1
|
Bonfanti L, La Rosa C, Ghibaudi M, Sherwood CC. Adult neurogenesis and "immature" neurons in mammals: an evolutionary trade-off in plasticity? Brain Struct Funct 2024; 229:1775-1793. [PMID: 37833544 PMCID: PMC11485216 DOI: 10.1007/s00429-023-02717-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Neuronal plasticity can vary remarkably in its form and degree across animal species. Adult neurogenesis, namely the capacity to produce new neurons from neural stem cells through adulthood, appears widespread in non-mammalian vertebrates, whereas it is reduced in mammals. A growing body of comparative studies also report variation in the occurrence and activity of neural stem cell niches between mammals, with a general trend of reduction from small-brained to large-brained species. Conversely, recent studies have shown that large-brained mammals host large amounts of neurons expressing typical markers of neurogenesis in the absence of cell division. In layer II of the cerebral cortex, populations of prenatally generated, non-dividing neurons continue to express molecules indicative of immaturity throughout life (cortical immature neurons; cINs). After remaining in a dormant state for a very long time, these cINs retain the potential of differentiating into mature neurons that integrate within the preexisting neural circuits. They are restricted to the paleocortex in small-brained rodents, while extending into the widely expanded neocortex of highly gyrencephalic, large-brained species. The current hypothesis is that these populations of non-newly generated "immature" neurons might represent a reservoir of developmentally plastic cells for mammalian species that are characterized by reduced stem cell-driven adult neurogenesis. This indicates that there may be a trade-off between various forms of plasticity that coexist during brain evolution. This balance may be necessary to maintain a "reservoir of plasticity" in brain regions that have distinct roles in species-specific socioecological adaptations, such as the neocortex and olfactory structures.
Collapse
Affiliation(s)
- Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Turin, Grugliasco, Italy.
| | - Chiara La Rosa
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Marco Ghibaudi
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Turin, Grugliasco, Italy
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA.
| |
Collapse
|
2
|
Sorrells SF. Which neurodevelopmental processes continue in humans after birth? Front Neurosci 2024; 18:1434508. [PMID: 39308952 PMCID: PMC11412957 DOI: 10.3389/fnins.2024.1434508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024] Open
Abstract
Once we are born, the number and location of nerve cells in most parts of the brain remain unchanged. These types of structural changes are therefore a significant form of flexibility for the neural circuits where they occur. In humans, the postnatal birth of neurons is limited; however, neurons do continue to migrate into some brain regions throughout infancy and even into adolescence. In human infants, multiple migratory pathways deliver interneurons to destinations across the frontal and temporal lobe cortex. Shorter-range migration of excitatory neurons also appears to continue during adolescence, particularly near the amygdala paralaminar nucleus, a region that follows a delayed trajectory of growth from infancy to adulthood. The significance of the timing for when different brain regions recruit new neurons through these methods is unknown; however, both processes of protracted migration and maturation are prominent in humans. Mechanisms like these that reconfigure neuronal circuits are a substrate for critical periods of plasticity and could contribute to distinctive circuit functionality in human brains.
Collapse
|
3
|
Fenton Navarro B, Casimiro Aguayo AA, Torres Gómez YL, Cervantes Alfaro M, Torner L. Early Life Stress Influences Oxidative Stress Enzyme Activities in Liver, Heart, Kidney, Suprarenal Glands, and Pancreas in Male and Female Rat Pups. Antioxidants (Basel) 2024; 13:802. [PMID: 39061871 PMCID: PMC11273735 DOI: 10.3390/antiox13070802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Early life stress (ELS) is a risk factor for the development of chronic diseases resulting from functional alterations of organs in the cardiorespiratory and renal systems. This work studied the changes in oxidative stress enzyme activities (EAs) of SOD, CAT, GPX, GR, GST, NOS, MDA, and FRAP in different organs (heart, liver, kidney, adrenal glands (AGs), and pancreas) of male and female Sprague-Dawley rat pups on postnatal day (PN) 15, immediately after basal and acute or chronic stress conditions were accomplished, as follows: basal control (BC; undisturbed maternal pups care), stress control (SC; 3 h maternal separation on PN15), basal maternal separation (BMS; daily 3 h maternal separation on PN 1-14), and stress maternal separation (SMS; daily 3 h maternal separation on PN 1-14 and 3 h maternal separation on PN15). Acute or long-term stress resulted in overall oxidative stress, increase in EA, and reduced antioxidant capacity in these organs. Some different response patterns, due to precedent SMS, were observed in specific organs, especially in the AGs. Acute stress exposure increases the EA, but chronic stress generates a response in the antioxidant system in some of the organs studied and is damped in response to a further challenge.
