1
|
Maulitz L, Nehls S, Stickeler E, Ignatov A, Kupec T, Henn AT, Chechko N, Tchaikovski SN. Psychological characteristics and structural brain changes in women with endometriosis and endometriosis-independent chronic pelvic pain. Hum Reprod 2024; 39:2473-2484. [PMID: 39241806 DOI: 10.1093/humrep/deae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/12/2024] [Indexed: 09/09/2024] Open
Abstract
STUDY QUESTION Are there neurobiological changes induced by endometriosis? SUMMARY ANSWER Women with endometriosis demonstrate specific neurobiological changes distinct from those in patients with chronic pelvic pain (CPP) in the absence of endometriosis. WHAT IS KNOWN ALREADY Endometriosis is a chronic disease affecting women of reproductive age that presents with pain and infertility often accompanied by comorbid mental disorders. Only one study with a number of limitations has investigated changes in gray matter volumes and functional connectivity in a small group of patients with endometriosis. STUDY DESIGN, SIZE, DURATION This prospective study recruited 53 women undergoing a laparoscopy due to suspicion of symptomatic endometriosis and 25 healthy, pain-free women. Clinical and psychological characteristics, thermal pain perception, and voxel- and surface-based morphology were assessed in all study participants. Thereafter, the patients underwent a laparoscopy, where endometriosis was either histologically confirmed and removed, or ruled out. Correspondingly, patients were assigned into the group with endometriosis (n = 27) or with endometriosis-independent CPP (n = 26) and compared to the pain-free controls. PARTICIPANTS/MATERIALS, SETTING, METHODS The study groups were generally representative for the population of women with endometriosis. Sociodemographic, medical, clinical, and psychological characteristics were collected using various questionnaires and a structured clinical interview. Thermal pain perception and voxel- and surface-based morphometry were assessed using thermode and MRI, respectively. MAIN RESULTS AND THE ROLE OF CHANCE Despite comparable pain intensity and burden of mental disorders, both patient groups demonstrated distinct neurobiological patterns. Women with endometriosis exhibited increased gray matter volume (GMV) in the left cerebellum, lingual gyrus and calcarine gyrus, compared to those with endometriosis-independent CPP. Patients with CPP had decreased GMV in the right cerebellum as compared to controls. Dysmenorrhoea severity correlated positively with GMV in the left inferior parietal lobule, whereas depressive symptoms were associated with decreased GMV in the right superior medial gyrus across patient groups. Dyspareunia correlated negatively with cortical thickness in the left inferior temporal gyrus and left middle temporal gyrus. LIMITATIONS, REASONS FOR CAUTION The study groups differed in a few baseline-characteristics, including educational levels, smoking and BMI. While measuring pain perception thresholds, we did not attempt to mimic CPP by placement of the thermode on the abdominal wall. WIDER IMPLICATIONS OF THE FINDINGS Changes in gray matter volume associated with endometriosis differ from those observed in women with endometriosis-independent CPP. Our results underline an involvement of the cerebellum in pain perception and the pathogenesis of pain associated with endometriosis. STUDY FUNDING/COMPETING INTEREST(S) This work was funded by the START Program of the Faculty of Medicine, RWTH Aachen, Germany, and supported by the International Research Training Group (IRTG 2150) of the German Research Foundation (DFG)-269953372/GRK2150, Germany. S.T. was supported by postdoctoral fellowship of the Faculty of Medicine, RWTH Aachen, Germany. There are no conflicts of interest. TRIAL REGISTRATION NUMBER DRKS00021236.
