1
|
Nichols ES, Al-Saoud S, de Vrijer B, McKenzie CA, Eagleson R, de Ribaupierre S, Duerden EG. T2* Mapping of Placental Oxygenation to Estimate Fetal Cortical and Subcortical Maturation. JAMA Netw Open 2024; 7:e240456. [PMID: 38411965 PMCID: PMC10900962 DOI: 10.1001/jamanetworkopen.2024.0456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/22/2023] [Indexed: 02/28/2024] Open
Abstract
This cohort study investigates the association between T2* mapping of placental oxygenation and cortical and subcortical fetal brain volumes in typically developing fetuses scanned longitudinally in the third trimester.
Collapse
Affiliation(s)
- Emily S. Nichols
- Applied Psychology, Faculty of Education, Western University, London, Ontario, Canada
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
| | - Sarah Al-Saoud
- Applied Psychology, Faculty of Education, Western University, London, Ontario, Canada
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
| | - Barbra de Vrijer
- Obstetrics & Gynaecology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Division of Maternal, Fetal and Newborn Health, Children’s Health Research Institute
| | - Charles A. McKenzie
- Division of Maternal, Fetal and Newborn Health, Children’s Health Research Institute
- Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Roy Eagleson
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
- Electrical and Computer Engineering, Faculty of Engineering, Western University, London, Ontario, Canada
| | - Sandrine de Ribaupierre
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
- Division of Maternal, Fetal and Newborn Health, Children’s Health Research Institute
- Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Electrical and Computer Engineering, Faculty of Engineering, Western University, London, Ontario, Canada
- Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Emma G. Duerden
- Applied Psychology, Faculty of Education, Western University, London, Ontario, Canada
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
- Division of Maternal, Fetal and Newborn Health, Children’s Health Research Institute
- Biomedical Engineering, Western University, London, Ontario, Canada
| |
Collapse
|
2
|
Nichols ES, Grace M, Correa S, de Vrijer B, Eagleson R, McKenzie CA, de Ribaupierre S, Duerden EG. Sex- and age-based differences in fetal and early childhood hippocampus maturation: a cross-sectional and longitudinal analysis. Cereb Cortex 2024; 34:bhad421. [PMID: 37950876 PMCID: PMC10793584 DOI: 10.1093/cercor/bhad421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 11/13/2023] Open
Abstract
The hippocampus, essential for cognitive and affective processes, develops exponentially with differential trajectories seen in girls and boys, yet less is known about its development during early fetal life until early childhood. In a cross-sectional and longitudinal study, we examined the sex-, age-, and laterality-related developmental trajectories of hippocampal volumes in fetuses, infants, and toddlers associated with age. Third trimester fetuses (27-38 weeks' gestational age), newborns (0-4 weeks' postnatal age), infants (5-50 weeks' postnatal age), and toddlers (2-3 years postnatal age) were scanned with magnetic resonance imaging. A total of 133 datasets (62 female, postmenstrual age [weeks] M = 69.38, SD = 51.39, range = 27.6-195.3) were processed using semiautomatic segmentation methods. Hippocampal volumes increased exponentially during the third trimester and the first year of life, beginning to slow at approximately 2 years. Overall, boys had larger hippocampal volumes than girls. Lateralization differences were evident, with left hippocampal growth beginning to plateau sooner than the right. This period of rapid growth from the third trimester, continuing through the first year of life, may support the development of cognitive and affective function during this period.