Collapse
Affiliation(s)
- Bertha Fenton Navarro
- Laboratorio de Glicobiología y Farmacognosia, Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo. Av. Dr. Rafael Carrillo S/N, Esq. Dr. Salvador González Herrejón Bosque, Cuauhtémoc, Morelia 58020, Michoacán, Mexico; (A.A.C.A.); (Y.L.T.G.)
| | - Alexis Abraham Casimiro Aguayo
- Laboratorio de Glicobiología y Farmacognosia, Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo. Av. Dr. Rafael Carrillo S/N, Esq. Dr. Salvador González Herrejón Bosque, Cuauhtémoc, Morelia 58020, Michoacán, Mexico; (A.A.C.A.); (Y.L.T.G.)
| | - Yayr Luis Torres Gómez
- Laboratorio de Glicobiología y Farmacognosia, Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo. Av. Dr. Rafael Carrillo S/N, Esq. Dr. Salvador González Herrejón Bosque, Cuauhtémoc, Morelia 58020, Michoacán, Mexico; (A.A.C.A.); (Y.L.T.G.)
| | - Miguel Cervantes Alfaro
- Laboratorio de Neurociencias, Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Michoacán, Mexico;
| | - Luz Torner
- Laboratorio de Neuroendocrinología, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social; Cam. de La Arboleda # 300, La Huerta, Morelia 58341, Michoacán, Mexico
| |
Collapse
|
4
|
Alderman PJ, Saxon D, Torrijos-Saiz LI, Sharief M, Page CE, Baroudi JK, Biagiotti SW, Butyrkin VA, Melamed A, Kuo CT, Vicini S, García-Verdugo JM, Herranz-Pérez V, Corbin JG, Sorrells SF. Delayed maturation and migration of excitatory neurons in the juvenile mouse paralaminar amygdala. Neuron 2024; 112:574-592.e10. [PMID: 38086370 PMCID: PMC10922384 DOI: 10.1016/j.neuron.2023.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/05/2023] [Accepted: 11/09/2023] [Indexed: 02/12/2024]
Abstract
The human amygdala paralaminar nucleus (PL) contains many immature excitatory neurons that undergo prolonged maturation from birth to adulthood. We describe a previously unidentified homologous PL region in mice that contains immature excitatory neurons and has previously been considered part of the amygdala intercalated cell clusters or ventral endopiriform cortex. Mouse PL neurons are born embryonically, not from postnatal neurogenesis, despite a subset retaining immature molecular and morphological features in adults. During juvenile-adolescent ages (P21-P35), the majority of PL neurons undergo molecular, structural, and physiological maturation, and a subset of excitatory PL neurons migrate into the adjacent endopiriform cortex. Alongside these changes, PL neurons develop responses to aversive and appetitive olfactory stimuli. The presence of this homologous region in both humans and mice points to the significance of this conserved mechanism of neuronal maturation and migration during adolescence, a key time period for amygdala circuit maturation and related behavioral changes.
Collapse
Affiliation(s)
- Pia J Alderman
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - David Saxon
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20011, USA; Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Lucía I Torrijos-Saiz
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Comparative Neurobiology, University of Valencia, CIBERNED-ISCIII, Valencia 46980, Spain
| | - Malaz Sharief
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Chloe E Page
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jude K Baroudi
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Sean W Biagiotti
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Vladimir A Butyrkin
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20011, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA
| | - Anna Melamed
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Chay T Kuo
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Stefano Vicini
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA; Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Jose M García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Comparative Neurobiology, University of Valencia, CIBERNED-ISCIII, Valencia 46980, Spain; Department of Cell Biology, Functional Biology and Physical Anthropology, University of Valencia, Burjassot 46100, Spain
| | - Vicente Herranz-Pérez
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Comparative Neurobiology, University of Valencia, CIBERNED-ISCIII, Valencia 46980, Spain; Department of Cell Biology, Functional Biology and Physical Anthropology, University of Valencia, Burjassot 46100, Spain
| | - Joshua G Corbin
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20011, USA
| | - Shawn F Sorrells
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
5
|
Valamparamban GF, Spéder P. Homemade: building the structure of the neurogenic niche. Front Cell Dev Biol 2023; 11:1275963. [PMID: 38107074 PMCID: PMC10722289 DOI: 10.3389/fcell.2023.1275963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Neural stem/progenitor cells live in an intricate cellular environment, the neurogenic niche, which supports their function and enables neurogenesis. The niche is made of a diversity of cell types, including neurons, glia and the vasculature, which are able to signal to and are structurally organised around neural stem/progenitor cells. While the focus has been on how individual cell types signal to and influence the behaviour of neural stem/progenitor cells, very little is actually known on how the niche is assembled during development from multiple cellular origins, and on the role of the resulting topology on these cells. This review proposes to draw a state-of-the art picture of this emerging field of research, with the aim to expose our knowledge on niche architecture and formation from different animal models (mouse, zebrafish and fruit fly). We will span its multiple aspects, from the existence and importance of local, adhesive interactions to the potential emergence of larger-scale topological properties through the careful assembly of diverse cellular and acellular components.
