1
|
Babaker MA, Ibolgasm Alazabi N, Haredy SA, Mohamed Algohary A, Anwar MM, Yousef EM, Ahmed-Farid OA. Mitigative and neuroprotective effects of Lavandula angustifolia essential oil on serotonin syndrome-induced neurotoxicity in male albino rats. Drug Chem Toxicol 2025:1-19. [PMID: 39894758 DOI: 10.1080/01480545.2025.2458618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
The term serotonin syndrome (SS) is a potentially life-threatening devastating condition triggered by the excessive accumulation of serotonin, often due to an overdose or the concurrent use of multiple serotonergic drugs. Lavandula angustifolia (lavender), a known plant from the Lamiaceae family, is very rich in essential oils, minerals, and tannins. This study aimed to elucidate the detrimental effects of SS on the brain and to evaluate the neuroprotective potential of L. angustifolia essential oil. Male rats were randomly divided into the following groups: control (Group 1); L. angustifolia-treated (Group 2); ondansetron-treated high-dose (Group 3); sertraline-treated high-dose (Group 4); low-dose ondansetron + sertraline-treated (Group 5); high-dose ondansetron + sertraline-treated (Group 6); low-dose ondansetron + sertraline + L. angustifolia-treated (Group 7); and high-dose ondansetron + sertraline + L. angustifolia-treated (Group 8). Neurotransmitter levels, dopamine metabolites, and expressed cytokines were quantified. Additionally, histological assessment of the hippocampus was performed. The results revealed significant disruptions in neurotransmitter and amino acid levels within the hippocampus across the treated groups. Notably, the high-dose ondansetron + sertraline group presented pronounced increases in serotonin, 5-HIAA, and proinflammatory cytokines, resulting in neurotoxicity and pronounced alterations in the hippocampus. Conversely, treatment with L. angustifolia significantly attenuated these neurotoxic effects. The findings suggest that L. angustifolia confers neuroprotection against the deleterious effects of SS, particularly by counteracting the neurotoxic impact of combined serotonin 5-HT3 receptor antagonists and serotonin reuptake inhibitors within the hippocampus. These findings highlight the potential of L. angustifolia as a natural therapeutic agent for mitigating SS-induced neurotoxicity.
Collapse
Affiliation(s)
- Manal A Babaker
- Department of Chemistry, Faculty of science, Majmaah University, Al Majmaah, Saudi Arabia
| | | | - Shimaa A Haredy
- Department of Physiology, Egyptian Drug Authority, Giza, Egypt
| | - Ayman Mohamed Algohary
- Department of Chemistry, Faculty of science, Majmaah University, Al Majmaah, Saudi Arabia
| | - Mai M Anwar
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt
| | - Einas M Yousef
- Department of Anatomy & Genetics, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
2
|
Romano E, Domínguez-Rodríguez G, Mannina L, Cifuentes A, Ibáñez E. Sequential Obtention of Blood-Brain Barrier-Permeable Non-Polar and Polar Compounds from Salvia officinalis L. and Eucalyptus globulus Labill. with Neuroprotective Purposes. Int J Mol Sci 2025; 26:601. [PMID: 39859317 PMCID: PMC11765258 DOI: 10.3390/ijms26020601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
This study investigates the biorefinery approach to extracting blood-brain barrier (BBB)-permeable compounds from Eucalyptus globulus Labill. and Salvia officinalis L. for neuroprotective purposes. A sequential extraction process was applied, starting with supercritical CO2 extraction (SC-CO2) to obtain non-polar terpenoids, followed by pressurized natural deep eutectic solvent extraction (PLE-NaDES) to recover phenolic compounds from the SC-CO2 residue. PLE-NaDES extracts exhibited higher antioxidant and anticholinergic capacities than SC-CO2 extracts for both plants, with S. officinalis extracts being more bioactive than E. globulus extracts. A total of 21 terpenoids were identified using gas chromatography-mass spectrometry from E. globulus while 24 were detected from S. officinalis SC-CO2 extracts. In addition, 25 different phenolic compounds were identified in both plants using high-performance liquid chromatography coupled with mass spectrometry from PLE-NaDES extracts. The study of the permeability across the BBB showed limited permeability for non-polar compounds obtained by SC-CO2 from both plants; however, the more polar compounds obtained by PLE-NaDES showed high permeability, particularly for flavonoids in E. globulus and rosmarinic acid in S. officinalis. This study revealed, for the first time, the antioxidant and neuroprotective potential of S. officinalis and E. globulus extracts obtained using SC-CO2 followed by PLE-NaDES, as well as the high permeability of PLE-NaDES extracts when crossing the BBB to exert their protective effects. This research opens a new pathway for exploring alternatives to current drugs used in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Enrico Romano
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (L.M.)
