1
|
Garrett ME, Le B, Bourassa KJ, Dennis MF, Hatch D, Yang Q, Tanabe P, Shah N, Luyster FS, Oyedeji C, Strouse JJ, Cohen HJ, Kimbrel NA, Beckham JC, Knisely MR, Telen MJ, Ashley-Koch AE. Black Americans With Sickle Cell Disease (SCD) Demonstrate Accelerated Epigenetic Pace of Aging Compared to Black Americans Without SCD. J Gerontol A Biol Sci Med Sci 2024; 79:glae230. [PMID: 39297703 PMCID: PMC11511909 DOI: 10.1093/gerona/glae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Sickle cell disease (SCD) is a chronic medical condition characterized by red blood cell sickling, vaso-occlusion, hemolytic anemia, and subsequently, end-organ damage and reduced survival. Because of this significant pathophysiology and early mortality, we hypothesized that patients with SCD are experiencing accelerated biological aging compared with individuals without SCD. METHODS We utilized the DunedinPACE measure to compare the epigenetic pace of aging in 131 Black Americans with SCD to 1391 Black American veterans without SCD. RESULTS SCD patients displayed a significantly accelerated pace of aging (DunedinPACE mean difference of 0.057 points) compared with the veterans without SCD, whereby SCD patients were aging ≈0.7 months more per year than those without SCD (p = 4.49 × 10-8). This was true, even though the SCD patients were significantly younger according to chronological age than the individuals without SCD, making the epigenetic aging discrepancy even more apparent. This association became stronger when we removed individuals with posttraumatic stress disorder from the non-SCD group (p = 2.18 × 10-9), and stronger still when we restricted the SCD patients to those with hemoglobin SS and Sβ0 thalassemia genotypes (p = 1.61 × 10-10). CONCLUSIONS These data support our hypothesis that individuals with SCD experience accelerated biological aging as measured by global epigenetic variation. The assessment of epigenetic measures of biological aging may prove useful to identify which SCD patients would most benefit from clinical interventions to reduce mortality.
Collapse
Affiliation(s)
- Melanie E Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Brandon Le
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Kyle J Bourassa
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center, Durham VA Health Care System, Durham, North Carolina, USA
- Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, USA
| | - Michelle F Dennis
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center, Durham VA Health Care System, Durham, North Carolina, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Daniel Hatch
- Duke University School of Nursing, Durham, North Carolina, USA
| | - Qing Yang
- Duke University School of Nursing, Durham, North Carolina, USA
| | - Paula Tanabe
- Duke University School of Nursing, Durham, North Carolina, USA
| | - Nirmish Shah
- Division of Hematology, Department of Medicine, and Duke Comprehensive Sickle Cell Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Faith S Luyster
- School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Charity Oyedeji
- Division of Hematology, Department of Medicine, and Duke Comprehensive Sickle Cell Center, Duke University Medical Center, Durham, North Carolina, USA
- Duke Claude D. Pepper Older Americans Independence Center, Durham, North Carolina, USA
| | - John J Strouse
- Division of Hematology, Department of Medicine, and Duke Comprehensive Sickle Cell Center, Duke University Medical Center, Durham, North Carolina, USA
- Duke Claude D. Pepper Older Americans Independence Center, Durham, North Carolina, USA
| | - Harvey J Cohen
- Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, USA
| | - Nathan A Kimbrel
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center, Durham VA Health Care System, Durham, North Carolina, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jean C Beckham
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center, Durham VA Health Care System, Durham, North Carolina, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Marilyn J Telen
- Division of Hematology, Department of Medicine, and Duke Comprehensive Sickle Cell Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Allison E Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
2
|
Zima L, Moore AN, Smolen P, Kobori N, Noble B, Robinson D, Hood KN, Homma R, Al Mamun A, Redell JB, Dash PK. The evolving pathophysiology of TBI and the advantages of temporally-guided combination therapies. Neurochem Int 2024; 180:105874. [PMID: 39366429 DOI: 10.1016/j.neuint.2024.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Several clinical and experimental studies have demonstrated that traumatic brain injury (TBI) activates cascades of biochemical, molecular, structural, and pathological changes in the brain. These changes combine to contribute to the various outcomes observed after TBI. Given the breadth and complexity of changes, combination treatments may be an effective approach for targeting multiple detrimental pathways to yield meaningful improvements. In order to identify targets for therapy development, the temporally evolving pathophysiology of TBI needs to be elucidated in detail at both the cellular and molecular levels, as it has been shown that the mechanisms contributing to cognitive dysfunction change over time. Thus, a combination of individual mechanism-based therapies is likely to be effective when maintained based on the time courses of the cellular and molecular changes being targeted. In this review, we will discuss the temporal changes of some of the key clinical pathologies of human TBI, the underlying cellular and molecular mechanisms, and the results from preclinical and clinical studies aimed at mitigating their consequences. As most of the pathological events that occur after TBI are likely to have subsided in the chronic stage of the disease, combination treatments aimed at attenuating chronic conditions such as cognitive dysfunction may not require the initiation of individual treatments at a specific time. We propose that a combination of acute, subacute, and chronic interventions may be necessary to maximally improve health-related quality of life (HRQoL) for persons who have sustained a TBI.