Collapse
Affiliation(s)
- L Maulitz
- University Clinic for Gynaecology and Obstetrics, RWTH Aachen, Aachen, Germany
- Department for Medical Education, University Clinic Bonn, Bonn, Germany
| | - S Nehls
- Department for Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen, Aachen, Germany
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | - E Stickeler
- University Clinic for Gynaecology and Obstetrics, RWTH Aachen, Aachen, Germany
| | - A Ignatov
- University Clinic for Gynaecology, Obstetrics and Reproductive Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - T Kupec
- University Clinic for Gynaecology and Obstetrics, RWTH Aachen, Aachen, Germany
| | - A T Henn
- Department for Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen, Aachen, Germany
| | - N Chechko
- Department for Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen, Aachen, Germany
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | - S N Tchaikovski
- University Clinic for Gynaecology and Obstetrics, RWTH Aachen, Aachen, Germany
- University Clinic for Gynaecology, Obstetrics and Reproductive Medicine, Otto-von-Guericke University, Magdeburg, Germany
- University Clinic for Gynaecology and Obstetrics, Brandenburg Medical School, Brandenburg, Germany
| |
Collapse
|
2
|
Huang H, Chen Z, Fan B, Huang D, Qiu Z, Luo C, Zheng J. Abnormal global and local connectivity in patients with anti-N-methyl-D-aspartate receptor encephalitis: A resting-state functional MRI study. Brain Res 2024; 1837:148985. [PMID: 38714228 DOI: 10.1016/j.brainres.2024.148985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/27/2024] [Accepted: 05/04/2024] [Indexed: 05/09/2024]
Abstract
OBJECTIVE We decided to investigate the changes of global and local connectivity in anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis patients based on eigenvector centrality (EC) and regional homogeneity (ReHo). We sought new biomarkers to identify the patients based on multivariate pattern analysis (MVPA). METHODS Functional MRI (fMRI) was performed on all participants. EC, ReHo and MVPA were used to analyze the fMRI images. The correlation between the global or local connectivity and neuropsychology tests was detected. RESULTS The MoCA scores of the patients were lower than those of the healthy controls (HCs), while the HAMD24 and HAMA scores of the patients were higher than those of the HCs. Increased EC values in the right calcarine (CAL.R) and decreased EC values in the right putamen (PUT.R) distinguished these subjects with anti-NMDAR encephalitis from HCs. The higher ReHo values in the left postcentral gyrus (PoCG.L) were detected in the patients. The correlation analysis showed that the EC values in the PUT.R were negatively correlated with HAMD24 and HAMA scores, while the ReHo values in the PoCG.L were negatively correlated with MoCA scores. Better classification performance was reached in the EC-based classifier (AUC = 0.80), while weaker classification performance was achieved in the ReHo-based classifier (AUC = 0.74) or the classifier based on EC and ReHo (AUC = 0.74). The brain areas with large weights were located in the frontal lobe, parietal lobe, cerebellum and basal ganglia. CONCLUSION Our findings suggest that abnormal global and local connectivity may play an important part in the pathophysiological mechanism of neuropsychiatric symptoms in the anti-NMDAR encephalitis patients. The EC-based classifier may be better than the ReHo-based classifier in identifying anti-NMDAR encephalitis patients.
Collapse
Affiliation(s)
- Huachun Huang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zexiang Chen
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Binglin Fan
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dongying Huang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhuoyan Qiu
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Cuimi Luo
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinou Zheng
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
3
|
Fu L, Cai M, Zhao Y, Zhang Z, Qian Q, Xue H, Chen Y, Sun Z, Zhao Q, Wang S, Wang C, Wang W, Jiang Y, Tian Y, Ma J, Guo W, Liu F. Twenty-five years of research on resting-state fMRI of major depressive disorder: A bibliometric analysis of hotspots, nodes, bursts, and trends. Heliyon 2024; 10:e33833. [PMID: 39050435 PMCID: PMC11266997 DOI: 10.1016/j.heliyon.2024.e33833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Major depressive disorder (MDD) is a debilitating mental health condition that poses significant risks and burdens. Resting-state functional magnetic resonance imaging (fMRI) has emerged as a promising tool in investigating the neural mechanisms underlying MDD. However, a comprehensive bibliometric analysis of resting-state fMRI in MDD is currently lacking. Here, we aimed to thoroughly explore the trends and frontiers of resting-state fMRI in MDD research. The relevant publications were retrieved from the Web of Science database for the period between 1998 and 2022, and the CiteSpace software was employed to identify the influence of authors, institutions, countries/regions, and the latest research trends. A total of 1501 publications met the search criteria, revealing a gradual increase in the number of annual publications over the years. China contributed the largest publication output, accounting for the highest percentage among all countries. Particularly, the University of Electronic Science and Technology of China, Capital Medical University, and Harvard Medical School were identified as key institutions that have made substantial contributions to this growth. Neuroimage, Biological Psychiatry, Journal of Affective Disorders, and Proceedings of the National Academy of Sciences of the United States of America are among the influential journals in the field of resting-state fMRI research in MDD. Burst keywords analysis suggest the emerging research frontiers in this field are characterized by prominent keywords such as dynamic functional connectivity, cognitive control network, transcranial brain stimulation, and childhood trauma. Overall, our study provides a systematic overview into the historical development, current status, and future trends of resting-state fMRI in MDD, thus offering a useful guide for researchers to plan their future research.
