1
|
Wang XL, Chen Y, Hu JY, Wei H, Ling Q, He LQ, Chen C, Wang YX, Zeng YM, Wang XY, Ge QM, Chen X, Shao Y. Alterations of interhemispheric functional connectivity in patients with hypertensive retinopathy using voxel-mirrored homotopic connectivity: a resting state fMRI study. Int J Ophthalmol 2025; 18:297-307. [PMID: 39967983 PMCID: PMC11754017 DOI: 10.18240/ijo.2025.02.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 11/30/2024] [Indexed: 02/20/2025] Open
Abstract
AIM To analyze whether alterations of voxel mirror homology connectivity (VMHC) values, as determined by resting-state functional magnetic resonance imaging (rs-fMRI), occur in cerebral regions of patients with hypertensive retinopathy (HR) and to determine the relationship between VMHC values and clinical characteristics in patients with HR. METHODS Twenty-one patients with HR and 21 age-matched healthy controls (HCs) were assessed by rs-fMRI scanning. The functional connectivity between the hemispheres of the cerebrum was assessed by measuring VMHC, with the ability of VMHC to distinguish between the HR and HC groups assessed using receiver operating characteristic (ROC) curve analysis. Differences in the demographic and clinical characteristics of the HR and HC groups were analyzed by independent sample t-tests. The relationship between average VMHC in several brain areas of HR patients and clinical features was determined using Pearson correlation analysis. RESULTS Mean VMHC values of the bilateral cuneus gyrus (BA19), bilateral middle orbitofrontal gyrus (BA47), bilateral middle temporal gyrus (BA39) and bilateral superior medial frontal gyrus (BA9) were lower in the HR than in the HC group. CONCLUSION VMHC values can predict the development of early HR, prevent the transformation of hypertensive microangiopathy, and provide useful information explaining the changes in neural mechanism associated with HR.
Collapse
Affiliation(s)
- Xue-Lin Wang
- Department of Ophthalmology, the First Affiliated Hospital of Jiangxi Medical College, Shangrao Center Hospital, Eye Hospital of Shangrao City, Shangrao 334000, Jiangxi Province, China
| | - Yu Chen
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110000, Liaoning Province, China
| | - Jin-Yu Hu
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hong Wei
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Qian Ling
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Liang-Qi He
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Cheng Chen
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yi-Xin Wang
- School of Optometry and Vision Science, Cardiff University, Cardiff, CF24 4HQ, Wales, UK
| | - Yan-Mei Zeng
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiao-Yu Wang
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Qian-Min Ge
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xu Chen
- Ophthalmology Centre of Maastricht University, Maastricht 6200MS, Limburg Provincie, the Netherlands
| | - Yi Shao
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai 200080, China
| |
Collapse
|
2
|
Duffau H. Neuroplasticity in Diffuse Low-grade Gliomas: Backward Modelling of Brain-tumor Interactions Prior to Diagnosis is Needed to Better Predict Recovery after Treatment. Curr Neurol Neurosci Rep 2025; 25:15. [PMID: 39786618 DOI: 10.1007/s11910-024-01402-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
PURPOSE OF REVIEW In low-grade glioma (LGG), besides the patient's neurological status and tumor characteristics on neuroimaging, current treatment guidelines mainly rely on the glioma's genetics at diagnosis to define therapeutic strategy, usually starting with surgical resection. However, this snapshot in time does not take into account the antecedent period of tumor progression and its interactions with the brain before presentation. This article reviews new concepts that pertain to reconstruct the history of previous interplay between the LGG's course and adaptive changes in the connectome within which the glioma is embedded over the years preceding the diagnosis. RECENT FINDINGS Microscale and macroscale parameters helpful for extrapolating backward in time are considered, both for the glioma (kinetics, migration vs. proliferation profile, metabolism with possible intratumoral heterogeneity, relationships with surrounding cerebral pathways) and for patterns of reconfiguration within and across neural networks in reaction to the LGG leading to considerable interindividual cerebral variability. Modelling these continuous variations at the time of LGG diagnosis is a prerequisite to predict recovery from treatment(s). It is important to go beyond the biology of the LGG at a given moment of its history, and instead construct a more comprehensive picture of the past and present dynamics of glioma-brain interactions, and their ongoing evolution, as a necessary stage to optimize a personalized management plan by thinking several steps ahead.
