1
|
Jiang Y, Chen Y, Wei Y, Li S, Wang K, Cheng J. Integrative intrinsic brain activity and molecular analyses of the interaction between first-episode depression and age. J Affect Disord 2024; 367:129-136. [PMID: 39222854 DOI: 10.1016/j.jad.2024.08.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/11/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Numerous studies have underscored the presence of abnormal intrinsic neural activity (INA) in individuals with depression. However, recognizing that the age stage may influence the pathophysiology of depression, our study sought to delve into the interplay of depression and age on INA and molecular architecture. METHODS One hundred and thirty-eight first-episode depression patients and 120 healthy controls (HC) were recruited and underwent resting-state functional magnetic resonance imaging. The participants were stratified into four groups based on age. Utilizing amplitude of low-frequency fluctuation (ALFF) analyses, we employed an ANCOVA to compare INA patterns in four groups. Additionally, we conducted correlation analyses between ALFF and neurotransmitter maps to elucidate molecular underpinnings of INA abnormalities. RESULTS In comparison to adolescents with early-onset depression and adult HC, adult-onset depression exhibited increased ALFF in the right paracentral lobule. Conversely, early-onset depression, when contrasted with adolescent HC, displayed reduced ALFF in the right paracentral lobule. The interactive brain regions affected by ALFF alterations were associated with serotonergic, GABAergic, and opioid neurotransmitter systems. LIMITATIONS The present study was limited to its cross-sectional design. CONCLUSIONS This study illuminates an antagonistic effect of depression and age on brain activity in paracentral lobule and provides molecular underpinnings of the corresponding INA abnormalities related to key neurotransmitter systems. These insights may prove valuable in the development of neuromarkers for clinical intervention and treatment of depression.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ying Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shuying Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Kaiyu Wang
- MR Research China, GE Healthcare, Beijing 100000, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
2
|
Yang H, Chen Y, Tao Q, Shi W, Tian Y, Wei Y, Li S, Zhang Y, Han S, Cheng J. Integrative molecular and structural neuroimaging analyses of the interaction between depression and age of onset: A multimodal magnetic resonance imaging study. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111052. [PMID: 38871019 DOI: 10.1016/j.pnpbp.2024.111052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Depression is a neurodevelopmental disorder that exhibits progressive gray matter volume (GMV) atrophy. Research indicates that brain development is influential in depression-induced GMV alterations. However, the interaction between depression and age of onset is not well understood by the underlying molecular and neuropathological mechanisms. Thus, 152 first-episode depression individuals and matched 130 healthy controls (HCs) were recruited to undergo T1-weighted high-resolution magnetic resonance imaging for this study. By two-way ANOVA, age and diagnosis were used as factors when analyzing the interaction of GMV in the participants. Then, spatial correlations between neurotransmitter maps and factor-related volume maps are established. Results illustrate a pronounced antagonistic interaction between depression and age of onset in the right insula, superior temporal gyrus, anterior cingulate gyrus, and orbitofrontal gyrus. Depression-caused reductions in GMV are mainly distributed in thalamic-limbic-cortical regions, regardless of age. For the main effect of age, adults exhibit brain atrophy in frontal, cerebellum, parietal, and temporal lobe structures. Cross-modal correlations showed that GMV changes in the interactive regions were linked with the serotonergic system and dopaminergic systems. Summarily, our results reveal the interaction between depression and age of onset in neurobiological mechanisms, which provide hints for future treatment of different ages of depression.
Collapse
Affiliation(s)
- Huiting Yang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Qiuying Tao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Wenqing Shi
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Ya Tian
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Shuying Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China.
