39284900 PMCID: PMC11405846 DOI: 10.1038/s41598-024-70524-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/19/2024] [Indexed: 09/20/2024] Open
Abstract
Sensory Adaptation (SA) is a prominent aspect of how neurons respond to sensory signals, ubiquitous across species and modalities. However, SA depends on the activation state of the brain and the extent to which SA is expressed in awake, behaving animals during active sensation remains unclear. Here, we addressed this question by training head-fixed mice to detect an object using their whiskers and recording neuronal activity from barrel cortex whilst simultaneously imaging the whiskers in 3D. We found that neuronal responses decreased during the course of whisker-object touch sequences and that this was due to two factors. First, a motor effect, whereby, during a sequence of touches, later touches were mechanically weaker than early ones. Second, a sensory encoding effect, whereby neuronal tuning to touch became progressively less sensitive during the course of a touch sequence. The sensory encoding effect was whisker-specific. These results show that SA does occur during active whisker sensing and suggest that SA is fundamental to sensation during natural behaviour.
Collapse
Affiliation(s)
- Andrea Colins Rodriguez
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Michaela S E Loft
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Ingo Schiessl
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, M6 8HD, UK
| | - Miguel Maravall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9RH, UK
| | - Rasmus S Petersen
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
3
|
Liew YJ, Dimwamwa ED, Wright NC, Zhang Y, Stanley GB. MULTIPLE DISTINCT TIMESCALES OF RAPID SENSORY ADAPATION IN THE THALAMOCORTICAL CIRCUIT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597761. [PMID: 38895470 PMCID: PMC11185625 DOI: 10.1101/2024.06.06.597761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Numerous studies have shown that neuronal representations in sensory pathways are far from static but are instead strongly shaped by the complex properties of the sensory inputs they receive. Adaptation dynamically shapes the neural signaling that underlies our perception of the world yet remains poorly understood. We investigated rapid adaptation across timescales from hundreds of milliseconds to seconds through simultaneous multi-electrode recordings from the ventro-posteromedial nucleus of the thalamus (VPm) and layer 4 of the primary somatosensory cortex (S1) in male and female anesthetized mice in response to controlled, persistent whisker stimulation. Observations in VPm and S1 reveal a degree of adaptation that progresses through the pathway. Signatures of two distinct timescales of rapid adaptation in the firing rates of both thalamic and cortical neuronal populations were revealed, also reflected in the synchrony of the thalamic population and in the thalamocortical synaptic efficacy that was measured in putatively monosynaptically connected thalamocortical pairs. Controlled optogenetic activation of VPm further demonstrated that the longer timescale adaptation observed in S1 is likely inherited from slow decreases in thalamic firing rate and synchrony. Despite the degraded sensory responses, adaptation resulted in a shift in coding strategy that favors theoretical discrimination over detection across the observed timescales of adaptation. Overall, although multiple mechanisms contribute to rapid adaptation at distinct timescales, they support a unifying framework on the role of adaptation in sensory processing.
Collapse
Affiliation(s)
- Yi Juin Liew
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Joint PhD Program in Biomedical Engineering, Georgia Institute of Technology – Emory University – Peking University, Atlanta, GA 30332, USA
| | - Elaida D Dimwamwa
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Nathaniel C Wright
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Yong Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of the People’s Republic of China, Beijing 100083, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China
| | - Garrett B Stanley
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| |
Collapse
|
4
|
Dobler Z, Suresh A, Chari T, Mula S, Tran A, Buonomano DV, Portera-Cailliau C. Adapting and facilitating responses in mouse somatosensory cortex are dynamic and shaped by experience. Curr Biol 2024; 34:3506-3521.e5. [PMID: 39059392 PMCID: PMC11324963 DOI: 10.1016/j.cub.2024.06.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/10/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Sensory adaptation is the process whereby brain circuits adjust neuronal activity in response to redundant sensory stimuli. Although sensory adaptation has been extensively studied for individual neurons on timescales of tens of milliseconds to a few seconds, little is known about it over longer timescales or at the population level. We investigated population-level adaptation in the barrel field of the mouse somatosensory cortex (S1BF) using in vivo two-photon calcium imaging and Neuropixels recordings in awake mice. Among stimulus-responsive neurons, we found both adapting and facilitating neurons, which decreased or increased their firing, respectively, with repetitive whisker stimulation. The former outnumbered the latter by 2:1 in layers 2/3 and 4; hence, the overall population response of mouse S1BF was slightly adapting. We also discovered that population adaptation to one stimulus frequency (5 Hz) does not necessarily generalize to a different frequency (12.5 Hz). Moreover, responses of individual neurons to repeated rounds of stimulation over tens of minutes were strikingly heterogeneous and stochastic, such that their adapting or facilitating response profiles were not stable across time. Such representational drift was particularly striking when recording longitudinally across 8-9 days, as adaptation profiles of most whisker-responsive neurons changed drastically from one day to the next. Remarkably, repeated exposure to a familiar stimulus paradoxically shifted the population away from strong adaptation and toward facilitation. Thus, the adapting vs. facilitating response profile of S1BF neurons is not a fixed property of neurons but rather a highly dynamic feature that is shaped by sensory experience across days.
