1
|
Xiao H, Tang D, Zheng C, Yang Z, Zhao W, Guo S. Atypical dynamic network reconfiguration and genetic mechanisms in patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110957. [PMID: 38365102 DOI: 10.1016/j.pnpbp.2024.110957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Brain dynamics underlie complex forms of flexible cognition or the ability to shift between different mental modes. However, the precise dynamic reconfiguration based on multi-layer network analysis and the genetic mechanisms of major depressive disorder (MDD) remains unclear. METHODS Resting-state functional magnetic resonance imaging (fMRI) data were acquired from the REST-meta-MDD consortium, including 555 patients with MDD and 536 healthy controls (HC). A time-varying multi-layer network was constructed, and dynamic modular characteristics were used to investigate the network reconfiguration. Additionally, partial least squares regression analysis was performed using transcriptional data provided by the Allen Human Brain Atlas (AHBA) to identify genes associated with atypical dynamic network reconfiguration in MDD. RESULTS In comparison to HC, patients with MDD exhibited lower global and local recruitment coefficients. The local reduction was particularly evident in the salience and subcortical networks. Spatial transcriptome correlation analysis revealed an association between gene expression profiles and atypical dynamic network reconfiguration observed in MDD. Further functional enrichment analyses indicated that positively weighted reconfiguration-related genes were primarily associated with metabolic and biosynthetic pathways. Additionally, negatively enriched genes were predominantly related to programmed cell death-related terms. CONCLUSIONS Our findings offer robust evidence of the atypical dynamic reconfiguration in patients with MDD from a novel perspective. These results offer valuable insights for further exploration into the mechanisms underlying MDD.
Collapse
Affiliation(s)
- Hairong Xiao
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China
| | - Dier Tang
- School of Mathematics, Jilin University, Changchun 130015, China
| | - Chuchu Zheng
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China
| | - Zeyu Yang
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China
| | - Wei Zhao
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, China
| | - Shuixia Guo
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, China.
| |
Collapse
|
2
|
Zheng J, Womer FY, Tang L, Guo H, Zhang X, Tang Y, Wang F. Integrative omics analysis reveals epigenomic and transcriptomic signatures underlying brain structural deficits in major depressive disorder. Transl Psychiatry 2024; 14:17. [PMID: 38195555 PMCID: PMC10776753 DOI: 10.1038/s41398-023-02724-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
Several lines of evidence support the involvement of transcriptomic and epigenetic mechanisms in the brain structural deficits of major depressive disorder (MDD) separately. However, research in these two areas has remained isolated. In this study, we proposed an integrative strategy that combined neuroimaging, brain-wide gene expression, and peripheral DNA methylation data to investigate the genetic basis of gray matter abnormalities in MDD. The MRI T1-weighted images and Illumina 850 K DNA methylation microarrays were obtained from 269 patients and 416 healthy controls, and brain-wide transcriptomic data were collected from Allen Human Brain Atlas. The between-group differences in gray matter volume (GMV) and differentially methylated CpG positions (DMPs) were examined. The genes with their expression patterns spatially related to GMV changes and genes with DMPs were overlapped and selected. Using principal component regression, the associations between DMPs in overlapped genes and GMV across individual patients were investigated, and the region-specific correlations between methylation status and gene expression were examined. We found significant associations between the decreased GMV and DMPs methylation status in the anterior cingulate cortex, inferior frontal cortex, and fusiform face cortex regions. These DMPs genes were primarily enriched in the neurodevelopmental and synaptic transmission process. There was a significant negative correlation between DNA methylation and gene expression in genes associated with GMV changes of the frontal cortex in MDD. Our findings suggest that GMV abnormalities in MDD may have a transcriptomic and epigenetic basis. This imaging-transcriptomic-epigenetic integrative analysis provides spatial and biological links between cortical morphological deficits and peripheral epigenetic signatures in MDD.
Collapse
Affiliation(s)
- Junjie Zheng
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Fay Y Womer
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lili Tang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Huiling Guo
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Xizhe Zhang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Yanqing Tang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China.
- Brain Function Research Section, The First Hospital of China Medical University, Shenyang, China.
- Department of Gerontology, The First Hospital of China Medical University, Shenyang, China.
- Shengjing Hospital of China Medical University, Shenyang, China.
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China.