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China.
| |
Collapse
|
3
|
He H, Long J, Song X, Li Q, Niu L, Peng L, Wei X, Zhang R. A connectome-wide association study of altered functional connectivity in schizophrenia based on resting-state fMRI. Schizophr Res 2024; 270:202-211. [PMID: 38924938 DOI: 10.1016/j.schres.2024.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/09/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Aberrant resting-state functional connectivity is a neuropathological feature of schizophrenia (SCZ). Prior investigations into functional connectivity abnormalities have primarily employed seed-based connectivity analysis, necessitating predefined seed locations. To address this limitation, a data-driven multivariate method known as connectome-wide association study (CWAS) has been proposed for exploring whole-brain functional connectivity. METHODS We conducted a CWAS analysis involving 46 patients with SCZ and 40 age- and sex-matched healthy controls. Multivariate distance matrix regression (MDMR) was utilized to identify key nodes in the brain. Subsequently, we conducted a follow-up seed-based connectivity analysis to elucidate specific connectivity patterns between regions of interest (ROIs). Additionally, we explored the spatial correlation between changes in functional connectivity and underlying molecular architectures by examining correlations between neurotransmitter/transporter distribution densities and functional connectivity. RESULTS MDMR revealed the right medial frontal gyrus and the left calcarine sulcus as two key nodes. Follow-up analysis unveiled hypoconnectivity between the right medial frontal superior gyrus and the right fusiform gyrus, as well as hypoconnectivity between the left calcarine sulcus and the right lingual gyrus in SCZ. Notably, a significant association between functional connectivity strength and positive symptom severity was identified. Furthermore, altered functional connectivity patterns suggested potential dysfunctions in the dopamine, serotonin, and gamma-aminobutyric acid systems. CONCLUSIONS This study elucidated reduced functional connectivity both within and between the medial frontal regions and the occipital cortex in patients with SCZ. Moreover, it indicated potential alterations in molecular architecture, thereby expanding current knowledge regarding neurobiological changes associated with SCZ.
Collapse
Affiliation(s)
- Huawei He
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jixin Long
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaoqi Song
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qian Li
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lijing Niu
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lanxin Peng
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xinhua Wei
- Department of Radiology, Guangzhou First Affiliated Hospital, Guangzhou, China.
| | - Ruibin Zhang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China; Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, PRC, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for PsychiatricDisorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, PR China.
| |
Collapse
|
4
|
Zhang M, Niu X, Tao Q, Sun J, Dang J, Wang W, Han S, Zhang Y, Cheng J. Altered intrinsic neural timescales and neurotransmitter activity in males with tobacco use disorder. J Psychiatr Res 2024; 175:446-454. [PMID: 38797041 DOI: 10.1016/j.jpsychires.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/07/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Previous researches of tobacco use disorder (TUD) has overlooked the hierarchy of cortical functions and single modality design separated the relationship between macroscopic neuroimaging aberrance and microscopic molecular basis. At present, intrinsic timescale gradient of TUD and its molecular features are not fully understood. Our study recruited 146 male subjects, including 44 heavy smokers, 50 light smokers and 52 non-smokers, then obtained their rs-fMRI data and clinical scales related to smoking. Intrinsic neural timescale (INT) method was performed to describe how long neural information was stored in a brain region by calculating the autocorrelation function (ACF) of each voxel to examine the difference in the ability of information integration among the three groups. Then, correlation analyses were conducted to explore the relationship between INT abnormalities and clinical scales of smokers. Finally, cross-modal JuSpace toolbox was used to investigate the association between INT aberrance and the expression of specific receptor/transporters. Compared to healthy controls, TUD subjects displayed decreased INT in control network (CN), default mode network (DMN), sensorimotor areas and visual cortex, and such trend of decreasing INT was more pronounced in heavy smokers. Moreover, various neurotransmitters (including dopaminergic, acetylcholine and μ-opioid receptors) were involved in the molecular mechanism of timescale decreasing and differed in heavy and light smokers. These findings supplied novel insights into the brain functional aberrance in TUD from an intrinsic neural dynamic perspective and confirm INT was a potential neurobiological marker. And also established the connection between macroscopic imaging aberrance and microscopic molecular changes in TUD.