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain;
| | - Gloria Domínguez-Rodríguez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain;
- Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Ciencias, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - Luisa Mannina
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (L.M.)
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain;
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain;
| |
Collapse
|
3
|
Antar A, Abdel-Rehiem ES, Al-Khalaf AA, Abuelsaad ASA, Abdel-Gabbar M, Shehab GMG, Abdel-Aziz AM. Therapeutic Efficacy of Lavandula dentata's Oil and Ethanol Extract in Regulation of the Neuroinflammation, Histopathological Alterations, Oxidative Stress, and Restoring Balance Treg Cells Expressing FoxP3+ in a Rat Model of Epilepsy. Pharmaceuticals (Basel) 2024; 18:35. [PMID: 39861097 PMCID: PMC11768170 DOI: 10.3390/ph18010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Despite the availability of antiepileptic drugs (AEDs) that can manage seizures, they often come with cognitive side effects. Furthermore, the role of oxidative stress and neuroinflammatory responses in epilepsy and the limitations of current AEDs necessitate exploring alternative therapeutic options. Medicinal plants, e.g., Lavandula dentata L., are rich in phenolic compounds and may provide neuroprotective and anti-inflammatory benefits. However, limited research evaluates their effectiveness in modulating neuroinflammation and histopathological changes in epilepsy models. Therefore, the current study hypothesized that treating Lavandula dentata L. extract or essential oils may reduce neuroinflammatory responses and mitigate histopathological changes in the brain, providing a natural alternative or adjunct therapy for epilepsy management. Methods: Five groups of male Wistar rats were used: control, pilocarpine-treated epileptic, valproic acid (VPA-treated epileptic), L. dentata extract, and essential oils. Numerous electrolyte levels, monoamine levels, neurotransmitter levels, and the mRNA expression of specific gate channel subtypes were evaluated in homogenate brain tissue. Additionally, histological changes in various brain regions were investigated. Results: The investigation revealed that the extract and essential oils obtained from L. dentata L. exhibited the ability to improve the modulation of electrolytes and ions across voltage- and ligand-gated ion channels. Furthermore, it was revealed that they could decrease neuronal excitability by facilitating repolarization. Moreover, L. dentata's oil and ethanol extract re-balances T-reg/Th-17 cytokines, restoring the pro/anti-inflammatory cytokines and Treg markers, e.g., FOXP3 and CTLA-4, to their normal level. Conclusions: The present work confirms that the extract and essential oils of L. dentata L. have different activities to ameliorate the progression of histopathological alterations. Therefore, when used in conjunction with other AEDs, the extract and essential oils of L. dentata can slow the progression of epileptogenesis.
Collapse
Affiliation(s)
- Aziza Antar
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (A.A.); (M.A.-G.)
| | - Eman S. Abdel-Rehiem
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Areej A. Al-Khalaf
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Abdelaziz S. A. Abuelsaad
- Immunology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohamed Abdel-Gabbar
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (A.A.); (M.A.-G.)
