1
|
Hagena H, Manahan-Vaughan D. Interplay of hippocampal long-term potentiation and long-term depression in enabling memory representations. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230229. [PMID: 38853558 PMCID: PMC11343234 DOI: 10.1098/rstb.2023.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
Hippocampal long-term potentiation (LTP) and long-term depression (LTD) are Hebbian forms of synaptic plasticity that are widely believed to comprise the physiological correlates of associative learning. They comprise a persistent, input-specific increase or decrease, respectively, in synaptic efficacy that, in rodents, can be followed for days and weeks in vivo. Persistent (>24 h) LTP and LTD exhibit distinct frequency-dependencies and molecular profiles in the hippocampal subfields. Moreover, causal and genetic studies in behaving rodents indicate that both LTP and LTD fulfil specific and complementary roles in the acquisition and retention of spatial memory. LTP is likely to be responsible for the generation of a record of spatial experience, which may serve as an associative schema that can be re-used to expedite or facilitate subsequent learning. In contrast, LTD may enable modification and dynamic updating of this representation, such that detailed spatial content information is included and the schema is rendered unique and distinguishable from other similar representations. Together, LTP and LTD engage in a dynamic interplay that supports the generation of complex associative memories that are resistant to generalization. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Hardy Hagena
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum44780, Germany
| | - Denise Manahan-Vaughan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum44780, Germany
| |
Collapse
|
2
|
Heer CM, Sheffield MEJ. Distinct catecholaminergic pathways projecting to hippocampal CA1 transmit contrasting signals during navigation in familiar and novel environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.29.569214. [PMID: 38076843 PMCID: PMC10705417 DOI: 10.1101/2023.11.29.569214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Neuromodulatory inputs to the hippocampus play pivotal roles in modulating synaptic plasticity, shaping neuronal activity, and influencing learning and memory. Recently it has been shown that the main sources of catecholamines to the hippocampus, ventral tegmental area (VTA) and locus coeruleus (LC), may have overlapping release of neurotransmitters and effects on the hippocampus. Therefore, to dissect the impacts of both VTA and LC circuits on hippocampal function, a thorough examination of how these pathways might differentially operate during behavior and learning is necessary. We therefore utilized 2-photon microscopy to functionally image the activity of VTA and LC axons within the CA1 region of the dorsal hippocampus in head-fixed male mice navigating linear paths within virtual reality (VR) environments. We found that within familiar environments some VTA axons and the vast majority of LC axons showed a correlation with the animals' running speed. However, as mice approached previously learned rewarded locations, a large majority of VTA axons exhibited a gradual ramping-up of activity, peaking at the reward location. In contrast, LC axons displayed a pre-movement signal predictive of the animal's transition from immobility to movement. Interestingly, a marked divergence emerged following a switch from the familiar to novel VR environments. Many LC axons showed large increases in activity that remained elevated for over a minute, while the previously observed VTA axon ramping-to-reward dynamics disappeared during the same period. In conclusion, these findings highlight distinct roles of VTA and LC catecholaminergic inputs in the dorsal CA1 hippocampal region. These inputs encode unique information, with reward information in VTA inputs and novelty and kinematic information in LC inputs, likely contributing to differential modulation of hippocampal activity during behavior and learning.
Collapse
Affiliation(s)
- Chad M Heer
- The Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Mark E J Sheffield
- The Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Südkamp N, Shchyglo O, Manahan-Vaughan D. GluN2A or GluN2B subunits of the NMDA receptor contribute to changes in neuronal excitability and impairments in LTP in the hippocampus of aging mice but do not mediate detrimental effects of oligomeric Aβ (1-42). Front Aging Neurosci 2024; 16:1377085. [PMID: 38832073 PMCID: PMC11144909 DOI: 10.3389/fnagi.2024.1377085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024] Open
Abstract
Studies in rodent models have revealed that oligomeric beta-amyloid protein [Aβ (1-42)] plays an important role in the pathogenesis of Alzheimer's disease. Early elevations in hippocampal neuronal excitability caused by Aβ (1-42) have been proposed to be mediated via enhanced activation of GluN2B-containing N-methyl-D-aspartate receptors (NMDAR). To what extent GluN2A or GluN2B-containing NMDAR contribute to Aβ (1-42)-mediated impairments of hippocampal function in advanced rodent age is unclear. Here, we assessed hippocampal long-term potentiation (LTP) and neuronal responses 4-5 weeks after bilateral intracerebral inoculation of 8-15 month old GluN2A+/- or GluN2B+/- transgenic mice with oligomeric Aβ (1-42), or control peptide. Whole-cell patch-clamp recordings in CA1 pyramidal neurons revealed a more positive resting membrane potential and increased total spike time in GluN2A+/-, but not GluN2B+/--hippocampi following treatment with Aβ (1-42) compared to controls. Action potential 20%-width was increased, and the descending slope was reduced, in Aβ-treated GluN2A+/-, but not GluN2B+/- hippocampi. Sag ratio was increased in Aβ-treated GluN2B+/--mice. Firing frequency was unchanged in wt, GluN2A+/-, and GluN2B+/-hippocampi after Aβ-treatment. Effects were not significantly different from responses detected under the same conditions in wt littermates, however. LTP that lasted for over 2 h in wt hippocampal slices was significantly reduced in GluN2A+/- and was impaired for 15 min in GluN2B+/--hippocampi compared to wt littermates. Furthermore, LTP (>2 h) was significantly impaired in Aβ-treated hippocampi of wt littermates compared to wt treated with control peptide. LTP induced in Aβ-treated GluN2A+/- and GluN2B+/--hippocampi was equivalent to LTP in control peptide-treated transgenic and Aβ-treated wt animals. Taken together, our data indicate that knockdown of GluN2A subunits subtly alters membrane properties of hippocampal neurons and reduces the magnitude of LTP. GluN2B knockdown reduces the early phase of LTP but leaves later phases intact. Aβ (1-42)-treatment slightly exacerbates changes in action potential properties in GluN2A+/--mice. However, the vulnerability of the aging hippocampus to Aβ-mediated impairments of LTP is not mediated by GluN2A or GluN2B-containing NMDAR.
Collapse
|
4
|
Maity S, Abbaspour R, Nahabedian D, Connor SA. Norepinephrine, beyond the Synapse: Coordinating Epigenetic Codes for Memory. Int J Mol Sci 2022; 23:ijms23179916. [PMID: 36077313 PMCID: PMC9456295 DOI: 10.3390/ijms23179916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
The noradrenergic system is implicated in neuropathologies contributing to major disorders of the memory, including post-traumatic stress disorder and Alzheimer’s disease. Determining the impact of norepinephrine on cellular function and plasticity is thus essential for making inroads into our understanding of these brain conditions, while expanding our capacity for treating them. Norepinephrine is a neuromodulator within the mammalian central nervous system which plays important roles in cognition and associated synaptic plasticity. Specifically, norepinephrine regulates the formation of memory through the stimulation of β-ARs, increasing the dynamic range of synaptic modifiability. The mechanisms through which NE influences neural circuit function have been extended to the level of the epigenome. This review focuses on recent insights into how the noradrenergic recruitment of epigenetic modifications, including DNA methylation and post-translational modification of histones, contribute to homo- and heterosynaptic plasticity. These advances will be placed in the context of synaptic changes associated with memory formation and linked to brain disorders and neurotherapeutic applications.