Collapse
Affiliation(s)
- Zoë Dobler
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA; Neuroscience Interdepartmental Program, University of California, Los Angeles, 695 Charles Young Drive South, Los Angeles, CA 90095, USA
| | - Anand Suresh
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Trishala Chari
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA; Neuroscience Interdepartmental Program, University of California, Los Angeles, 695 Charles Young Drive South, Los Angeles, CA 90095, USA
| | - Supriya Mula
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Anne Tran
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Dean V Buonomano
- Department of Neurobiology, David Geffen School of Medicine, 10833 Le Conte Ave, Los Angeles, CA 90095, USA; Department of Psychology, University of California, Los Angeles, 502 Portola Plaza, Los Angeles, CA 90095, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA; Department of Neurobiology, David Geffen School of Medicine, 10833 Le Conte Ave, Los Angeles, CA 90095, USA.
| |
Collapse
|
5
|
Zhang Y, Yuan L, Zhu Q, Wu J, Nöbauer T, Zhang R, Xiao G, Wang M, Xie H, Guo Z, Dai Q, Vaziri A. A miniaturized mesoscope for the large-scale single-neuron-resolved imaging of neuronal activity in freely behaving mice. Nat Biomed Eng 2024; 8:754-774. [PMID: 38902522 DOI: 10.1038/s41551-024-01226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/03/2024] [Indexed: 06/22/2024]
Abstract
Exploring the relationship between neuronal dynamics and ethologically relevant behaviour involves recording neuronal-population activity using technologies that are compatible with unrestricted animal behaviour. However, head-mounted microscopes that accommodate weight limits to allow for free animal behaviour typically compromise field of view, resolution or depth range, and are susceptible to movement-induced artefacts. Here we report a miniaturized head-mounted fluorescent mesoscope that we systematically optimized for calcium imaging at single-neuron resolution, for increased fields of view and depth of field, and for robustness against motion-generated artefacts. Weighing less than 2.5 g, the mesoscope enabled recordings of neuronal-population activity at up to 16 Hz, with 4 μm resolution over 300 μm depth-of-field across a field of view of 3.6 × 3.6 mm2 in the cortex of freely moving mice. We used the mesoscope to record large-scale neuronal-population activity in socially interacting mice during free exploration and during fear-conditioning experiments, and to investigate neurovascular coupling across multiple cortical regions.
Collapse
Affiliation(s)
- Yuanlong Zhang
- Department of Automation, Tsinghua University, Beijing, China
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Lekang Yuan
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Qiyu Zhu
- School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Jiamin Wu
- Department of Automation, Tsinghua University, Beijing, China
| | - Tobias Nöbauer
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Rujin Zhang
- Department of Anesthesiology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Guihua Xiao
- Department of Automation, Tsinghua University, Beijing, China
| | - Mingrui Wang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Hao Xie
- Department of Automation, Tsinghua University, Beijing, China
| | - Zengcai Guo
- School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
| | - Alipasha Vaziri
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA.
- The Kavli Neural Systems Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
6
|
Liu X, Tan H, Stråka E, Hu X, Chen M, van Dijken S, Scacchi A, Sammalkorpi M, Ikkala O, Peng B. Trainable bioinspired magnetic sensitivity adaptation using ferromagnetic colloidal assemblies. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:101923. [PMID: 38680545 PMCID: PMC11043831 DOI: 10.1016/j.xcrp.2024.101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/07/2024] [Accepted: 03/18/2024] [Indexed: 05/01/2024]
Abstract
Nature has already suggested bioinspired functions. Beyond them, adaptive and trainable functions could be the inspiration for novel responsive soft matter beyond the state-of-the-art classic static bioinspired, stimulus-responsive, and shape-memory materials. Here, we describe magnetic assembly/disassembly of electrically conducting soft ferromagnetic nickel colloidal particles into surface topographical pillars for bistable electrical trainable memories. They allow magnetic sensing with adaptable and rescalable sensitivity ranges, enabled by bistable memories and kinetic concepts inspired by biological sensory adaptations. Based on the soft ferromagnetism of the nanogranular composition and the resulting rough particle surfaces prepared via a solvothermal synthesis, triggerable structural memory is achieved by the magnetic field-driven particle assembly and disassembly, promoted by interparticle jamming. Electrical conversion from current to frequency for electrical spikes facilitates rescalable and trainable frequency-based sensitivity on magnetic fields. This work suggests an avenue for designing trainable and adaptable life-inspired materials, for example, for soft robotics and interactive autonomous devices.