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Avenue Augustin Fliche, Montpellier, 34295, France.
- Team "Plasticity of Central Nervous System, Stem Cells and Low-grade Gliomas," INSERM U1191, Institute of Functional Genomics, University of Montpellier, Montpellier, France.
| |
Collapse
|
3
|
Fischer M, Kukley M. Hidden in the white matter: Current views on interstitial white matter neurons. Neuroscientist 2024:10738584241282969. [PMID: 39365761 DOI: 10.1177/10738584241282969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
The mammalian brain comprises two structurally and functionally distinct compartments: the gray matter (GM) and the white matter (WM). In humans, the WM constitutes approximately half of the brain volume, yet it remains significantly less investigated than the GM. The major cellular elements of the WM are neuronal axons and glial cells. However, the WM also contains cell bodies of the interstitial neurons, estimated to number 10 to 28 million in the adult bat brain, 67 million in Lar gibbon brain, and 450 to 670 million in the adult human brain, representing as much as 1.3%, 2.25%, and 3.5% of all neurons in the cerebral cortex, respectively. Many studies investigated the interstitial WM neurons (IWMNs) using immunohistochemistry, and some information is available regarding their electrophysiological properties. However, the functional role of IWMNs in physiologic and pathologic conditions largely remains unknown. This review aims to provide a concise update regarding the distribution and properties of interstitial WM neurons, highlight possible functions of these cells as debated in the literature, and speculate about other possible functions of the IWMNs and their interactions with glial cells. We hope that our review will inspire new research on IWMNs, which represent an intriguing cell population in the brain.
Collapse
Affiliation(s)
- Maximilian Fischer
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Maria Kukley
- Achucarro Basque Centre for Neuroscience, Leioa, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
4
|
Yang CJ, Yu HY, Hong TY, Cheng LK, Li WC, Yeh TC, Chen LF, Hsieh JC. Embodied metacognition as strengthened functional connection between neural correlates of metacognition and dance in dancers: exploring creativity implications. Front Hum Neurosci 2024; 18:1347386. [PMID: 38425447 PMCID: PMC10902139 DOI: 10.3389/fnhum.2024.1347386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/10/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Dance education fosters embodied metacognition, enhancing student's creativity. This study examines the crucial role of functional connectivity (FC) between the neural correlates of metacognition (NCM) and dance (NCD) as the neurological foundation for dancers' embodied metacognition. The investigation also explores whether these consolidated FCs inform the general creativity in dancers. Methods The research involved 29 dancers and 28 non-dancer controls. The study examined resting-state connections of the NCM through seed-based FC analysis. Correlation analyses were employed to investigate the connections between the targeted NCM-NCD FCs, initiated from the a priori NCM seed, and general creativity. Results Dancers demonstrated heightened FC between NCM and NCD compared to non-dancer controls. The targeted regions included the putamen, globus pallidus, posterior cerebellum, and anterior insula of NCD. The dancers exhibited higher originality scores. In dancers, the enhanced FC showed a negative correlation with originality and a positive correlation with flexibility. Conversely, the controls exhibited no significant correlations. Discussion Extended dance training enhances the NCM-NCD connection signifying embodied metacognition. This interconnectedness may serve as the neural predisposition for fostering general creativity performance in dancers. Dancers with heightened levels of originality could leverage the relatively weaker NCM-NCD FCs to facilitate better integration and coordination of creative cognitive processes. Our findings suggest that the consolidated functional connections as sculpted by domain-specific training may inform general creativity.
Collapse
Affiliation(s)
- Ching-Ju Yang
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Yen Yu
- Graduate Institute of Arts and Humanities Education, Taipei National University of the Arts, Taipei, Taiwan
| | - Tzu-Yi Hong
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Li-Kai Cheng
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Chi Li
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Tzu-Chen Yeh
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Li-Fen Chen
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Biomedical Informatics, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jen-Chuen Hsieh
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|