| | - Gaber M. G. Shehab
- Department of Biochemistry, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ayman M. Abdel-Aziz
- Zoology Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt;
| |
Collapse
|
4
|
Picone P, Girgenti A, Buttacavoli M, Nuzzo D. Enriching the Mediterranean diet could nourish the brain more effectively. Front Nutr 2024; 11:1489489. [PMID: 39664911 PMCID: PMC11631615 DOI: 10.3389/fnut.2024.1489489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/13/2024] [Indexed: 12/13/2024] Open
Abstract
The increasing prevalence of neurodegenerative disorders represents a challenge to the global health of all nations and populations, particularly with increasing longevity. Urgent prevention strategies are therefore needed, and one opportunity may be to explore the relationship between dietary patterns and brain health which has emerged as a promising strategy. Numerous studies indicate that dietary choices have a significant impact on cognitive function, memory and the risks of neurological disorders, recognizing the dynamic role of diet in maintaining cognitive abilities. One of the most studied dietary styles, the Mediterranean diet, characterized by healthy, plant-based foods fats and moderate consumption of animal products, has demonstrated its neuroprotective potential. Rich in antioxidants, vitamins and polyphenols, this diet shows consistent associations with cardiovascular health and cognitive function. Some less talked about foods, such as seaweed, blackcurrants, Lion's Mane mushroom and chia seeds, are emerging as potential brain health boosters. These and other new foods could enrich the Western diet making it capable of effectively preventing neurological disorders. Despite promising scientific data, difficulties persist in understanding the complex relationship between nutrition and brain health. Individual variability, long-term dietary adherence, comorbidities, and the need for rigorous clinical evidence pose obstacles. In this review, we would like to focus our attention on the future of brain-diets, which should involve accessible, personalized and evidence-based interventions, providing hope against the challenges posed by neurodegenerative diseases. In fact, as research progresses, more and more attention are being placed to brain health, promising a harmonious and resilient cognitive landscape for individuals and society.
Collapse
Affiliation(s)
- Pasquale Picone
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy
| | - Antonella Girgenti
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy
| | - Miriam Buttacavoli
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), University of Palermo, Palermo, Italy
| | - Domenico Nuzzo
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy
| |
Collapse
|
5
|
Kola A, Vigni G, Lamponi S, Valensin D. Protective Contribution of Rosmarinic Acid in Rosemary Extract Against Copper-Induced Oxidative Stress. Antioxidants (Basel) 2024; 13:1419. [PMID: 39594560 PMCID: PMC11590892 DOI: 10.3390/antiox13111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Rosemary extract (Rosmarinus officinalis) is a natural source of bioactive compounds with significant antioxidant properties. Among these, rosmarinic acid is celebrated for its potent antioxidant, anti-inflammatory, antimicrobial, and neuroprotective properties, making it a valuable component in both traditional medicine and modern therapeutic research. Neurodegenerative diseases like Alzheimer's and Parkinson's are closely linked to oxidative damage, and research indicates that rosmarinic acid may help protect neurons by mitigating this harmful process. Rosmarinic acid is able to bind cupric ions (Cu2+) and interfere with the production of reactive oxygen species (ROS) produced by copper through Fenton-like reactions. This study aims to further evaluate the contribution of rosmarinic acid within rosemary extract by comparing its activity to that of isolated rosmarinic acid. By using a detailed approach that includes chemical characterization, antioxidant capacity assessment, and neuroprotective activity testing, we have determined whether the combined components in rosemary extract enhance or differ from the effects of rosmarinic acid alone. This comparison is crucial for understanding whether the full extract offers added benefits beyond those of isolated rosmarinic acid in combating oxidative stress and Aβ-induced toxicity.
Collapse
Affiliation(s)
| | | | | | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.K.); (G.V.); (S.L.)
| |
Collapse
|
6
|
Šobot AV, Janić M, Popović I, Lazarević-Pašti T, Momić T, Krstić A, Tričković JF. Aqueous sage leave extract attenuates inflammation and oxidant-induced genotoxicity in human peripheral blood mononuclear cells. Arh Hig Rada Toksikol 2024; 75:137-146. [PMID: 38963137 PMCID: PMC11223510 DOI: 10.2478/aiht-2024-75-3836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/01/2024] [Accepted: 05/01/2024] [Indexed: 07/05/2024] Open
Abstract
Traditional medicine has used sage (Salvia officinalis L.) preparations for centuries to prevent and treat various inflammatory and oxidative stress-induced conditions. The aim of this in vitro study was to determine the bioactive properties of a sage leave extract obtained with environmentally friendly aqueous extraction and lyophilisation in primary human peripheral blood cells. To that end we measured the total phenolic and flavonoid content (TPC and TFC, respectively) with gas chromatography-mass spectrometry (GC-MS). Non-cytotoxic concentrations determined with the trypan blue assay were used to assess the antioxidant (DPPH, ABTS, and PAB assay), antigenotoxic (CBMN assay), immunomodulatory (IL-1β and TNF-α), and neuroprotective effects (AChE inhibition). The extract contained high TPC (162 mg GAE/g of dry extract) and TFC (39.47 mg QE/g of dry extract) concentrations, while β-thujone content was unexpectedly low (below 0.9 %). Strong radical-scavenging activity combined with glutathione reductase activation led to a decrease in basal and H2O2-induced oxidative stress and DNA damage. A decrease in TNF-α and increase in IL-1β levels suggest complex immunomodulatory response that could contribute to antioxidant and, together with mild AChE inhibition, neuroprotective effects. Overall, this study has demonstrated that aqueous sage leave extract reduces the levels of thujone, 1,8-cineole, pinene, and terpene ketones that could be toxic in high concentrations, while maintaining high concentrations of biologically active protective compounds which have a potential to prevent and/or treat inflammatory and oxidative stress-related conditions.