Collapse
Affiliation(s)
- Xianhu Liu
- Department of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
| | - Hongwei Tan
- Department of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
| | - Emil Stråka
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Xichen Hu
- Department of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
| | - Min Chen
- Department of Materials Science, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200433, China
| | - Sebastiaan van Dijken
- Department of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
| | - Alberto Scacchi
- Department of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Olli Ikkala
- Department of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
| | - Bo Peng
- Department of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
- Department of Materials Science, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200433, China
| |
Collapse
|
7
|
Tring E, Dipoppa M, Ringach DL. A power law describes the magnitude of adaptation in neural populations of primary visual cortex. Nat Commun 2023; 14:8366. [PMID: 38102113 PMCID: PMC10724159 DOI: 10.1038/s41467-023-43572-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
How do neural populations adapt to the time-varying statistics of sensory input? We used two-photon imaging to measure the activity of neurons in mouse primary visual cortex adapted to different sensory environments, each defined by a distinct probability distribution over a stimulus set. We find that two properties of adaptation capture how the population response to a given stimulus, viewed as a vector, changes across environments. First, the ratio between the response magnitudes is a power law of the ratio between the stimulus probabilities. Second, the response direction to a stimulus is largely invariant. These rules could be used to predict how cortical populations adapt to novel, sensory environments. Finally, we show how the power law enables the cortex to preferentially signal unexpected stimuli and to adjust the metabolic cost of its sensory representation to the entropy of the environment.
Collapse
Affiliation(s)
- Elaine Tring
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Mario Dipoppa
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Dario L Ringach
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
8
|
Chinta S, Pluta SR. Neural mechanisms for the localization of unexpected external motion. Nat Commun 2023; 14:6112. [PMID: 37777516 PMCID: PMC10542789 DOI: 10.1038/s41467-023-41755-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/15/2023] [Indexed: 10/02/2023] Open
Abstract
To localize objects during active sensing, animals must differentiate stimuli caused by volitional movement from real-world object motion. To determine a neural basis for this ability, we examined the mouse superior colliculus (SC), which contains multiple egocentric maps of sensorimotor space. By placing mice in a whisker-guided virtual reality, we discovered a rapidly adapting tactile response that transiently emerged during externally generated gains in whisker contact. Responses to self-generated touch that matched self-generated history were significantly attenuated, revealing that transient response magnitude is controlled by sensorimotor predictions. The magnitude of the transient response gradually decreased with repetitions in external motion, revealing a slow habituation based on external history. The direction of external motion was accurately encoded in the firing rates of transiently responsive neurons. These data reveal that whisker-specific adaptation and sensorimotor predictions in SC neurons enhance the localization of unexpected, externally generated changes in tactile space.
Collapse
Affiliation(s)
- Suma Chinta
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Scott R Pluta
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
9
|
Tring E, Dipoppa M, Ringach DL. A power law of cortical adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541834. [PMID: 37292876 PMCID: PMC10245856 DOI: 10.1101/2023.05.22.541834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
How do neural populations adapt to the time-varying statistics of sensory input? To investigate, we measured the activity of neurons in primary visual cortex adapted to different environments, each associated with a distinct probability distribution over a stimulus set. Within each environment, a stimulus sequence was generated by independently sampling form its distribution. We find that two properties of adaptation capture how the population responses to a given stimulus, viewed as vectors, are linked across environments. First, the ratio between the response magnitudes is a power law of the ratio between the stimulus probabilities. Second, the response directions are largely invariant. These rules can be used to predict how cortical populations adapt to novel, sensory environments. Finally, we show how the power law enables the cortex to preferentially signal unexpected stimuli and to adjust the metabolic cost of its sensory representation to the entropy of the environment.