Collapse
Affiliation(s)
- Sabyasachi Maity
- Department of Physiology, Neuroscience, and Behavioral Sciences, St. George’s University School of Medicine, True Blue FZ818, Grenada
| | - Raman Abbaspour
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - David Nahabedian
- The Center for Biomedical Visualization, Department of Anatomical Sciences, St. George’s University School of Medicine, True Blue FZ818, Grenada
| | - Steven A. Connor
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- Correspondence: ; Tel.: +1-(416)-736-2100 (ext. 33803)
| |
Collapse
|
5
|
Stacho M, Manahan-Vaughan D. The Intriguing Contribution of Hippocampal Long-Term Depression to Spatial Learning and Long-Term Memory. Front Behav Neurosci 2022; 16:806356. [PMID: 35548697 PMCID: PMC9084281 DOI: 10.3389/fnbeh.2022.806356] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/10/2022] [Indexed: 01/03/2023] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) comprise the principal cellular mechanisms that fulfill established criteria for the physiological correlates of learning and memory. Traditionally LTP, that increases synaptic weights, has been ascribed a prominent role in learning and memory whereas LTD, that decreases them, has often been relegated to the category of "counterpart to LTP" that serves to prevent saturation of synapses. In contradiction of these assumptions, studies over the last several years have provided functional evidence for distinct roles of LTD in specific aspects of hippocampus-dependent associative learning and information encoding. Furthermore, evidence of the experience-dependent "pruning" of excitatory synapses, the majority of which are located on dendritic spines, by means of LTD has been provided. In addition, reports exist of the temporal and physical restriction of LTP in dendritic compartments by means of LTD. Here, we discuss the role of LTD and LTP in experience-dependent information encoding based on empirical evidence derived from conjoint behavioral and electrophysiological studies conducted in behaving rodents. We pinpoint the close interrelation between structural modifications of dendritic spines and the occurrence of LTP and LTD. We report on findings that support that whereas LTP serves to acquire the general scheme of a spatial representation, LTD enables retention of content details. We argue that LTD contributes to learning by engaging in a functional interplay with LTP, rather than serving as its simple counterpart, or negator. We propose that similar spatial experiences that share elements of neuronal representations can be modified by means of LTD to enable pattern separation. Therewith, LTD plays a crucial role in the disambiguation of similar spatial representations and the prevention of generalization.
Collapse
|
6
|
Prince LY, Bacon T, Humphries R, Tsaneva-Atanasova K, Clopath C, Mellor JR. Separable actions of acetylcholine and noradrenaline on neuronal ensemble formation in hippocampal CA3 circuits. PLoS Comput Biol 2021; 17:e1009435. [PMID: 34597293 PMCID: PMC8513881 DOI: 10.1371/journal.pcbi.1009435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 10/13/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022] Open
Abstract
In the hippocampus, episodic memories are thought to be encoded by the formation of ensembles of synaptically coupled CA3 pyramidal cells driven by sparse but powerful mossy fiber inputs from dentate gyrus granule cells. The neuromodulators acetylcholine and noradrenaline are separately proposed as saliency signals that dictate memory encoding but it is not known if they represent distinct signals with separate mechanisms. Here, we show experimentally that acetylcholine, and to a lesser extent noradrenaline, suppress feed-forward inhibition and enhance Excitatory-Inhibitory ratio in the mossy fiber pathway but CA3 recurrent network properties are only altered by acetylcholine. We explore the implications of these findings on CA3 ensemble formation using a hierarchy of models. In reconstructions of CA3 pyramidal cells, mossy fiber pathway disinhibition facilitates postsynaptic dendritic depolarization known to be required for synaptic plasticity at CA3-CA3 recurrent synapses. We further show in a spiking neural network model of CA3 how acetylcholine-specific network alterations can drive rapid overlapping ensemble formation. Thus, through these distinct sets of mechanisms, acetylcholine and noradrenaline facilitate the formation of neuronal ensembles in CA3 that encode salient episodic memories in the hippocampus but acetylcholine selectively enhances the density of memory storage.
Collapse
Affiliation(s)
- Luke Y. Prince
- Centre for Synaptic Plasticity, School of Physiology Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
- Mila, Montreal, Quebec, Canada
- School of Computer Science, McGill University, Montreal, Quebec, Canada
| | - Travis Bacon
- Centre for Synaptic Plasticity, School of Physiology Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Rachel Humphries
- Centre for Synaptic Plasticity, School of Physiology Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Living Systems Institute, University of Exeter, Exeter, United Kingdom
- EPRSC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
| | - Claudia Clopath
- Bioengineering Department, Imperial College London, London, United Kingdom
| | - Jack R. Mellor
- Centre for Synaptic Plasticity, School of Physiology Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Hoang TH, Böge J, Manahan-Vaughan D. Hippocampal subfield-specific Homer1a expression is triggered by learning-facilitated long-term potentiation and long-term depression at medial perforant path synapses. Hippocampus 2021; 31:897-915. [PMID: 33964041 DOI: 10.1002/hipo.23333] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/22/2021] [Accepted: 04/11/2021] [Indexed: 12/23/2022]
Abstract
Learning about general aspects, or content details, of space results in differentiated neuronal information encoding within the proximodistal axis of the hippocampus. These processes are tightly linked to long-term potentiation (LTP) and long-term depression (LTD). Here, we explored the precise sites of encoding of synaptic plasticity in the hippocampus that are mediated by information throughput from the perforant path. We assessed nuclear Homer1a-expression that was triggered by electrophysiological induction of short and long forms of hippocampal synaptic plasticity, and compared it to Homer1a-expression that was triggered by LTP and LTD enabled by different forms of spatial learning. Plasticity responses were induced by patterned stimulation of the perforant path and were recorded in the dentate gyrus (DG) of freely behaving rats. We used fluorescence in situ hybridization to detect experience-dependent nuclear encoding of Homer1a in proximodistal hippocampal subfields. Induction of neither STP nor STD resulted in immediate early gene (IEG) encoding. Electrophysiological induction of robust LTP, or LTD, resulted in highly significant and widespread induction of nuclear Homer1a in all hippocampal subfields. LTP that was facilitated by novel spatial exploration triggered similar widespread Homer1a-expression. The coupling of synaptic depression with the exploration of a novel configuration of landmarks resulted in localized IEG expression in the proximal CA3 region and the lower (infrapyramidal) blade of the DG. Our findings support that synaptic plasticity induction via perforant path inputs promotes widespread hippocampal information encoding. Furthermore, novel spatial exploration promotes the selection of a hippocampal neuronal network by means of LTP that is distributed in an experience-dependent manner across all hippocampus subfields. This network may be modified during spatial content learning by LTD in specific hippocampal subfields. Thus, long-term plasticity-inducing events result in IEG expression that supports establishment and/or restructuring of neuronal networks that are necessary for long-term information storage.