Collapse
Affiliation(s)
- Mengzhe Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China
| | - Xiaoyu Niu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China
| | - Qiuying Tao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China
| | - Jieping Sun
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China
| | - Jinghan Dang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China
| | - Weijian Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China.
| |
Collapse
|
5
|
Liu L, Jia D, Zhang C, Wu N, Kong L, Han S. Predictive spread of obsessive-compulsive disorder pathology using the network diffusion model. J Affect Disord 2024; 351:120-127. [PMID: 38290575 DOI: 10.1016/j.jad.2024.01.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/07/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
An increasing body of studies propose that structural abnormalities begin with focal brain regions then propagate to other regions following the architecture of healthy brain network in neuropsychiatric disorders. However, these findings are untested in obsessive-compulsive disorder (OCD), also showing widespread structural brain abnormalities. In this study, we aimed to investigate whether healthy functional brain network contributed to structural brain abnormalities in OCD. The gray matter morphological abnormalities were obtained in 98 patients with OCD in relative to matched healthy controls (n = 130, HCs). The network diffusion model (NDM) was conducted to identify putative seed regions and patterns of disease propagation from seed regions to other brain regions along the functional network in OCD. The NDM has been proved to succeeded in capturing the trans-neuronal propagation of pathology and even in predicting future longitudinal progression of pathology in neurodegenerative diseases. In this study, when seeding at the right anterior cingulate cortex, the NDM best recapitulated the patterns of gray matter morphological abnormalities, suggesting this region was the most likely seed region. Further analyses revealed that pathology preferentially propagated to higher order brain systems from seed region. For non-seed regions, the arrival time of pathology was negatively correlated with their shortest functional paths to the seed (r = -0.46, p < 0.001). These results suggest that gray matter morphological abnormalities are constrained by healthy brain network and reveal temporal sequencing of pathology progression in OCD.
Collapse
Affiliation(s)
- Liang Liu
- School of Electronics and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Dongyao Jia
- School of Electronics and Information Engineering, Beijing Jiaotong University, Beijing 100044, China.
| | - Chuanwang Zhang
- School of Electronics and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Nengkai Wu
- School of Electronics and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Lingquan Kong
- School of Electronics and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China.
| |
Collapse
|
6
|
Wei Y, Zhang C, Peng Y, Chen C, Han S, Wang W, Zhang Y, Lu H, Cheng J. MRI Assessment of Intrinsic Neural Timescale and Gray Matter Volume in Parkinson's Disease. J Magn Reson Imaging 2024; 59:987-995. [PMID: 37318377 DOI: 10.1002/jmri.28864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Numerous studies have indicated altered temporal features of the brain function in Parkinson's disease (PD), and the autocorrelation magnitude of intrinsic neural signals, called intrinsic neural timescales, were often applied to estimate how long neural information stored in local brain areas. However, it is unclear whether PD patients at different disease stages exhibit abnormal timescales accompanied with abnormal gray matter volume (GMV). PURPOSE To assess the intrinsic timescale and GMV in PD. STUDY TYPE Prospective. POPULATION 74 idiopathic PD patients (44 early stage (PD-ES) and 30 late stage (PD-LS), as determined by the Hoehn and Yahr (HY) severity classification scale), and 73 healthy controls (HC). FIELD STRENGTH/SEQUENCE 3.0 T MRI scanner; magnetization prepared rapid acquisition gradient echo and echo planar imaging sequences. ASSESSMENT The timescales were estimated by using the autocorrelation magnitude of neural signals. Voxel-based morphometry was performed to calculate GMV in the whole brain. Severity of motor symptoms and cognitive impairments were assessed using the unified PD rating scale, the HY scale, the Montreal cognitive assessment, and the mini-mental state examination. STATISTICAL TEST Analysis of variance; two-sample t-test; Spearman rank correlation analysis; Mann-Whitney U test; Kruskal-Wallis' H test. A P value <0.05 was considered statistically significant. RESULTS The PD group had significantly abnormal intrinsic timescales in the sensorimotor, visual, and cognitive-related areas, which correlated with the symptom severity (ρ = -0.265, P = 0.022) and GMV (ρ = 0.254, P = 0.029). Compared to the HC group, the PD-ES group had significantly longer timescales in anterior cortical regions, whereas the PD-LS group had significantly shorter timescales in posterior cortical regions. CONCLUSION This study suggested that PD patients have abnormal timescales in multisystem and distinct patterns of timescales and GMV in cerebral cortex at different disease stages. This may provide new insights for the neural substrate of PD. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chunyan Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuanyuan Peng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chen Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Weijian Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