Collapse
Affiliation(s)
- Laura Zima
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Anthony N Moore
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Paul Smolen
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Nobuhide Kobori
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Brian Noble
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Dustin Robinson
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Kimberly N Hood
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Ryota Homma
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Amar Al Mamun
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - John B Redell
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Pramod K Dash
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA; Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
3
|
Pinto-Benito D, Bautista-Abad A, Lagunas N, Ontiveros N, Ganchala D, Garcia-Segura LM, Arevalo MA, Grassi D. Tibolone treatment after traumatic brain injury exerts a sex-specific and Y chromosome-dependent regulation of methylation and demethylation enzymes and estrogen receptors in the cerebral cortex. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167532. [PMID: 39366643 DOI: 10.1016/j.bbadis.2024.167532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Affiliation(s)
- Daniel Pinto-Benito
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alvaro Bautista-Abad
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Natalia Lagunas
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, Ciudad Universitaria, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Nebai Ontiveros
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Danny Ganchala
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Luis M Garcia-Segura
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria-Angeles Arevalo
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Daniela Grassi
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Anatomy, Histology and Neuroscience, School of Medicine, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, 28029 Madrid, Spain
| |
Collapse
|
4
|
Criado-Marrero M, Ravi S, Bhaskar E, Barroso D, Pizzi MA, Williams L, Wellington CL, Febo M, Abisambra JF. Age dictates brain functional connectivity and axonal integrity following repetitive mild traumatic brain injuries in mice. Neuroimage 2024; 298:120764. [PMID: 39089604 DOI: 10.1016/j.neuroimage.2024.120764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Traumatic brain injuries (TBI) present a major public health challenge, demanding an in-depth understanding of age-specific symptoms and risk factors. Aging not only significantly influences brain function and plasticity but also elevates the risk of hospitalizations and death following TBIs. Repetitive mild TBIs (rmTBI) compound these issues, resulting in cumulative and long-term brain damage in the brain. In this study, we investigate the impact of age on brain network changes and white matter properties following rmTBI by employing a multi-modal approach that integrates resting-state functional magnetic resonance imaging (rsfMRI), graph theory analysis, diffusion tensor imaging (DTI), and neurite orientation dispersion and density imaging (NODDI). Our hypothesis is that the effects of rmTBI are worsened in aged animals, with this group showing more pronounced alterations in brain connectivity and white matter structure. Utilizing the closed-head impact model of engineered rotational acceleration (CHIMERA) model, we conducted rmTBIs or sham (control) procedures on young (2.5-3-months-old) and aged (22-months-old) male and female mice to model high-risk groups. Functional and structural imaging unveiled age-related reductions in communication efficiency between brain regions, while injuries induced opposhigh-risking effects on the small-world index across age groups, influencing network segregation. Functional connectivity analysis also identified alterations in 79 out of 148 brain regions by age, treatment (sham vs. rmTBI), or their interaction. Injuries exerted pronounced effects on sensory integration areas, including insular and motor cortices. Age-related disruptions in white matter integrity were observed, indicating alterations in various diffusion directions (mean diffusivity, radial diffusivity, axial diffusivity, and fractional anisotropy) and density neurite properties (dispersion index, intracellular and isotropic volume fraction). Neuroinflammation, assessed through Iba-1 and GFAP markers, correlated with higher dispersion in the optic tract, suggesting a neuroinflammatory response in injured aged animals compared to sham aged. These findings offer insight into the interplay between age, injuries, and brain connectivity, shedding light on the long-term consequences of rmTBI.