Collapse
Affiliation(s)
- Thu-Huong Hoang
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Juliane Böge
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
8
|
Ashby DM, Floresco SB, Phillips AG, McGirr A, Seamans JK, Wang YT. LTD is involved in the formation and maintenance of rat hippocampal CA1 place-cell fields. Nat Commun 2021; 12:100. [PMID: 33397954 PMCID: PMC7782827 DOI: 10.1038/s41467-020-20317-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 11/25/2020] [Indexed: 01/29/2023] Open
Abstract
Hippocampal synaptic plasticity includes both long-term potentiation (LTP) and long-term depression (LTD) of synaptic strength, and has been implicated in shaping place field representations that form upon initial exposure to a novel environment. However, direct evidence causally linking either LTP or LTD to place fields remains limited. Here, we show that hippocampal LTD regulates the acute formation and maintenance of place fields using electrophysiology and blocking specifically LTD in freely-moving rats. We also show that exploration of a novel environment produces a widespread and pathway specific de novo synaptic depression in the dorsal hippocampus. Furthermore, disruption of this pathway-specific synaptic depression alters both the dynamics of place field formation and the stability of the newly formed place fields, affecting spatial memory in rats. These results suggest that activity-dependent synaptic depression is required for the acquisition and maintenance of novel spatial information.
Collapse
Affiliation(s)
- Donovan M Ashby
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, AB, Canada
| | - Stan B Floresco
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, V6T 1Z7, BC, Canada
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, V6T 1Z4, BC, Canada
| | - Anthony G Phillips
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, V6T 1Z7, BC, Canada
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, V6T 2A1, BC, Canada
| | - Alexander McGirr
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, AB, Canada
- Department of Psychiatry, University of Calgary, 3330 Hospital Dr NW, Calgary, T2N 4N1, AB, Canada
| | - Jeremy K Seamans
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, V6T 1Z7, BC, Canada
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, V6T 2A1, BC, Canada
| | - Yu Tian Wang
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, V6T 1Z7, BC, Canada.
- Department of Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Vancouver, V5Z 1M9, BC, Canada.
| |
Collapse
|
9
|
Changes in Hippocampal Plasticity in Depression and Therapeutic Approaches Influencing These Changes. Neural Plast 2020; 2020:8861903. [PMID: 33293948 PMCID: PMC7718046 DOI: 10.1155/2020/8861903] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/30/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Depression is a common neurological disease that seriously affects human health. There are many hypotheses about the pathogenesis of depression, and the most widely recognized and applied is the monoamine hypothesis. However, no hypothesis can fully explain the pathogenesis of depression. At present, the brain-derived neurotrophic factor (BDNF) and neurogenesis hypotheses have highlighted the important role of plasticity in depression. The plasticity of neurons and glial cells plays a vital role in the transmission and integration of signals in the central nervous system. Plasticity is the adaptive change in the nervous system in response to changes in external signals. The hippocampus is an important anatomical area associated with depression. Studies have shown that some antidepressants can treat depression by changing the plasticity of the hippocampus. Furthermore, caloric restriction has also been shown to affect antidepressant and hippocampal plasticity changes. In this review, we summarize the latest research, focusing on changes in the plasticity of hippocampal neurons and glial cells in depression and the role of BDNF in the changes in hippocampal plasticity in depression, as well as caloric restriction and mitochondrial plasticity. This review may contribute to the development of antidepressant drugs and elucidating the mechanism of depression.
Collapse
|
10
|
Bacon TJ, Pickering AE, Mellor JR. Noradrenaline Release from Locus Coeruleus Terminals in the Hippocampus Enhances Excitation-Spike Coupling in CA1 Pyramidal Neurons Via β-Adrenoceptors. Cereb Cortex 2020; 30:6135-6151. [PMID: 32607551 PMCID: PMC7609922 DOI: 10.1093/cercor/bhaa159] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022] Open
Abstract
Release of the neuromodulator noradrenaline signals salience during wakefulness, flagging novel or important experiences to reconfigure information processing and memory representations in the hippocampus. Noradrenaline is therefore expected to enhance hippocampal responses to synaptic input; however, noradrenergic agonists have been found to have mixed and sometimes contradictory effects on Schaffer collateral synapses and the resulting CA1 output. Here, we examine the effects of endogenous, optogenetically driven noradrenaline release on synaptic transmission and spike output in mouse hippocampal CA1 pyramidal neurons. We show that endogenous noradrenaline release enhances the probability of CA1 pyramidal neuron spiking without altering feedforward excitatory or inhibitory synaptic inputs in the Schaffer collateral pathway. β-adrenoceptors mediate this enhancement of excitation-spike coupling by reducing the charge required to initiate action potentials, consistent with noradrenergic modulation of voltage-gated potassium channels. Furthermore, we find the likely effective concentration of endogenously released noradrenaline is sub-micromolar. Surprisingly, although comparable concentrations of exogenous noradrenaline cause robust depression of slow afterhyperpolarization currents, endogenous release of noradrenaline does not, indicating that endogenous noradrenaline release is targeted to specific cellular locations. These findings provide a mechanism by which targeted endogenous release of noradrenaline can enhance information transfer in the hippocampus in response to salient events.
Collapse
Affiliation(s)
- Travis J Bacon
- Centre for Synaptic Plasticity, University of Bristol, Bristol, UK
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Anthony E Pickering
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, UK
- Bristol Anaesthesia, Pain & Critical Care Sciences, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK
| | - Jack R Mellor
- Centre for Synaptic Plasticity, University of Bristol, Bristol, UK
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
11
|
Méndez-Couz M, Manahan-Vaughan D, Silva AP, González-Pardo H, Arias JL, Conejo NM. Metaplastic contribution of neuropeptide Y receptors to spatial memory acquisition. Behav Brain Res 2020; 396:112864. [PMID: 32827566 DOI: 10.1016/j.bbr.2020.112864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022]
Abstract
Neuropeptide Y (NPY) is highly abundant in the brain and is released as a co-transmitter with plasticity-related neurotransmitters such as glutamate, GABA and noradrenaline. Functionally, its release is associated with appetite, anxiety, and stress regulation. NPY acting on Y2 receptors (Y2R), facilitates fear extinction, suggesting a role in associative memory. Here, we explored to what extent NPY action at Y2R contributes to hippocampus-dependent spatial memory and found that dorsal intrahippocampal receptor antagonism improved spatial reference memory acquired in a water maze in rats, without affecting anxiety levels, or spontaneous motor activity. Water maze training resulted in an increase of Y2R, but not Y1R expression in the hippocampus. By contrast, in the prefrontal cortex there was a decrease in Y2R, and an increase of Y1R expression. Our results indicate that neuropeptide Y2R are significantly involved in hippocampus-dependent spatial memory and that receptor expression is dynamically regulated by this learning experience. Effects are consistent with a metaplastic contribution of NPY receptors to cumulative spatial learning.
Collapse
Affiliation(s)
- Marta Méndez-Couz
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Spain; Ruhr University Bochum, Medical Faculty, Dept. Neurophysiology, Bochum, Germany.
| | | | - Ana Paula Silva
- Laboratory of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| | - Héctor González-Pardo
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Spain
| | - Jorge Luis Arias
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Spain
| | - Nélida María Conejo
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Spain
| |
Collapse
|
12
|
Nguyen PV, Connor SA. Noradrenergic Regulation of Hippocampus-Dependent Memory. Cent Nerv Syst Agents Med Chem 2020; 19:187-196. [PMID: 31749419 DOI: 10.2174/1871524919666190719163632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/24/2022]
Abstract
Neuromodulation regulates critical functions of CNS synapses, ranging from neural circuit development to high-order cognitive processes, including learning and memory. This broad scope of action is generally mediated through alterations of the strength of synaptic transmission (i.e. synaptic plasticity). Changes in synaptic strength are widely considered to be a cellular representation of learned information. Noradrenaline is a neuromodulator that is secreted throughout the brain in response to novelty or increased arousal. Once released, noradrenaline activates metabotropic receptors, initiating intracellular signaling cascades that promote enduring changes in synaptic strength and facilitate memory storage. Here, we provide an overview of noradrenergic modulation of synaptic plasticity and memory formation within mammalian neural circuits, which has broad applicability within the neurotherapeutics community. Advances in our understanding of noradrenaline in the context of these processes may provide a foundation for refining treatment strategies for multiple brain diseases, ranging from post-traumatic stress disorder to Alzheimer's Disease.