Collapse
Affiliation(s)
- Elaine Tring
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles
| | - Mario Dipoppa
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles
| | - Dario L Ringach
- Department of Psychology, David Geffen School of Medicine, University of California, Los Angeles
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles
| |
Collapse
|
10
|
Gill NK, Francis NA. Repetition plasticity in primary auditory cortex occurs across long timescales for spectrotemporally randomized pure-tones. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538446. [PMID: 37162964 PMCID: PMC10168329 DOI: 10.1101/2023.04.26.538446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Repetition plasticity is a ubiquitous property of sensory systems in which repetitive sensation causes either a decrease ("repetition suppression", i.e. "adaptation") or increase ("repetition enhancement", i.e. "facilitation") in the amplitude of neural responses. Timescales of repetition plasticity for sensory neurons typically span milliseconds to tens of seconds, with longer durations for cortical vs subcortical regions. Here, we used 2-photon (2P) imaging to study repetition plasticity in mouse primary auditory cortex (A1) layer 2/3 (L2/3) during the presentation of spectrotemporally randomized pure-tone frequencies. Our study revealed subpopulations of neurons with repetition plasticity for equiprobable frequencies spaced minutes apart over a 20-minute period. We found both repetition suppression and enhancement in individual neurons and on average across populations. Each neuron tended to show repetition plasticity for 1-2 pure-tone frequencies near the neuron's best frequency. Moreover, we found correlated changes in neural response amplitude and latency across stimulus repetitions. Together, our results highlight cortical specialization for pattern recognition over long timescales in complex acoustic sequences.
Collapse
Affiliation(s)
- Nasiru K Gill
- Department of Biology, University of Maryland, College Park, MD, 20742
| | - Nikolas A Francis
- Department of Biology, University of Maryland, College Park, MD, 20742
- Brain and Behavior Institute, University of Maryland, College Park, MD, 20742
| |
Collapse
|
11
|
The Grossberg Code: Universal Neural Network Signatures of Perceptual Experience. INFORMATION 2023. [DOI: 10.3390/info14020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Two universal functional principles of Grossberg’s Adaptive Resonance Theory decipher the brain code of all biological learning and adaptive intelligence. Low-level representations of multisensory stimuli in their immediate environmental context are formed on the basis of bottom-up activation and under the control of top-down matching rules that integrate high-level, long-term traces of contextual configuration. These universal coding principles lead to the establishment of lasting brain signatures of perceptual experience in all living species, from aplysiae to primates. They are re-visited in this concept paper on the basis of examples drawn from the original code and from some of the most recent related empirical findings on contextual modulation in the brain, highlighting the potential of Grossberg’s pioneering insights and groundbreaking theoretical work for intelligent solutions in the domain of developmental and cognitive robotics.
Collapse
|
12
|
Lemercier CE, Krieger P. Reducing Merkel cell activity in the whisker follicle disrupts cortical encoding of whisker movement amplitude and velocity. IBRO Neurosci Rep 2022; 13:356-363. [PMID: 36281438 PMCID: PMC9586890 DOI: 10.1016/j.ibneur.2022.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Merkel cells (MCs) and associated primary sensory afferents of the whisker follicle-sinus complex, accurately code whisker self-movement, angle, and whisk phase during whisking. However, little is known about their roles played in cortical encoding of whisker movement. To this end, the spiking activity of primary somatosensory barrel cortex (wS1) neurons was measured in response to varying the whisker deflection amplitude and velocity in transgenic mice with previously established reduced mechanoelectrical coupling at MC-associated afferents. Under reduced MC activity, wS1 neurons exhibited increased sensitivity to whisker deflection. This appeared to arise from a lack of variation in response magnitude to varying the whisker deflection amplitude and velocity. This latter effect was further indicated by weaker variation in the temporal profile of the evoked spiking activity when either whisker deflection amplitude or velocity was varied. Nevertheless, under reduced MC activity, wS1 neurons retained the ability to differentiate stimulus features based on the timing of their first post-stimulus spike. Collectively, results from this study suggest that MCs contribute to cortical encoding of both whisker amplitude and velocity, predominantly by tuning wS1 response magnitude, and by patterning the evoked spiking activity, rather than by tuning wS1 response latency. The role of Merkel cells (MCs) in cortical encoding of whisker deflection amplitude and velocity was investigated. Reducing MC synaptic activity increased barrel cortex neurons response sensitivity to whisker deflection. This effect occurred from a lack of variation in response magnitude to varying whisker deflection amplitude and velocity. However, stimuli differentiation through changes in cortical response latency was preserved. MCs are thus suggested to play a predominant role in tuning the cortical response magnitude over the response latency.
Collapse
|