7
|
Li B, Lin Y, Ren C, Cheng J, Zhang Y, Han S. Gray matter volume abnormalities in obsessive-compulsive disorder correlate with molecular and transcriptional profiles. J Affect Disord 2024; 344:182-190. [PMID: 37838261 DOI: 10.1016/j.jad.2023.10.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/17/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Neuroimaging studies have consistently established altered brain structure in obsessive-compulsive disorder (OCD). However, the molecular and genetic mechanisms underlying structural brain abnormalities remain unclear. In this study, we aimed to investigate altered gray matter volume and its underlying molecular and genetic mechanisms in patients with OCD. Gray matter morphological abnormalities measured with voxel based morphometry analysis were identified in patients with OCD in comparison to sex- and age-matched healthy controls (HCs). Spatial correlations between gray matter morphological abnormalities and neurotransmitter maps were calculated to identify neurotransmitters relating to structural abnormalities. Structural abnormalities related genes were identified by conducting transcriptome-neuroimaging spatial correlations. Compared with HCs, patients with OCD demonstrated significant morphological abnormalities in distributed brain areas, including gray matter atrophy in the anterior cingulate and increased gray matter volume in the thalamus, caudate and precentral and postcentral gyrus. The morphological abnormalities were significantly associated with dopamine synthesis capacity and expression profiles of 1110 genes enriched for trans-synaptic signaling, regulation of membrane potential, modulation of chemical synaptic transmission, brain development, synapse organization and regulation of neurotransmitter levels. These results elucidate the molecular and transcriptional basis of altered gray matter morphology and build linking between molecular, transcriptional and neuroimaging information facilitating an integrative understanding of OCD.
Collapse
Affiliation(s)
- Beibei Li
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China
| | - Yanan Lin
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China
| | - Cuiping Ren
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China.
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China.
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China.
| |
Collapse
|
8
|
Schinz D, Schmitz‐Koep B, Zimmermann J, Brandes E, Tahedl M, Menegaux A, Dukart J, Zimmer C, Wolke D, Daamen M, Boecker H, Bartmann P, Sorg C, Hedderich DM. Indirect evidence for altered dopaminergic neurotransmission in very premature-born adults. Hum Brain Mapp 2023; 44:5125-5138. [PMID: 37608591 PMCID: PMC10502650 DOI: 10.1002/hbm.26451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/23/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023] Open
Abstract
While animal models indicate altered brain dopaminergic neurotransmission after premature birth, corresponding evidence in humans is scarce due to missing molecular imaging studies. To overcome this limitation, we studied dopaminergic neurotransmission changes in human prematurity indirectly by evaluating the spatial co-localization of regional alterations in blood oxygenation fluctuations with the distribution of adult dopaminergic neurotransmission. The study cohort comprised 99 very premature-born (<32 weeks of gestation and/or birth weight below 1500 g) and 107 full-term born young adults, being assessed by resting-state functional MRI (rs-fMRI) and IQ testing. Normative molecular imaging dopamine neurotransmission maps were derived from independent healthy control groups. We computed the co-localization of local (rs-fMRI) activity alterations in premature-born adults with respect to term-born individuals to different measures of dopaminergic neurotransmission. We performed selectivity analyses regarding other neuromodulatory systems and MRI measures. In addition, we tested if the strength of the co-localization is related to perinatal measures and IQ. We found selectively altered co-localization of rs-fMRI activity in the premature-born cohort with dopamine-2/3-receptor availability in premature-born adults. Alterations were specific for the dopaminergic system but not for the used MRI measure. The strength of the co-localization was negatively correlated with IQ. In line with animal studies, our findings support the notion of altered dopaminergic neurotransmission in prematurity which is associated with cognitive performance.