Collapse
Affiliation(s)
- Linhan Fu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300070, China
| | - Mengjing Cai
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yao Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zhihui Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qian Qian
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hui Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yayuan Chen
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zuhao Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qiyu Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shaoying Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chunyang Wang
- Department of Scientific Research, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wenqin Wang
- School of Mathematical Sciences, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Yifan Jiang
- School of Nursing, Tianjin Medical University, Tianjin, 300070, China
| | - Yuxuan Tian
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300070, China
| | - Juanwei Ma
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| |
Collapse
|
4
|
Zhao T, Guo H, Yang J, Cai A, Liu J, Zheng J, Xiao Y, Zhao P, Li Y, Luo X, Zhang X, Zhu R, Wang J, Wang F. Repetitive Transcranial Magnetic Stimulation Reversing Abnormal Brain Function in Mood Disorders with Early Life Stress: from preclinical models to clinical applications. Asian J Psychiatr 2024; 97:104092. [PMID: 38823081 DOI: 10.1016/j.ajp.2024.104092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Early life stress (ELS) significantly increases the risk of mood disorders and affects the neurodevelopment of the primary cortex. HYPOTHESIS Modulating the primary cortex through neural intervention can ameliorate the impact of ELS on brain development and consequently alleviate its effects on mood disorders. METHOD We induced the chronic unpredictable mild stress (CUMS) model in adolescent rats, followed by applying repetitive transcranial magnetic stimulation (rTMS) to their primary cortex in early adulthood. To assess the applicability of primary cortex rTMS in humans, we recruited individuals aged 17-25 with mood disorders who had experienced ELS and performed primary cortex rTMS on them. Functional magnetic resonance imaging (fMRI) and depression-related behavioral and clinical symptoms were conducted in both rats and human subjects before and after the rTMS. RESULTS In animals, fMRI analysis revealed increased activation in the primary cortex of CUMS rats and decrease subcortical activation. Following the intervention of primary cortex rTMS, the abnormal functional activity was reversed. Similarly, in mood disorders patients with ELS, increased activation in the primary cortex and decreased activation in the frontal cortex were observed. During rTMS intervention, similar neuroimaging improvements were noted, particularly decreased activation in the primary cortex. This suggests that targeted rTMS in the primary cortex can reverse the abnormal neuroimaging. CONCLUSION This cross-species translational study has identified the primary cortex as a key region in mood disorders patients with ELS. Targeting the primary cortex with rTMS can correct abnormal functional activity while improving symptoms. Our study provides translational evidence for therapeutics targeting the ELS factor of mood disorders patients.