Collapse
Affiliation(s)
- Marangelie Criado-Marrero
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Sakthivel Ravi
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Ekta Bhaskar
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; Department of Computer of Information Science and Engineering (CISE), University of Florida, Gainesville, FL 32610, USA
| | - Daylin Barroso
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Michael A Pizzi
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; Brain Injury Rehabilitation and Neuroresilience (BRAIN) Center University of Florida, Gainesville, FL 32610, USA; Department of Neurology, University of Florida, Gainesville, FL 32610, USA
| | - Lakiesha Williams
- J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, FL 32610, USA
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Marcelo Febo
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; Department of Psychiatry, University of Florida, Gainesville, FL 32610, USA; Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Jose Francisco Abisambra
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA; Brain Injury Rehabilitation and Neuroresilience (BRAIN) Center University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
5
|
Pszczołowska M, Walczak K, Miśków W, Antosz K, Batko J, Kurpas D, Leszek J. Chronic Traumatic Encephalopathy as the Course of Alzheimer's Disease. Int J Mol Sci 2024; 25:4639. [PMID: 38731858 PMCID: PMC11083609 DOI: 10.3390/ijms25094639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
This editorial investigates chronic traumatic encephalopathy (CTE) as a course of Alzheimer's disease (AD). CTE is a debilitating neurodegenerative disease that is the result of repeated mild traumatic brain injury (TBI). Many epidemiological studies show that experiencing a TBI in early or middle life is associated with an increased risk of dementia later in life. Chronic traumatic encephalopathy (CTE) and Alzheimer's disease (AD) present a series of similar neuropathological features that were investigated in this work like recombinant tau into filaments or the accumulation and aggregation of Aβ protein. However, these two conditions differ from each other in brain-blood barrier damage. The purpose of this review was to evaluate information about CTE and AD from various articles, focusing especially on new therapeutic possibilities for the improvement in cognitive skills.
Collapse
Affiliation(s)
- Magdalena Pszczołowska
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (M.P.)
| | - Kamil Walczak
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (M.P.)
| | - Weronika Miśków
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (M.P.)
| | - Katarzyna Antosz
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (M.P.)
| | - Joanna Batko
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (M.P.)
| | - Donata Kurpas
- Faculty of Health Sciences, Wroclaw Medical University, Ul. Kazimierza Bartla 5, 51-618 Wrocław, Poland
| | - Jerzy Leszek
- Clinic of Psychiatry, Department of Psychiatry, Wroclaw Medical University, Ludwika Pasteura 10, 50-367 Wrocław, Poland
| |
Collapse
|
6
|
Criado-Marrero M, Ravi S, Bhaskar E, Barroso D, Pizzi MA, Williams L, Wellington CL, Febo M, Abisambra JF. Age dictates brain functional connectivity and axonal integrity following repetitive mild traumatic brain injuries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577316. [PMID: 38328104 PMCID: PMC10849649 DOI: 10.1101/2024.01.25.577316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Traumatic brain injuries (TBI) present a major public health challenge, demanding an in-depth understanding of age-specific signs and vulnerabilities. Aging not only significantly influences brain function and plasticity but also elevates the risk of hospitalizations and death following repetitive mild traumatic brain injuries (rmTBIs). In this study, we investigate the impact of age on brain network changes and white matter properties following rmTBI employing a multi-modal approach that integrates resting-state functional magnetic resonance imaging (rsfMRI), graph theory analysis, diffusion tensor imaging (DTI), and Neurite Orientation Dispersion and Density Imaging (NODDI). Utilizing the CHIMERA model, we conducted rmTBIs or sham (control) procedures on young (2.5-3 months old) and aged (22-month-old) male and female mice to model high risk groups. Functional and structural imaging unveiled age-related reductions in communication efficiency between brain regions, while injuries induced opposing effects on the small-world index across age groups, influencing network segregation. Functional connectivity analysis also identified alterations in 79 out of 148 brain regions by age, treatment (sham vs. rmTBI), or their interaction. Injuries exerted pronounced effects on sensory integration areas, including insular and motor cortices. Age-related disruptions in white matter integrity were observed, indicating alterations in various diffusion directions (mean, radial, axial diffusivity, fractional anisotropy) and density neurite properties (dispersion index, intracellular and isotropic volume fraction). Inflammation, assessed through Iba-1 and GFAP markers, correlated with higher dispersion in the optic tract, suggesting a neuroinflammatory response in aged animals. These findings provide a comprehensive understanding of the intricate interplay between age, injuries, and brain connectivity, shedding light on the long-term consequences of rmTBIs.
Collapse
|