Collapse
Affiliation(s)
- Peter V Nguyen
- Department of Physiology, University of Alberta School of Medicine, Edmonton, AB, T6G 2H7, Canada
| | - Steven A Connor
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
13
|
Morris water maze overtraining increases the density of thorny excrescences in the basal dendrites of CA3 pyramidal neurons. Behav Brain Res 2020; 379:112373. [DOI: 10.1016/j.bbr.2019.112373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/31/2019] [Accepted: 11/19/2019] [Indexed: 01/08/2023]
|
14
|
Xie YC, Yao ZH, Yao XL, Pan JZ, Zhang SF, Zhang Y, Hu JC. Glucagon-Like Peptide-2 Receptor is Involved in Spatial Cognitive Dysfunction in Rats After Chronic Cerebral Hypoperfusion. J Alzheimers Dis 2019; 66:1559-1576. [PMID: 30452417 DOI: 10.3233/jad-180782] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chronic cerebral hypoperfusion (CCH) affects the aging population and especially patients with neurodegenerative diseases, such as Alzheimer's disease or Parkinson's disease. CCH is closely related to the cognitive dysfunction in these diseases. Glucagon-like peptide-2 receptor (GLP2R) mRNA and protein are highly expressed in the gut and in hippocampal neurons. This receptor is involved in the regulation of food intake and the control of energy balance and glucose homeostasis. The present study employed behavioral techniques, electrophysiology, western blotting, immunohistochemistry, quantitative real time polymerase chain reaction (qRT-PCR), and Golgi staining to investigate whether the expression of GLP2R changes after CCH and whether GLP2R is involved in cognitive impairment caused by CCH. Our findings show that CCH significantly decreased hippocampal GLP2R mRNA and protein levels. GLP2R upregulation could prevent CCH-induced cognitive impairment. It also improved the CCH-induced impairment of long-term potentiation and long-term depression. Additionally, GLP2R modulated after CCH the AKT-mTOR-p70S6K pathway in the hippocampus. Moreover, an upregulation of the GLP2R increased the neurogenesis in the dentate gyrus, neuronal activity, and density of dendritic spines and mushroom spines in hippocampal neurons. Our findings reveal the involvement of GLP2R via a modulation of the AKT-mTOR-p70S6K pathway in the mechanisms underlying CCH-induced impairments of spatial learning and memory. We suggest that the GLP2R and the AKT-mTOR-p70S6K pathway in the hippocampus are promising targets to treat cognition deficits in CCH.
Collapse
Affiliation(s)
- Yan-Chun Xie
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhao-Hui Yao
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiao-Li Yao
- Department of Neurology, Central Hospital of Zhengzhou, Zhengzhou, China
| | - Jian-Zhen Pan
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shao-Feng Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yong Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ji-Chang Hu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Hoang TH, Aliane V, Manahan-Vaughan D. Novel encoding and updating of positional, or directional, spatial cues are processed by distinct hippocampal subfields: Evidence for parallel information processing and the "what" stream. Hippocampus 2018; 28:315-326. [PMID: 29394518 PMCID: PMC5947642 DOI: 10.1002/hipo.22833] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 11/12/2017] [Accepted: 01/23/2018] [Indexed: 11/08/2022]
Abstract
The specific roles of hippocampal subfields in spatial information processing and encoding are, as yet, unclear. The parallel map theory postulates that whereas the CA1 processes discrete environmental features (positional cues used to generate a “sketch map”), the dentate gyrus (DG) processes large navigation‐relevant landmarks (directional cues used to generate a “bearing map”). Additionally, the two‐streams hypothesis suggests that hippocampal subfields engage in differentiated processing of information from the “where” and the “what” streams. We investigated these hypotheses by analyzing the effect of exploration of discrete “positional” features and large “directional” spatial landmarks on hippocampal neuronal activity in rats. As an indicator of neuronal activity we measured the mRNA induction of the immediate early genes (IEGs), Arc and Homer1a. We observed an increase of this IEG mRNA in CA1 neurons of the distal neuronal compartment and in proximal CA3, after novel spatial exploration of discrete positional cues, whereas novel exploration of directional cues led to increases in IEG mRNA in the lower blade of the DG and in proximal CA3. Strikingly, the CA1 did not respond to directional cues and the DG did not respond to positional cues. Our data provide evidence for both the parallel map theory and the two‐streams hypothesis and suggest a precise compartmentalization of the encoding and processing of “what” and “where” information occurs within the hippocampal subfields.