Collapse
Affiliation(s)
- Tongtong Zhao
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, PR China
| | - Huiling Guo
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, PR China; School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, PR China
| | - Jingyu Yang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, PR China
| | - Aoling Cai
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China; School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, PR China; Changzhou Medical Center, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, PR China
| | - Juan Liu
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, PR China
| | - Junjie Zheng
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, PR China
| | - Yao Xiao
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, PR China
| | - Pengfei Zhao
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, PR China
| | - Yifan Li
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiongjian Luo
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xizhe Zhang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, PR China
| | - Rongxin Zhu
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, PR China
| | - Jie Wang
- Academy of Integrative Medicine, College of Integrative Medicine, Afffliated Third People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Xiangyang, Hubei, PR China; Institute of Neuroscience and Brain Diseases, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, PR China
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, PR China; Department of Mental Health, School of Public Health, Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
5
|
Picci G, Petro NM, Son JJ, Agcaoglu O, Eastman JA, Wang YP, Stephen JM, Calhoun VD, Taylor BK, Wilson TW. Transdiagnostic indicators predict developmental changes in cognitive control resting-state networks. Dev Psychopathol 2023:1-11. [PMID: 37615120 PMCID: PMC11140239 DOI: 10.1017/s0954579423001013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Over the past decade, transdiagnostic indicators in relation to neurobiological processes have provided extensive insight into youth's risk for psychopathology. During development, exposure to childhood trauma and dysregulation (i.e., so-called AAA symptomology: anxiety, aggression, and attention problems) puts individuals at a disproportionate risk for developing psychopathology and altered network-level neural functioning. Evidence for the latter has emerged from resting-state fMRI studies linking mental health symptoms and aberrations in functional networks (e.g., cognitive control (CCN), default mode networks (DMN)) in youth, although few of these investigations have used longitudinal designs. Herein, we leveraged a three-year longitudinal study to identify whether traumatic exposures and concomitant dysregulation trigger changes in the developmental trajectories of resting-state functional networks involved in cognitive control (N = 190; 91 females; time 1 Mage = 11.81). Findings from latent growth curve analyses revealed that greater trauma exposure predicted increasing connectivity between the CCN and DMN across time. Greater levels of dysregulation predicted reductions in within-network connectivity in the CCN. These findings presented in typically developing youth corroborate connectivity patterns reported in clinical populations, suggesting there is predictive utility in using transdiagnostic indicators to forecast alterations in resting-state networks implicated in psychopathology.
Collapse
Affiliation(s)
- Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Nathan M Petro
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Jake J Son
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Oktay Agcaoglu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of technology, and Emory University, Atlanta, GA, USA
| | - Jacob A Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | | | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of technology, and Emory University, Atlanta, GA, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
6
|
Luo Q, Chen J, Li Y, Lin X, Yu H, Lin X, Wu H, Peng H. Cortical thickness and curvature abnormalities in patients with major depressive disorder with childhood maltreatment: Neural markers of vulnerability? Asian J Psychiatr 2023; 80:103396. [PMID: 36508912 DOI: 10.1016/j.ajp.2022.103396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/07/2022] [Accepted: 11/12/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Childhood maltreatment has been related to various disadvantageous lifetime outcomes. However, the brain structural alterations that occur in major depressive disorder (MDD) patients with childhood maltreatment are incompletely investigated. METHODS We extensively explored the cortical abnormalities including cortical volume, surface area, thickness, sulcal depth, and curvature in maltreated MDD patients. Twoway ANOVA was performed to distinguish the effects of childhood maltreatment and depression on structural abnormalities. Partial correlation analysis was performed to explore the relationship between childhood maltreatment and cortical abnormalities. Moreover, we plotted the receiver operating characteristic curve to examine whether the observed cortical abnormalities could be used as neuro biomarkers to identify maltreated MDD patients. RESULTS We reach the following findings: (i) relative to MDD without childhood maltreatment, MDD patients with childhood maltreatment existed increased cortical curvature in inferior frontal gyrus; (ii) compared to HC without childhood maltreatment, decreased cortical thickness was observed in anterior cingulate cortex and medial prefrontal cortex in MDD patients with childhood maltreatment; (iii) we confirmed the inseparable relationship between cortical curvature alterations in inferior frontal gyrus as well as childhood maltreatment; (iv) cortical curvature abnormality in inferior frontal gyrus could be applied as neural biomarker for clinical identification of MDD patients with childhood maltreatment. CONCLUSIONS Childhood maltreatment have a significant effects on cortical thickness and curvature abnormalities involved in inferior frontal gyrus, anterior cingulate cortex and medial prefrontal cortex, constituting the vulnerability to depression.
Collapse
Affiliation(s)
- Qianyi Luo
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Juran Chen
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Yuhong Li
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Xinyi Lin
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Huiwen Yu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Xiaohui Lin
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Huawang Wu
- Department of Radiology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China.
| | - Hongjun Peng
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China.
| |
Collapse
|