- Department of Mental Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Zong X, Wu K, Li L, Zhang J, Ma S, Kang L, Zhang N, Lv L, Sang D, Weng S, Chen H, Zheng J, Hu M. Striatum-related spontaneous coactivation patterns predict treatment response on positive symptoms of drug-naive first-episode schizophrenia with risperidone monotherapy. Front Psychiatry 2023; 14:1093030. [PMID: 37009110 PMCID: PMC10050338 DOI: 10.3389/fpsyt.2023.1093030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
BackgroundEvidence from functional magnetic resonance imaging (fMRI) studies of schizophrenia suggests that interindividual variation in the stationary striatal functional circuit may be correlated with antipsychotic treatment response. However, little is known about the role of the dynamic striatum-related network in predicting patients’ clinical improvement. The spontaneous coactivation pattern (CAP) technique has recently been found to be important for elucidating the non-stationary nature of functional brain networks.MethodsForty-two drug-naive first-episode schizophrenia patients underwent fMRI and T1W imaging before and after 8 weeks of risperidone monotherapy. The striatum was divided into 3 subregions, including the putamen, pallidum, and caudate. Spontaneous CAPs and CAP states were utilized to measure the dynamic characteristics of brain networks. We used DPARSF and Dynamic Brain Connectome software to analyze each subregion-related CAP and CAP state for each group and then compared the between-group differences in the neural network biomarkers. We used Pearson’s correlation analysis to determine the associations between the neuroimaging measurements with between-group differences and the improvement in patients’ psychopathological symptoms.ResultsIn the putamen-related CAPs, patients showed significantly increased intensity in the bilateral thalamus, bilateral supplementary motor areas, bilateral medial, and paracingulate gyrus, left paracentral lobule, left medial superior frontal gyrus, and left anterior cingulate gyrus compared with healthy controls. After treatment, thalamic signals in the putamen-related CAP 1 showed a significant increase, while the signals of the medial and paracingulate gyrus in the putamen-related CAP 3 revealed a significant decrease. The increase in thalamic signal intensity in the putamen-related CAP 1 was significantly and positively correlated with the percentage reduction in PANSS_P.ConclusionThis study is the first to combine striatal CAPs and fMRI to explore treatment response-related biomarkers in the early phase of schizophrenia. Our findings suggest that dynamic changes in CAP states in the putamen-thalamus circuit may be potential biomarkers for predicting patients’ variation in the short-term treatment response of positive symptoms.
Collapse
Affiliation(s)
- Xiaofen Zong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kai Wu
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Li
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiangbo Zhang
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Simeng Ma
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijun Kang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Nan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Deen Sang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Shenhong Weng
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
- Shenhong Weng,
| | - Huafu Chen
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Huafu Chen,
| | - Junjie Zheng
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
- Junjie Zheng,
| | - Maolin Hu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Maolin Hu,
| |
Collapse
|
4
|
Zong X, Zhang J, Li L, Yao T, Ma S, Kang L, Zhang N, Nie Z, Liu Z, Zheng J, Duan X, Hu M, Hu M. Virtual histology of morphometric similarity network after risperidone monotherapy and imaging-epigenetic biomarkers for treatment response in first-episode schizophrenia. Asian J Psychiatr 2023; 80:103406. [PMID: 36586357 DOI: 10.1016/j.ajp.2022.103406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Antipsychotic treatment has been conceived to alter brain connectivity, but it is unclear how the changes of network phenotypes relate to the underlying transcriptomics. Given DNA methylation (DNAm) may alter transcriptional levels, we further integrated an imaging-transcriptomic-epigenetic analysis to explore multi-omics treatment response biomarkers. METHODS Forty-two treatment-naive first-episode schizophrenia patients were scanned by TI weighted (T1W) imaging and DTI before and after 8-week risperidone monotherapy, and their peripheral blood genomic DNAm values were examined in parallel with MRI scanning. Morphometric similarity network (MSN) quantified with DTI and T1W data were used as a marker of treatment-related alterations in interareal cortical connectivity. We utilized partial least squares (PLS) to examine spatial associations between treatment-related MSN variations and cortical transcriptomic data obtained from the Allen Human Brain Atlas. RESULTS Longitudinal MSN alterations were related to treatment response on cognitive function and general psychopathology symptoms, while DNAm values of 59 PLS1 genes were on negative and positive symptoms. Virtual-histology transcriptomic analysis linked the MSN alterations with the neurobiological, cellular and metabolic pathways or processes, and assigned MSN-related genes to multiple cell types, specifying neurons and glial cells as contributing most to the transcriptomic associations of longitudinal changes in MSN. CONCLUSIONS We firstly reveal how brain-wide transcriptional levels and cell classes capture molecularly validated cortical connectivity alterations after antipsychotic treatment. Our findings represent a vital step towards the exploration of treatment response biomarkers on the basis of multiple omics rather than a single omics type as a strategy for advancing precise care.