Collapse
Affiliation(s)
- Thu-Huong Hoang
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum 44780, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum 44780, Germany
| | - Verena Aliane
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum 44780, Germany
| | - Denise Manahan-Vaughan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum 44780, Germany
| |
Collapse
|
16
|
Recording Field Potentials and Synaptic Plasticity From Freely Behaving Rodents. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2018. [DOI: 10.1016/b978-0-12-812028-6.00001-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Rebola N, Carta M, Mulle C. Operation and plasticity of hippocampal CA3 circuits: implications for memory encoding. Nat Rev Neurosci 2017; 18:208-220. [DOI: 10.1038/nrn.2017.10] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Jones BW, Deem J, Younts TJ, Weisenhaus M, Sanford CA, Slack MC, Chin J, Nachmanson D, McKennon A, Castillo PE, McKnight GS. Targeted deletion of AKAP7 in dentate granule cells impairs spatial discrimination. eLife 2016; 5. [PMID: 27911261 PMCID: PMC5135391 DOI: 10.7554/elife.20695] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/23/2016] [Indexed: 01/26/2023] Open
Abstract
Protein Kinase A (PKA) mediates synaptic plasticity and is widely implicated in learning and memory. The hippocampal dentate gyrus (DG) is thought to be responsible for processing and encoding distinct contextual associations in response to highly similar inputs. The mossy fiber (MF) axons of the dentate granule cells convey strong excitatory drive to CA3 pyramidal neurons and express presynaptic, PKA-dependent forms of plasticity. Here, we demonstrate an essential role for the PKA anchoring protein, AKAP7, in mouse MF axons and terminals. Genetic ablation of AKAP7 specifically from dentate granule cells results in disruption of MF-CA3 LTP directly initiated by cAMP, and the AKAP7 mutant mice are selectively deficient in pattern separation behaviors. Our results suggest that the AKAP7/PKA complex in the MF projections plays an essential role in synaptic plasticity and contextual memory formation. DOI:http://dx.doi.org/10.7554/eLife.20695.001
Collapse
Affiliation(s)
- Brian W Jones
- Department of Pharmacology, University of Washington School of Medicine, Seattle, United States
| | - Jennifer Deem
- Department of Pharmacology, University of Washington School of Medicine, Seattle, United States
| | - Thomas J Younts
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - Michael Weisenhaus
- Department of Pharmacology, University of Washington School of Medicine, Seattle, United States
| | - Christina A Sanford
- Department of Pharmacology, University of Washington School of Medicine, Seattle, United States
| | - Margaret C Slack
- Department of Pharmacology, University of Washington School of Medicine, Seattle, United States
| | - Jenesa Chin
- Department of Pharmacology, University of Washington School of Medicine, Seattle, United States
| | - Daniela Nachmanson
- Department of Pharmacology, University of Washington School of Medicine, Seattle, United States
| | - Alex McKennon
- Department of Pharmacology, University of Washington School of Medicine, Seattle, United States
| | - Pablo E Castillo
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - G Stanley McKnight
- Department of Pharmacology, University of Washington School of Medicine, Seattle, United States
| |
Collapse
|
19
|
Twarkowski H, Manahan-Vaughan D. Loss of Catecholaminergic Neuromodulation of Persistent Forms of Hippocampal Synaptic Plasticity with Increasing Age. Front Synaptic Neurosci 2016; 8:30. [PMID: 27725799 PMCID: PMC5035743 DOI: 10.3389/fnsyn.2016.00030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/06/2016] [Indexed: 12/31/2022] Open
Abstract
Neuromodulation by means of the catecholaminergic system is a key component of motivation-driven learning and behaviorally modulated hippocampal synaptic plasticity. In particular, dopamine acting on D1/D5 receptors and noradrenaline acting on beta-adrenergic receptors exert a very potent regulation of forms of hippocampal synaptic plasticity that last for very long-periods of time (>24 h), and occur in conjunction with novel spatial learning. Antagonism of these receptors not only prevents long-term potentiation (LTP) and long-term depression (LTD), but prevents the memory of the spatial event that, under normal circumstances, leads to the perpetuation of these plasticity forms. Spatial learning behavior that normally comes easily to rats, such as object-place learning and spatial reference learning, becomes increasingly impaired with aging. Middle-aged animals display aging-related deficits of specific, but not all, components of spatial learning, and one possibility is that this initial manifestation of decrements in learning ability that become apparent in middle-age relate to changes in motivation, attention and/or the regulation by neuromodulatory systems of these behavioral states. Here, we compared the regulation by dopaminergic D1/D5 and beta-adrenergic receptors of persistent LTP in young (2-4 month old) and middle-aged (8-14 month old) rats. We observed in young rats, that weak potentiation that typically lasts for ca. 2 h could be strengthened into persistent (>24 h) LTP by pharmacological activation of either D1/D5 or beta-adrenergic receptors. By contrast, no such facilitation occurred in middle-aged rats. This difference was not related to an ostensible learning deficit: a facilitation of weak potentiation into LTP by spatial learning was possible both in young and middle-aged rats. It was also not directly linked to deficits in LTP: strong afferent stimulation resulted in equivalent LTP in both age groups. We postulate that this change in catecholaminergic control of synaptic plasticity that emerges with aging, does not relate to a learning deficit per se, rather it derives from an increase in behavioral thresholds for novelty and motivation that emerge with increasing age that impact, in turn, on learning efficacy.
Collapse
Affiliation(s)
- Hannah Twarkowski
- Department of Neurophysiology, Medical Faculty, Ruhr University BochumBochum, Germany; International Graduate School of Neuroscience, Ruhr University BochumBochum, Germany
| | | |
Collapse
|
20
|
Hagena H, Manahan-Vaughan D. Dopamine D1/D5, But not D2/D3, Receptor Dependency of Synaptic Plasticity at Hippocampal Mossy Fiber Synapses that Is Enabled by Patterned Afferent Stimulation, or Spatial Learning. Front Synaptic Neurosci 2016; 8:31. [PMID: 27721791 PMCID: PMC5033958 DOI: 10.3389/fnsyn.2016.00031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/08/2016] [Indexed: 01/11/2023] Open
Abstract
Although the mossy fiber (MF) synapses of the hippocampal CA3 region display quite distinct properties in terms of the molecular mechanisms that underlie synaptic plasticity, they nonetheless exhibit persistent (>24 h) synaptic plasticity that is akin to that observed at the Schaffer collateral (SCH)-CA1 and perforant path (PP)-dentate gyrus (DG) synapses of freely behaving rats. In addition, they also respond to novel spatial learning with very enduring forms of long-term potentiation (LTP) and long-term depression (LTD). These latter forms of synaptic plasticity are directly related to the learning behavior: novel exploration of generalized changes in space facilitates the expression of LTP at MF-CA3 synapses, whereas exploration of novel configurations of large environmental features facilitates the expression of LTD. In the absence of spatial novelty, synaptic plasticity is not expressed. Motivation is a potent determinant of whether learning about the spatial experience effectively occurs and the neuromodulator dopamine (DA) plays a key role in motivation-based learning. Prior research on the regulation by DA receptors of long-term synaptic plasticity in CA1 and DG synapses in vivo suggests that whereas D2/D3 receptors may modulate a general predisposition toward expressing plasticity, D1/D5 receptors may directly regulate the direction of change in synaptic strength that occurs during learning. Although the CA3 region is believed to play a pivotal role in many forms of learning, the role of dopamine receptors in persistent (>24 h) forms of synaptic plasticity at MF-CA3 synapses is unknown. Here, we report that whereas pharmacological antagonism of D2/D3 receptors had no impact on LTP or LTD, antagonism of D1/D5 receptors significantly impaired LTP and LTD that were induced by solely by means of patterned afferent stimulation, or LTP/LTD that are typically enhanced by the conjunction of afferent stimulation and novel spatial learning. These data indicate an important role for DA acting on D1/D5 receptors in the support of long-lasting and learning-related forms of synaptic plasticity at MF-CA3 synapses and provide further evidence for an important neuromodulatory role for this receptor in experience-dependent synaptic encoding in the hippocampal subfields.
Collapse
Affiliation(s)
- Hardy Hagena
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum Bochum, Germany
| | | |
Collapse
|
21
|
Dietz B, Manahan-Vaughan D. Hippocampal long-term depression is facilitated by the acquisition and updating of memory of spatial auditory content and requires mGlu5 activation. Neuropharmacology 2016; 115:30-41. [PMID: 27055771 DOI: 10.1016/j.neuropharm.2016.02.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/22/2016] [Accepted: 02/22/2016] [Indexed: 12/21/2022]
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are key cellular processes that support memory formation. Whereas increases of synaptic strength by means of LTP may support the creation of a spatial memory 'engram', LTD appears to play an important role in refining and optimising experience-dependent encoding. A differentiation in the role of hippocampal subfields is apparent. For example, LTD in the dentate gyrus (DG) is enabled by novel learning about large visuospatial features, whereas in area CA1, it is enabled by learning about discrete aspects of spatial content, whereby, both discrete visuospatial and olfactospatial cues trigger LTD in CA1. Here, we explored to what extent local audiospatial cues facilitate information encoding in the form of LTD in these subfields. Coupling of low frequency afferent stimulation (LFS) with discretely localised, novel auditory tones in the sonic hearing, or ultrasonic range, facilitated short-term depression (STD) into LTD (>24 h) in CA1, but not DG. Re-exposure to the now familiar audiospatial configuration ca. 1 week later failed to enhance STD. Reconfiguration of the same audiospatial cues resulted anew in LTD when ultrasound, but not non-ultrasound cues were used. LTD facilitation that was triggered by novel exposure to spatially arranged tones, or to spatial reconfiguration of the same tones were both prevented by an antagonism of the metabotropic glutamate receptor, mGlu5. These data indicate that, if behaviourally salient enough, the hippocampus can use audiospatial cues to facilitate LTD that contributes to the encoding and updating of spatial representations. Effects are subfield-specific, and require mGlu5 activation, as is the case for visuospatial information processing. These data reinforce the likelihood that LTD supports the encoding of spatial features, and that this occurs in a qualitative and subfield-specific manner. They also support that mGlu5 is essential for synaptic encoding of spatial experience. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
Affiliation(s)
- Birte Dietz
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, 44780, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, 44780, Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, 44780, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, 44780, Bochum, Germany.