Collapse
Affiliation(s)
| | - Pauline Spéder
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Structure and Signals in the Neurogenic Niche, Paris, France
| |
Collapse
|
6
|
Ghibaudi M, Marchetti N, Vergnano E, La Rosa C, Benedetti B, Couillard-Despres S, Farioli-Vecchioli S, Bonfanti L. Age-related changes in layer II immature neurons of the murine piriform cortex. Front Cell Neurosci 2023; 17:1205173. [PMID: 37576566 PMCID: PMC10416627 DOI: 10.3389/fncel.2023.1205173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
The recent identification of a population of non-newly born, prenatally generated "immature" neurons in the layer II of the piriform cortex (cortical immature neurons, cINs), raises questions concerning their maintenance or depletion through the lifespan. Most forms of brain structural plasticity progressively decline with age, a feature that is particularly prominent in adult neurogenesis, due to stem cell depletion. By contrast, the entire population of the cINs is produced during embryogenesis. Then these cells simply retain immaturity in postnatal and adult stages, until they "awake" to complete their maturation and ultimately integrate into neural circuits. Hence, the question remains open whether the cINs, which are not dependent on stem cell division, might follow a similar pattern of age-related reduction, or in alternative, might leave a reservoir of young, undifferentiated cells in the adult and aging brain. Here, the number and features of cINs were analyzed in the mouse piriform cortex from postnatal to advanced ages, by using immunocytochemistry for the cytoskeletal marker doublecortin. The abundance and stage of maturation of cINs, along with the expression of other markers of maturity/immaturity were investigated. Despite a marked decrease in this neuronal population during juvenile stages, reminiscent of that observed in hippocampal neurogenesis, a small amount of highly immature cINs persisted up to advanced ages. Overall, albeit reducing in number with increasing age, we report that the cINs are present through the entire animal lifespan.
Collapse
Affiliation(s)
- Marco Ghibaudi
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Nicole Marchetti
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Elena Vergnano
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| | - Chiara La Rosa
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| | - Bruno Benedetti
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | | | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| |
Collapse
|
7
|
Ghibaudi M, Amenta A, Agosti M, Riva M, Graïc JM, Bifari F, Bonfanti L. Consistency and Variation in Doublecortin and Ki67 Antigen Detection in the Brain Tissue of Different Mammals, including Humans. Int J Mol Sci 2023; 24:2514. [PMID: 36768845 PMCID: PMC9916846 DOI: 10.3390/ijms24032514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
Recently, a population of "immature" neurons generated prenatally, retaining immaturity for long periods and finally integrating in adult circuits has been described in the cerebral cortex. Moreover, comparative studies revealed differences in occurrence/rate of different forms of neurogenic plasticity across mammals, the "immature" neurons prevailing in gyrencephalic species. To extend experimentation from laboratory mice to large-brained mammals, including humans, it is important to detect cell markers of neurogenic plasticity in brain tissues obtained from different procedures (e.g., post-mortem/intraoperative specimens vs. intracardiac perfusion). This variability overlaps with species-specific differences in antigen distribution or antibody species specificity, making it difficult for proper comparison. In this work, we detect the presence of doublecortin and Ki67 antigen, markers for neuronal immaturity and cell division, in six mammals characterized by widely different brain size. We tested seven commercial antibodies in four selected brain regions known to host immature neurons (paleocortex, neocortex) and newly born neurons (hippocampus, subventricular zone). In selected human brains, we confirmed the specificity of DCX antibody by performing co-staining with fluorescent probe for DCX mRNA. Our results indicate that, in spite of various types of fixations, most differences were due to the use of different antibodies and the existence of real interspecies variation.
Collapse
Affiliation(s)
- Marco Ghibaudi
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, 10095 Torino, Italy
| | - Alessia Amenta
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Miriam Agosti
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Marco Riva
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Jean-Marie Graïc
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, 10095 Torino, Italy
| |
Collapse
|
8
|
Immature excitatory neurons in the amygdala come of age during puberty. Dev Cogn Neurosci 2022; 56:101133. [PMID: 35841648 PMCID: PMC9289873 DOI: 10.1016/j.dcn.2022.101133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
The human amygdala is critical for emotional learning, valence coding, and complex social interactions, all of which mature throughout childhood, puberty, and adolescence. Across these ages, the amygdala paralaminar nucleus (PL) undergoes significant structural changes including increased numbers of mature neurons. The PL contains a large population of immature excitatory neurons at birth, some of which may continue to be born from local progenitors. These progenitors disappear rapidly in infancy, but the immature neurons persist throughout childhood and adolescent ages, indicating that they develop on a protracted timeline. Many of these late-maturing neurons settle locally within the PL, though a small subset appear to migrate into neighboring amygdala subnuclei. Despite its prominent growth during postnatal life and possible contributions to multiple amygdala circuits, the function of the PL remains unknown. PL maturation occurs predominately during late childhood and into puberty when sex hormone levels change. Sex hormones can promote developmental processes such as neuron migration, dendritic outgrowth, and synaptic plasticity, which appear to be ongoing in late-maturing PL neurons. Collectively, we describe how the growth of late-maturing neurons occurs in the right time and place to be relevant for amygdala functions and neuropsychiatric conditions.
Collapse
|