Collapse
Affiliation(s)
- Xiaofen Zong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiangbo Zhang
- The High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Li
- The High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Simeng Ma
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lijun Kang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Nan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhaowen Nie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Taikang center for life and medical sciences, Wuhan University, Wuhan, Hubei, China.
| | - Junjie Zheng
- The Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; The Functional Brain Imaging Institute, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xujun Duan
- The High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China.
| | - Maolin Hu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | | |
Collapse
|
5
|
Li Z, Zong X, Li D, He Y, Tang J, Hu M, Chen X. Epigenetic clock analysis of blood samples in drug-naive first-episode schizophrenia patients. BMC Psychiatry 2023; 23:45. [PMID: 36650462 PMCID: PMC9843886 DOI: 10.1186/s12888-023-04533-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Schizophrenia (SCZ) is a severe and chronic psychiatric disorder with premature age-related physiological changes. However, numerous previous studies examined the epigenetic age acceleration in SCZ patients and yielded inconclusive results. In this study, we propose to explore the epigenetic age acceleration in drug-naive first-episode SCZ (FSCZ) patients and investigate whether epigenetic age acceleration is associated with antipsychotic treatment, psychotic symptoms, cognition, and subcortical volumes. METHODS We assessed the epigenetic age in 38 drug-naive FSCZ patients and 38 healthy controls by using three independent clocks, including Horvath, Hannum and Levine algorithms. The epigenetic age measurements in SCZ patients were repeated after receiving 8 weeks risperidone monotherapy. RESULTS Our findings showed significantly positive correlations between epigenetic ages assessed by three clocks and chronological age in both FSCZ patients and healthy controls. Compared with healthy controls, drug-naive FSCZ patients have a significant epigenetic age deceleration in Horvath clock (p = 0.01), but not in Hannum clock (p = 0.07) and Levine clock (p = 0.43). The epigenetic ages of Hannum clock (p = 0.002) and Levine clock (p = 0.01) were significantly accelerated in SCZ patients after 8-week risperidone treatment. However, no significant associations between epigenetic age acceleration and psychotic symptoms, cognitive function, as well as subcortical volumes were observed in FSCZ patients. CONCLUSION These results demonstrate that distinct epigenetic clocks are sensitive to different aspects of aging process. Further investigations with comprehensive epigenetic clock analyses and large samples are required to confirm our findings.
Collapse
Affiliation(s)
- Zongchang Li
- grid.216417.70000 0001 0379 7164Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, No 139 Renmin Road, Changsha, Hunan 410011 P. R. China ,grid.216417.70000 0001 0379 7164China National Technology Institute on Mental Disorders & Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Xiaofen Zong
- grid.412632.00000 0004 1758 2270Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - David Li
- grid.216417.70000 0001 0379 7164Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, No 139 Renmin Road, Changsha, Hunan 410011 P. R. China
| | - Ying He
- grid.216417.70000 0001 0379 7164Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, No 139 Renmin Road, Changsha, Hunan 410011 P. R. China ,grid.216417.70000 0001 0379 7164China National Technology Institute on Mental Disorders & Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Jinsong Tang
- grid.13402.340000 0004 1759 700XDepartment of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Maolin Hu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, P. R. China.
| | - Xiaogang Chen
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, No 139 Renmin Road, Changsha, Hunan, 410011, P. R. China. .,China National Technology Institute on Mental Disorders & Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, P. R. China.