| |
Collapse
|
22
|
Twarkowski H, Hagena H, Manahan-Vaughan D. The 5-hydroxytryptamine4 receptor enables differentiation of informational content and encoding in the hippocampus. Hippocampus 2016; 26:875-91. [PMID: 26800645 PMCID: PMC5067691 DOI: 10.1002/hipo.22569] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/15/2016] [Accepted: 01/20/2016] [Indexed: 11/10/2022]
Abstract
Long‐term synaptic plasticity, represented by long‐term depression (LTD) and long‐term potentiation (LTP) comprise cellular processes that enable memory. Neuromodulators such as serotonin regulate hippocampal function, and the 5‐HT4‐receptor contributes to processes underlying cognition. It was previously shown that in the CA1‐region, 5‐HT4‐receptors regulate the frequency‐response relationship of synaptic plasticity: patterned afferent stimulation that has no effect on synaptic strength (i.e., a θm‐frequency), will result in LTP or LTD, when given in the presence of a 5‐HT4‐agonist, or antagonist, respectively. Here, we show that in the dentate gyrus (DG) and CA3 regions of freely behaving rats, pharmacological manipulations of 5‐HT4‐receptors do not influence responses generated at θm‐frequencies, but activation of 5‐HT4‐receptors prevents persistent LTD in mossy fiber (mf)‐CA3, or perforant path‐DG synapses. Furthermore, the regulation by 5‐HT4‐receptors of LTP is subfield‐specific: 5‐HT4‐receptor‐activation prevents mf‐CA3‐LTP, but does not strongly affect DG‐potentiation. These data suggest that 5‐HT4‐receptor activation prioritises information encoding by means of LTP in the DG and CA1 regions, and suppresses persistent information storage in mf‐CA3 synapses. Thus, 5‐HT4‐receptors serve to shape information storage across the hippocampal circuitry and specify the nature of experience‐dependent encoding. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hannah Twarkowski
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Hardy Hagena
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
23
|
Hagena H, Hansen N, Manahan-Vaughan D. β-Adrenergic Control of Hippocampal Function: Subserving the Choreography of Synaptic Information Storage and Memory. Cereb Cortex 2016; 26:1349-64. [PMID: 26804338 PMCID: PMC4785955 DOI: 10.1093/cercor/bhv330] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Noradrenaline (NA) is a key neuromodulator for the regulation of behavioral state and cognition. It supports learning by increasing arousal and vigilance, whereby new experiences are “earmarked” for encoding. Within the hippocampus, experience-dependent information storage occurs by means of synaptic plasticity. Furthermore, novel spatial, contextual, or associative learning drives changes in synaptic strength, reflected by the strengthening of long-term potentiation (LTP) or long-term depression (LTD). NA acting on β-adrenergic receptors (β-AR) is a key determinant as to whether new experiences result in persistent hippocampal synaptic plasticity. This can even dictate the direction of change of synaptic strength. The different hippocampal subfields play different roles in encoding components of a spatial representation through LTP and LTD. Strikingly, the sensitivity of synaptic plasticity in these subfields to β-adrenergic control is very distinct (dentate gyrus > CA3 > CA1). Moreover, NA released from the locus coeruleus that acts on β-AR leads to hippocampal LTD and an enhancement of LTD-related memory processing. We propose that NA acting on hippocampal β-AR, that is graded according to the novelty or saliency of the experience, determines the content and persistency of synaptic information storage in the hippocampal subfields and therefore of spatial memories.
Collapse
Affiliation(s)
- Hardy Hagena
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Niels Hansen
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
24
|
Aarse J, Herlitze S, Manahan-Vaughan D. The requirement of BDNF for hippocampal synaptic plasticity is experience-dependent. Hippocampus 2016; 26:739-51. [PMID: 26662461 PMCID: PMC5066736 DOI: 10.1002/hipo.22555] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2015] [Indexed: 12/05/2022]
Abstract
Brain‐derived neurotrophic factor (BDNF) supports neuronal survival, growth, and differentiation and has been implicated in forms of hippocampus‐dependent learning. In vitro, a specific role in hippocampal synaptic plasticity has been described, although not all experience‐dependent forms of synaptic plasticity critically depend on BDNF. Synaptic plasticity is likely to enable long‐term synaptic information storage and memory, and the induction of persistent (>24 h) forms, such as long‐term potentiation (LTP) and long‐term depression (LTD) is tightly associated with learning specific aspects of a spatial representation. Whether BDNF is required for persistent (>24 h) forms of LTP and LTD, and how it contributes to synaptic plasticity in the freely behaving rodent has never been explored. We examined LTP, LTD, and related forms of learning in the CA1 region of freely dependent mice that have a partial knockdown of BDNF (BDNF+/−). We show that whereas early‐LTD (<90min) requires BDNF, short‐term depression (<45 min) does not. Furthermore, BDNF is required for LTP that is induced by mild, but not strong short afferent stimulation protocols. Object‐place learning triggers LTD in the CA1 region of mice. We observed that object‐place memory was impaired and the object‐place exploration failed to induce LTD in BDNF+/− mice. Furthermore, spatial reference memory, that is believed to be enabled by LTP, was also impaired. Taken together, these data indicate that BDNF is required for specific, but not all, forms of hippocampal‐dependent information storage and memory. Thus, very robust forms of synaptic plasticity may circumvent the need for BDNF, rather it may play a specific role in the optimization of weaker forms of plasticity. The finding that both learning‐facilitated LTD and spatial reference memory are both impaired in BDNF+/− mice, suggests moreover, that it is critically required for the physiological encoding of hippocampus‐dependent memory. © 2015 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Janna Aarse
- Department of Neurophysiology, Medical Faculty.,International Graduate School of Neuroscience
| | - Stefan Herlitze
- Faculty of Biology and Biotechnology, Department of Zoology and Neurobiology Ruhr University, Bochum, 44780 Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty.,International Graduate School of Neuroscience
| |
Collapse
|
25
|
Balderston NL, Mathur A, Adu-Brimpong J, Hale EA, Ernst M, Grillon C. Effect of anxiety on behavioural pattern separation in humans. Cogn Emot 2015; 31:238-248. [PMID: 26480349 DOI: 10.1080/02699931.2015.1096235] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Behavioural pattern separation (BPS), the ability to distinguish among similar stimuli based on subtle physical differences, has been used to study the mechanism underlying stimulus generalisation. Fear overgeneralisation is often observed in individuals with posttraumatic stress disorder and other anxiety disorders. However, the relationship between anxiety and BPS remains unclear. The purpose of this study was to determine the effect of anxiety (threat of shock) on BPS, which was assessed across separate encoding and retrieval sessions. Images were encoded/retrieved during blocks of threat or safety in a 2 × 2 factorial design. During retrieval, participants indicated whether images were new, old, or altered. Better accuracy was observed for altered images encoded during periods of threat compared to safety, but only if those images were also retrieved during periods of safety. These results suggest that overgeneralisation in anxiety may be due to altered pattern separation.