Collapse
Affiliation(s)
- David Schinz
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Benita Schmitz‐Koep
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Juliana Zimmermann
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Elin Brandes
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Marlene Tahedl
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Aurore Menegaux
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Juergen Dukart
- Institute of Neuroscience and MedicineBrain & Behaviour (INM‐7), Research Centre JülichJülichGermany
- Institute of Systems Neuroscience, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Claus Zimmer
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Dieter Wolke
- Department of PsychologyUniversity of WarwickCoventryUK
- Warwick Medical SchoolUniversity of WarwickCoventryUK
| | - Marcel Daamen
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional RadiologyUniversity Hospital BonnBonnGermany
- Department of NeonatologyUniversity Hospital BonnBonnGermany
| | - Henning Boecker
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional RadiologyUniversity Hospital BonnBonnGermany
| | - Peter Bartmann
- Department of NeonatologyUniversity Hospital BonnBonnGermany
| | - Christian Sorg
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
- Department of Psychiatry, School of MedicineTechnical University of MunichMunichGermany
| | - Dennis M. Hedderich
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| |
Collapse
|
9
|
Chen Y, Chen Y, Zheng R, Jiang Y, Zhou B, Xue K, Li S, Pang J, Li H, Zhang Y, Han S, Cheng J. Convergent molecular and structural neuroimaging signatures of first-episode depression. J Affect Disord 2023; 320:22-28. [PMID: 36181910 DOI: 10.1016/j.jad.2022.09.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Convergent studies have demonstrated morphological abnormalities in various brain regions in depression patients. However, the molecular underpinnings of the structural impairments remain largely unknown, despite a pressing need for treatment targets and mechanisms. Here, we investigated the gray matter volume (GMV) alteration in patients with depression and its underlying molecular architecture. METHODS We recruited 195 first-episode, treatment-naïve depression patients and 78 gender-, age-, and education level-matched healthy controls (HCs) who underwent high-resolution T1-weighted magnetic resonance scans. Voxel-based morphometry (VBM) was adopted to calculate the GMV differences between two groups. Then we analyzed the spatial correlation between depression-induced alteration in GMV and density maps of 10 receptors/transporters deriving from prior molecular imaging in healthy people. RESULTS Compared to HCs, the depression group had significantly increased GMV in the left ventral portions of the ventral medial prefrontal cortex, parahippocampal gyrus, amygdala, the right superior parietal lobule and precuneus while decreased GMV in the bilateral hippocampus extending to the thalamus and cerebellum. The GMV alteration introduced by depression was spatially correlated with serotonin receptors (5-HT1a, 5-HT1b, and 5-HT2a), dopamine receptors (D1 and D2) and GABAergic receptor (GABAa) densities. LIMITATIONS The conclusions drawn in this study were obtained from a single dataset. CONCLUSIONS This study reveals abnormal GMV alteration and provides a series of neurotransmitters receptors possibly related to GMV alteration in depression, which facilitates an integrative understanding of the molecular mechanism underlying the structural abnormalities in depression and may provide clues to new treatment strategies.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, Henan 450052, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, Henan 450052, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, Henan 450052, China
| | - Yi Chen
- Clinical Research Service Center, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, China
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, Henan 450052, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, Henan 450052, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, Henan 450052, China
| | - Yu Jiang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, Henan 450052, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, Henan 450052, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, Henan 450052, China
| | - Bingqian Zhou
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, Henan 450052, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, Henan 450052, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, Henan 450052, China
| | - Kangkang Xue
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, Henan 450052, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, Henan 450052, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, Henan 450052, China
| | - Shuying Li
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jianyue Pang
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hengfen Li
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, Henan 450052, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, Henan 450052, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, Henan 450052, China.
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, Henan 450052, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, Henan 450052, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, Henan 450052, China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, Henan 450052, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, Henan 450052, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, Henan 450052, China.
| |
Collapse
|