Collapse
Affiliation(s)
- Ana Valenta Šobot
- University of Belgrade, Vinča Institute of Nuclear Sciences, Department of Physical Chemistry, Belgrade, Serbia
| | - Marijana Janić
- University of Belgrade, Vinča Institute of Nuclear Sciences, Department of Physical Chemistry, Belgrade, Serbia
| | - Iva Popović
- University of Belgrade, Vinča Institute of Nuclear Sciences, Department of Physical Chemistry, Belgrade, Serbia
| | - Tamara Lazarević-Pašti
- University of Belgrade, Vinča Institute of Nuclear Sciences, Department of Physical Chemistry, Belgrade, Serbia
| | - Tatjana Momić
- University of Belgrade, Vinča Institute of Nuclear Sciences, Department of Physical Chemistry, Belgrade, Serbia
| | - Aleksandar Krstić
- University of Belgrade, Vinča Institute of Nuclear Sciences, Department of Physical Chemistry, Belgrade, Serbia
| | - Jelena Filipović Tričković
- University of Belgrade, Vinča Institute of Nuclear Sciences, Department of Physical Chemistry, Belgrade, Serbia
| |
Collapse
|
7
|
Yin XJ, Lin GP, Wu XY, Huang R, Xu CJ, Yao MY. Effects of lavender essential oil inhalation aromatherapy on depression and sleep quality in stroke patients: A single-blind randomized controlled trial. Complement Ther Clin Pract 2024; 55:101828. [PMID: 38241803 DOI: 10.1016/j.ctcp.2024.101828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND AND PURPOSE Post-stroke depression (PSD) has major implications for rehabilitation, motor recovery, activities of daily living, social and interpersonal functioning, and mortality. In view of the side effects of antidepressants, aromatherapy, a widely used non-pharmacological therapy, has received growing attention in recent years for its benefits of reduced complications, accessibility, and effectiveness. This study was designed to assess the effects of inhalation aromatherapy with lavender essential oil on depression and sleep quality in patients with PSD. MATERIALS AND METHODS Forty patients with PSD were enrolled and randomized into experimental and placebo groups. Experimental-group patients inhaled microencapsulated lavender essential oil every night at bedtime over a period of 4 weeks. A nonwoven bag containing 2.3 g of microcapsules with about 1.5 g of lavender essential oil was placed on or under the patient's pillow, depending on the patient's scent sensitivity. Placebo-group patients used the empty nonwoven bags for the same period as the experimental group. The 17-item Hamilton Rating Scale for Depression (HAMD-17), the Zung Self-Rating Depression Scale (SDS), and the Pittsburgh Sleep Quality Index (PSQI) were used to measure outcomes. RESULTS The HAMD-17 score, SDS score, and PSQI score showed statistically significant differences between both groups before and after intervention (P ≤ 0.01). The improvement in the experimental group was more marked than in the placebo group (P < 0.05). CONCLUSION Lavender essential oil inhalation aromatherapy may help reduce depression and improve sleep quality in patients with PSD.