Collapse
Affiliation(s)
- Nicholas L Balderston
- a Section on Neurobiology of Fear and Anxiety , National Institute of Mental Health, National Institutes of Health , Bethesda , MD , USA
| | - Ambika Mathur
- a Section on Neurobiology of Fear and Anxiety , National Institute of Mental Health, National Institutes of Health , Bethesda , MD , USA
| | - Joel Adu-Brimpong
- a Section on Neurobiology of Fear and Anxiety , National Institute of Mental Health, National Institutes of Health , Bethesda , MD , USA
| | - Elizabeth A Hale
- a Section on Neurobiology of Fear and Anxiety , National Institute of Mental Health, National Institutes of Health , Bethesda , MD , USA
| | - Monique Ernst
- a Section on Neurobiology of Fear and Anxiety , National Institute of Mental Health, National Institutes of Health , Bethesda , MD , USA
| | - Christian Grillon
- a Section on Neurobiology of Fear and Anxiety , National Institute of Mental Health, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
26
|
André MAE, Wolf OT, Manahan-Vaughan D. Beta-adrenergic receptors support attention to extinction learning that occurs in the absence, but not the presence, of a context change. Front Behav Neurosci 2015; 9:125. [PMID: 26074793 PMCID: PMC4444826 DOI: 10.3389/fnbeh.2015.00125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/29/2015] [Indexed: 11/13/2022] Open
Abstract
The noradrenergic (NA)-system is an important regulator of cognitive function. It contributes to extinction learning (EL), and in disorders where EL is impaired NA-dysfunction has been postulated. We explored whether NA acting on beta-adrenergic-receptors (β-AR), regulates EL that depends on context, but is not fear-associated. We assessed behavior in an "AAA" or "ABA" paradigm: rats were trained for 3 days in a T-maze (context-A) to learn that a reward is consistently found in the goal arm, despite low reward probability. This was followed on day 4 by EL (unrewarded), whereby in the ABA-paradigm, EL was reinforced by a context change (B), and in the AAA-paradigm, no context change occurred. On day 5, re-exposure to the A-context (unrewarded) occurred. Typically, in control "AAA" animals EL occurred on day 4 that progressed further on day 5. In control "ABA" animals, EL also occurred on day 4, followed by renewal of the previously learned (A) behavior on day 5, that was succeeded (on day 5) by extinction of this behavior, as the animals realised that no food reward would be given. Treatment with the β-AR-antagonist, propranolol, prior to EL on day 4, impaired EL in the AAA-paradigm. In the "ABA" paradigm, antagonist treatment on day 4, had no effect on extinction that was reinforced by a context change (B). Furthermore, β-AR-antagonism prior to renewal testing (on day 5) in the ABA-paradigm, resulted in normal renewal behavior, although subsequent extinction of responses during day 5 was prevented by the antagonist. Thus, under both treatment conditions, β-AR-antagonism prevented extinction of the behavior learned in the "A" context. β-AR-blockade during an overt context change did not prevent EL, whereas β-AR were required for EL in an unchanging context. These data suggest that β-AR may support EL by reinforcing attention towards relevant changes in the previously learned experience, and that this process supports extinction learning in constant-context conditions.
Collapse
Affiliation(s)
| | - Oliver T Wolf
- International Graduate School for Neuroscience, Ruhr University Bochum Bochum, Germany ; Faculty of Psychology, Department of Cognitive Psychology, Ruhr University Bochum Bochum, Germany
| | - Denise Manahan-Vaughan
- International Graduate School for Neuroscience, Ruhr University Bochum Bochum, Germany ; Medical Faculty, Department of Neurophysiology, Ruhr University Bochum Bochum, Germany
| |
Collapse
|
27
|
Grüter T, Wiescholleck V, Dubovyk V, Aliane V, Manahan-Vaughan D. Altered neuronal excitability underlies impaired hippocampal function in an animal model of psychosis. Front Behav Neurosci 2015; 9:117. [PMID: 26042007 PMCID: PMC4438226 DOI: 10.3389/fnbeh.2015.00117] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/22/2015] [Indexed: 01/12/2023] Open
Abstract
Psychosis is accompanied by severe attentional deficits, and impairments in associational-memory processing and sensory information processing that are ascribed to dysfunctions in prefrontal and hippocampal function. Disruptions of glutamatergic signaling may underlie these alterations: Antagonism of the N-methyl-D-aspartate receptor (NMDAR) results in similar molecular, cellular, cognitive and behavioral changes in rodents and/or humans as those that occur in psychosis, raising the question as to whether changes in glutamatergic transmission may be intrinsic to the pathophysiology of the disease. In an animal model of psychosis that comprises treatment with the irreversible NMDAR-antagonist, MK801, we explored the cellular mechanisms that may underlie hippocampal dysfunction in psychosis. MK801-treatment resulted in a profound loss of hippocampal LTP that was evident 4 weeks after treatment. Whereas neuronal expression of the immediate early gene, Arc, was enhanced in the hippocampus by spatial learning in controls, MK801-treated animals failed to show activity-dependent increases in Arc expression. By contrast, a significant increase in basal Arc expression in the absence of learning was evident compared to controls. Paired-pulse (PP) facilitation was increased at the 40 ms interval indicating that NMDAR and/or fast GABAergic-mediated neurotransmission was disrupted. In line with this, MK801-treatment resulted in a significant decrease in GABA(A), and increase in GABA(B)-receptor-expression in PFC, along with a significant increase of GABA(B)- and NMDAR-GluN2B expression in the dentate gyrus. NMDAR-GluN1 or GluN2A subunit expression was unchanged. These data suggest that in psychosis, deficits in hippocampus-dependent memory may be caused by a loss of hippocampal LTP that arises through enhanced hippocampal neuronal excitability, altered GluN2B and GABA receptor expression and an uncoupling of the hippocampus-prefrontal cortex circuitry.