| |
Collapse
|
6
|
Zhang L, Bai A, Tang Z, Liu X, Li Y, Ma J. Incidence and factors associated of early non-response in first-treatment and drug-naïve patients with schizophrenia: a real-world study. Front Psychiatry 2023; 14:1173263. [PMID: 37181883 PMCID: PMC10172471 DOI: 10.3389/fpsyt.2023.1173263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Background Schizophrenia is a severe and persistent mental condition that causes disability. For subsequent clinical care, it is extremely practical to effectively differentiate between patients who respond to therapy quickly and those who do not. This study set out to document the prevalence and risk factors for patient early non-response. Methods The current study included 143 individuals with first-treatment and drug-naïve (FTDN) schizophrenia. Patients were classified as early non-responders based on a Positive and Negative Symptom Scale (PANSS) score reduction of less than 20% after 2 weeks of treatment, otherwise as early responders. Clinical subgroups' differences in demographic data and general clinical data were compared, and variables related to early non-response to therapy were examined. Results Two weeks later, a total of 73 patients were described as early non-responders, with an incidence of 51.05%. The early non-response subgroup had significantly higher PANSS scores, Positive symptom subscale (PSS) scores, General psychopathology subscale (GPS) scores, Clinical global impression scale - severity of illness (CGI-SI) and Fasting blood glucose (FBG) levels compared to the early-response subgroup. CGI-SI and FBG were risk factors for early non-response. Conclusion High rates of early non-response have been seen in FTDN schizophrenia patients, and risk variables for predicting early non-response include CGI-SI scores and FBG levels. However, we need more in-depth studies to confirm the generalizable range of these two parameters.
Collapse
Affiliation(s)
- Lin Zhang
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, China
| | - Aohan Bai
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, China
| | - Zhongyu Tang
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, China
| | - Xuebing Liu
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, China
| | - Yi Li
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, China
- Yi Li,
| | - Jun Ma
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, China
- *Correspondence: Jun Ma,
| |
Collapse
|
7
|
Zong X, Wang G, Nie Z, Ma S, Kang L, Zhang N, Weng S, Tan Q, Zheng J, Hu M. Longitudinal multi-omics alterations response to 8-week risperidone monotherapy: Evidence linking cortical thickness, transcriptomics and epigenetics. Front Psychiatry 2023; 14:1127353. [PMID: 36937723 PMCID: PMC10018025 DOI: 10.3389/fpsyt.2023.1127353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Background Antipsychotic treatment-related alterations of cortical thickness (CT) and clinical symptoms have been previously corroborated, but less is known about whether the changes are driven by gene expression and epigenetic modifications. Methods Utilizing a prospective design, we recruited 42 treatment-naive first-episode schizophrenia patients (FESP) and 38 healthy controls. Patients were scanned by TI weighted imaging before and after 8-week risperidone monotherapy. CT estimation was automatically performed with the FreeSurfer software package. Participants' peripheral blood genomic DNA methylation (DNAm) status, quantified by using Infinium® Human Methylation 450K BeadChip, was examined in parallel with T1 scanning. In total, CT measures from 118 subjects and genomic DNAm status from 114 subjects were finally collected. Partial least squares (PLS) regression was used to detect the spatial associations between longitudinal CT variations after treatment and cortical transcriptomic data acquired from the Allen Human Brain Atlas. Canonical correlation analysis (CCA) was then performed to identify multivariate associations between DNAm of PLS1 genes and patients' clinical improvement. Results We detected the significant PLS1 component (2,098 genes) related to longitudinal alterations of CT, and the PLS1 genes were significantly enriched in neurobiological processes, and dopaminergic- and cancer-related pathways. Combining Laplacian score and CCA analysis, we further linked DNAm of 33 representative genes from the 2,098 PLS1 genes with patients' reduction rate of clinical symptoms. Conclusions This study firstly revealed that changes of CT and clinical behaviors after treatment may be transcriptionally and epigenetically underlied. We define a "three-step" roadmap which represents a vital step toward the exploration of treatment- and treatment response-related biomarkers on the basis of multiple omics rather than a single omics type as a strategy for advancing precise care.
Collapse
Affiliation(s)
- Xiaofen Zong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhaowen Nie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Simeng Ma
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lijun Kang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Nan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shenhong Weng
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Shenhong Weng
| | - Qing Tan
- School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Computational Science, Wuhan University, Wuhan, Hubei, China
- Qing Tan
| | - Junjie Zheng
- The Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- The Functional Brain Imaging Institute, Nanjing Medical University, Nanjing, Jiangsu, China
- Junjie Zheng
| | - Maolin Hu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- *Correspondence: Maolin Hu
| |
Collapse
|