Collapse
Affiliation(s)
- Xiao-Jun Yin
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310009, China; Department of Nursing, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310009, China
| | - Gao-Ping Lin
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310009, China
| | - Xiao-Yan Wu
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310009, China; Department of Nursing, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310009, China
| | - Rui Huang
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310009, China; Department of Nursing, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310009, China
| | - Cun-Jin Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Mei-Yan Yao
- Department of Nursing, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310009, China; Department of Outpatient Nursing, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310009, China.
| |
Collapse
|
8
|
Rushendran R, Begum RF, Singh S A, Narayanan PL, Vellapandian C, Prajapati BG, Paul PK. Navigating neurological disorders: harnessing the power of natural compounds for innovative therapeutic breakthroughs. EXCLI JOURNAL 2024; 23:534-569. [PMID: 38741726 PMCID: PMC11089094 DOI: 10.17179/excli2024-7051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 05/16/2024]
Abstract
Novel treatments are needed as neurological issues become more frequent worldwide. According to the report, plants, oceans, microorganisms, and animals contain interesting drug discovery compounds. Alzheimer's, Parkinson's, and stroke reviews emphasize neurological disorders' complexity and natural substances' safety. Learn about marine-derived and herbal substances' neuroprotective characteristics and applications. Molecular pathways show these substances' neurological healing effects. This article discusses clinical usage of Bryostatin-1, Fucoidan, Icariin, Salvianolic acid, Curcumin, Resveratrol, etc. Their potential benefits for asthma and Alzheimer's disease are complex. Although limited, the study promotes rigorous scientific research and collaboration between traditional and alternative medical practitioners. Unexplored natural compounds, quality control, well-structured clinical trials, and interdisciplinary collaboration should guide future study. Developing and employing natural chemicals to treat neurological illnesses requires ethical sourcing, sustainability, and public awareness. This detailed analysis covers natural chemicals' current state, challenges, and opportunities in neurological disorder treatment. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Rapuru Rushendran
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Rukaiah Fatma Begum
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Ankul Singh S
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Pavithra Lakshmi Narayanan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, Gujarat, India
| | - Pijush Kumar Paul
- Department of Pharmacy, Gono Bishwabidyalay University, Mirzanagar, Savar, Dhaka-1344, Bangladesh
| |
Collapse
|
9
|
Stylianopoulou E, Daviti A, Giourou V, Gerasimidi E, Nikolaou A, Kourkoutas Y, Grigoriou ME, Paleologou KE, Skavdis G. Assessment of the Anti-Amyloidogenic Properties of Essential Oils and Their Constituents in Cells Using a Whole-Cell Recombinant Biosensor. Brain Sci 2023; 14:35. [PMID: 38248250 PMCID: PMC10812981 DOI: 10.3390/brainsci14010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Essential oils exhibit numerous medicinal properties, including antimicrobial, anti-inflammatory and antioxidant effects. Recent studies also indicate that certain essential oils demonstrate anti-amyloidogenic activity against β-amyloid, the protein implicated in Alzheimer's disease. To investigate whether the anti-aggregating properties of essential oils extend to α-synuclein, the protein involved in Parkinson's disease, we constructed and employed a whole-cell biosensor based on the split-luciferase complementation assay. We validated our biosensor by using baicalein, a known inhibitor of α-synuclein aggregation, and subsequently we tested eight essential oils commonly used in food and the hygienic industry. Two of them, citron and sage, along with their primary components, pure linalool (the main constituent in citron essential oil) and pure eucalyptol (1,8-cineole, the main constituent in sage essential oil), were able to reduce α-syn aggregation. These findings suggest that both essential oils and their main constituents could be regarded as potential components in functional foods or incorporated into complementary Parkinson's disease therapies.
Collapse
Affiliation(s)
- Electra Stylianopoulou
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.S.); (A.D.); (E.G.); (M.E.G.)
- Laboratory of Molecular Regulation & Diagnostic Technology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Anastasia Daviti
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.S.); (A.D.); (E.G.); (M.E.G.)
| | - Venetia Giourou
- Laboratory of Molecular Regulation & Diagnostic Technology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Eleni Gerasimidi
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.S.); (A.D.); (E.G.); (M.E.G.)
| | - Anastasios Nikolaou
- Laboratory of Applied Microbiology & Biotechnology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.N.); (Y.K.)
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology & Biotechnology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.N.); (Y.K.)
| | - Maria E. Grigoriou
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.S.); (A.D.); (E.G.); (M.E.G.)
| | - Katerina E. Paleologou
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.S.); (A.D.); (E.G.); (M.E.G.)
| | - George Skavdis
- Laboratory of Molecular Regulation & Diagnostic Technology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| |
Collapse
|
10
|
Kanojia N, Thapa K, Kaur G, Sharma A, Puri V, Verma N. Update on Therapeutic potential of emerging nanoformulations of phytocompounds in Alzheimer's and Parkinson's disease. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|