Collapse
Affiliation(s)
- Emily S Nichols
- Department of Applied Psychology, Faculty of Education, Western University, 1137 Western Road, London, Ontario, Canada
- Western Institute for Neuroscience, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Michael Grace
- Department of Physiology and Pharmacology, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Susana Correa
- Western Institute for Neuroscience, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Barbra de Vrijer
- Department of Obstetrics & Gynaecology, Schulich School of Medicine & Dentistry, Western University, London Health Sciences Centre-Victoria Hospital, B2-401, London, Ontario N6H 5W9, Canada
- Division of Maternal, Fetal and Newborn Health, Children's Health Research Institute, 800 Commissioners Road East, London, Ontario N6C 2V5, Canada
| | - Roy Eagleson
- Western Institute for Neuroscience, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
- Department of Biomedical Engineering, Western University, Canada
- Department of Electrical and Computer Engineering, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Charles A McKenzie
- Division of Maternal, Fetal and Newborn Health, Children's Health Research Institute, 800 Commissioners Road East, London, Ontario N6C 2V5, Canada
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, Canada
| | - Sandrine de Ribaupierre
- Western Institute for Neuroscience, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
- Division of Maternal, Fetal and Newborn Health, Children's Health Research Institute, 800 Commissioners Road East, London, Ontario N6C 2V5, Canada
- Department of Biomedical Engineering, Western University, Canada
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Western University, Canada
| | - Emma G Duerden
- Department of Applied Psychology, Faculty of Education, Western University, 1137 Western Road, London, Ontario, Canada
- Western Institute for Neuroscience, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
- Division of Maternal, Fetal and Newborn Health, Children's Health Research Institute, 800 Commissioners Road East, London, Ontario N6C 2V5, Canada
| |
Collapse
|
3
|
Correa S, Nichols ES, Mueller ME, de Vrijer B, Eagleson R, McKenzie CA, de Ribaupierre S, Duerden EG. Default mode network functional connectivity strength in utero and the association with fetal subcortical development. Cereb Cortex 2023; 33:9144-9153. [PMID: 37259175 PMCID: PMC10350815 DOI: 10.1093/cercor/bhad190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023] Open
Abstract
The default mode network is essential for higher-order cognitive processes and is composed of an extensive network of functional and structural connections. Early in fetal life, the default mode network shows strong connectivity with other functional networks; however, the association with structural development is not well understood. In this study, resting-state functional magnetic resonance imaging and anatomical images were acquired in 30 pregnant women with singleton pregnancies. Participants completed 1 or 2 MR imaging sessions, on average 3 weeks apart (43 data sets), between 28- and 39-weeks postconceptional ages. Subcortical volumes were automatically segmented. Activation time courses from resting-state functional magnetic resonance imaging were extracted from the default mode network, medial temporal lobe network, and thalamocortical network. Generalized estimating equations were used to examine the association between functional connectivity strength between default mode network-medial temporal lobe, default mode network-thalamocortical network, and subcortical volumes, respectively. Increased functional connectivity strength in the default mode network-medial temporal lobe network was associated with smaller right hippocampal, left thalamic, and right caudate nucleus volumes, but larger volumes of the left caudate. Increased functional connectivity strength in the default mode network-thalamocortical network was associated with smaller left thalamic volumes. The strong associations seen among the default mode network functional connectivity networks and regionally specific subcortical volume development indicate the emergence of short-range connectivity in the third trimester.
Collapse
Affiliation(s)
- Susana Correa
- Neuroscience Program, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
- Western Institute for Neuroscience, Western University, London, ON N6A 3K7, Canada
| | - Emily S Nichols
- Western Institute for Neuroscience, Western University, London, ON N6A 3K7, Canada
- Applied Psychology, Faculty of Education, Western University, London, ON N6A 3K7, Canada
| | - Megan E Mueller
- Applied Psychology, Faculty of Education, Western University, London, ON N6A 3K7, Canada
| | - Barbra de Vrijer
- Obstetrics & Gynaecology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Roy Eagleson
- Western Institute for Neuroscience, Western University, London, ON N6A 3K7, Canada
- Biomedical Engineering, Western University, London, ON N6A 3K7, Canada
- Electrical and Computer Engineering, Western University, London, ON N6A 3K7, Canada
| | - Charles A McKenzie
- Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Sandrine de Ribaupierre
- Western Institute for Neuroscience, Western University, London, ON N6A 3K7, Canada
- Biomedical Engineering, Western University, London, ON N6A 3K7, Canada
- Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
- Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
- Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Emma G Duerden
- Western Institute for Neuroscience, Western University, London, ON N6A 3K7, Canada
- Applied Psychology, Faculty of Education, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|