Collapse
Affiliation(s)
- Thomas Grüter
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum Bochum, Germany ; International Graduate School of Neuroscience, Ruhr University Bochum Bochum, Germany
| | | | - Valentyna Dubovyk
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum Bochum, Germany
| | - Verena Aliane
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum Bochum, Germany
| | - Denise Manahan-Vaughan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum Bochum, Germany ; International Graduate School of Neuroscience, Ruhr University Bochum Bochum, Germany
| |
Collapse
|
28
|
Opioid receptor-dependent sex differences in synaptic plasticity in the hippocampal mossy fiber pathway of the adult rat. J Neurosci 2015; 35:1723-38. [PMID: 25632146 DOI: 10.1523/jneurosci.0820-14.2015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mossy fiber (MF) pathway is critical to hippocampal function and influenced by gonadal hormones. Physiological data are limited, so we asked whether basal transmission and long-term potentiation (LTP) differed in slices of adult male and female rats. The results showed small sex differences in basal transmission but striking sex differences in opioid receptor sensitivity and LTP. When slices were made from females on proestrous morning, when serum levels of 17β-estradiol peak, the nonspecific opioid receptor antagonist naloxone (1 μm) enhanced MF transmission but there was no effect in males, suggesting preferential opioid receptor-dependent inhibition in females when 17β-estradiol levels are elevated. The μ-opioid receptor (MOR) antagonist Cys2,Tyr3,Orn5,Pen7-amide (CTOP; 300 nm) had a similar effect but the δ-opioid receptor (DOR) antagonist naltrindole (NTI; 1 μm) did not, implicating MORs in female MF transmission. The GABAB receptor antagonist saclofen (200 μm) occluded effects of CTOP but the GABAA receptor antagonist bicuculline (10 μm) did not. For LTP, a low-frequency (LF) protocol was used because higher frequencies elicited hyperexcitability in females. Proestrous females exhibited LF-LTP but males did not, suggesting a lower threshold for synaptic plasticity when 17β-estradiol is elevated. NTI blocked LF-LTP in proestrous females, but CTOP did not. Electron microscopy revealed more DOR-labeled spines of pyramidal cells in proestrous females than males. Therefore, we suggest that increased postsynaptic DORs mediate LF-LTP in proestrous females. The results show strong MOR regulation of MF transmission only in females and identify a novel DOR-dependent form of MF LTP specific to proestrus.
Collapse
|
29
|
Hansen N, Manahan-Vaughan D. Hippocampal long-term potentiation that is elicited by perforant path stimulation or that occurs in conjunction with spatial learning is tightly controlled by beta-adrenoreceptors and the locus coeruleus. Hippocampus 2015; 25:1285-98. [PMID: 25727388 PMCID: PMC6680149 DOI: 10.1002/hipo.22436] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2015] [Indexed: 11/19/2022]
Abstract
The noradrenergic system, driven by locus coeruleus (LC) activation, plays a key role in the regulating and directing of changes in hippocampal synaptic efficacy. The LC releases noradrenaline in response to novel experience and LC activation leads to an enhancement of hippocampus‐based learning, and facilitates synaptic plasticity in the form of long‐term depression (LTD) and long‐term potentiation (LTP) that occur in association with spatial learning. The predominant receptor for mediating these effects is the β‐adrenoreceptor. Interestingly, the dependency of synaptic plasticity on this receptor is different in the hippocampal subfields whereby in the CA1 in vivo, LTP, but not LTD requires β‐adrenoreceptor activation, whereas in the mossy fiber synapse LTP and LTD do not depend on this receptor. By contrast, synaptic plasticity that is facilitated by spatial learning is highly dependent on β‐adrenoreceptor activation in both hippocampal subfields. Here, we explored whether LTP induced by perforant‐path (pp) stimulation in vivo or that is facilitated by spatial learning depends on β‐adrenoreceptors. We found that under both LTP conditions, antagonising the receptors disabled the persistence of LTP. β‐adrenoreceptor‐antagonism also prevented spatial learning. Strikingly, activation of the LC before high‐frequency stimulation (HFS) of the pp prevented short‐term potentiation but not LTP, and LC stimulation after pp‐HFS‐induced depotentiation of LTP. This depotentiation was prevented by β‐adrenoreceptor‐antagonism. These data suggest that β‐adrenoreceptor‐activation, resulting from noradrenaline release from the LC during enhanced arousal and learning, comprises a mechanism whereby the duration and degree of LTP is regulated and fine tuned. This may serve to optimize the creation of a spatial memory engram by means of LTP and LTD. This process can be expected to support the special role of the dentate gyrus as a crucial subregional locus for detecting and processing novelty within the hippocampus. © 2015 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
30
|
Wiescholleck V, Manahan-Vaughan D. Antagonism of D1/D5 receptors prevents long-term depression (LTD) and learning-facilitated LTD at the perforant path-dentate gyrus synapse in freely behaving rats. Hippocampus 2014; 24:1615-22. [PMID: 25112177 DOI: 10.1002/hipo.22340] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2014] [Indexed: 11/11/2022]
Abstract
Hippocampal synaptic plasticity, in the form of long-term potentiation (LTP) and long-term depression (LTD), enables spatial memory formation, whereby LTP and LTD are likely to contribute different elements to the resulting spatial representation. Dopamine, released from the ventral tegmental area particularly under conditions of reward, acts on the hippocampus, and may specifically influence the encoding of information into long-term memory. The dentate gyrus (DG), as the "gateway" to the hippocampus is likely to play an important role in this process. D1/D5 dopamine receptors are importantly involved in the regulation of synaptic plasticity thresholds in the CA1 region of the hippocampus and determine the direction of change in synaptic strength that occurs during novel spatial learning. Here, we explored whether D1/D5-receptors influence LTD that is induced in the DG following patterned afferent stimulation of the perforant path of freely behaving adult rats, or influence LTD that occurs in association with spatial learning. We found that LTD that is induced by afferent stimulation, and LTD that is facilitated by learning about novel landmark configurations, were both prevented by D1/D5-receptor antagonism, whereas agonist activation of the D1/D5-receptor had no effect on basal tonus or short-term depression. Other studies have reported that in the DG, D1/D5-receptor agonism or antagonism do not affect LTP, but agonism prevents depotentiation. These findings suggest that the dopaminergic system, acting via D1/D5-receptors, influences information gating by the DG and modulates the direction of change in synaptic strength that underlies information storage in this hippocampal substructure. Information encoded by robust forms of LTD is especially dependent on D1/D5-receptor activation. Thus, dopamine acting on D1/D5-receptors is likely to support specific experience-dependent encoding, and may influence the content of hippocampal representations of experience.
Collapse
|
31
|
Takeda A, Tamano H. Cognitive decline due to excess synaptic Zn(2+) signaling in the hippocampus. Front Aging Neurosci 2014; 6:26. [PMID: 24578691 PMCID: PMC3936311 DOI: 10.3389/fnagi.2014.00026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/13/2014] [Indexed: 12/02/2022] Open
Abstract
Zinc is an essential component of physiological brain function. Vesicular zinc is released from glutamatergic (zincergic) neuron terminals and serves as a signal factor (Zn2+ signal) in both the intracellular (cytosol) compartment and the extracellular compartment. Synaptic Zn2+ signaling is dynamically linked to neurotransmission and is involved in processes of synaptic plasticity such as long-term potentiation and cognitive activity. On the other hand, the activity of the hypothalamic–pituitary–adrenal (HPA) axis, i.e., glucocorticoid secretion, which can potentiate glutamatergic neuron activity, is linked to cognitive function. HPA axis activity modifies synaptic Zn2+ dynamics at zincergic synapses. An increase in HPA axis activity, which occurs after exposure to stress, may induce excess intracellular Zn2+ signaling in the hippocampus, followed by hippocampus-dependent memory deficit. Excessive excitation of zincergic neurons in the hippocampus can contribute to cognitive decline under stressful and/or pathological conditions. This paper provides an overview of the ``Hypothesis and Theory'' of Zn2+-mediated modification of cognitive activity.
Collapse
Affiliation(s)
- Atsushi Takeda
- Department of Bioorganic Chemistry, School of Pharmaceutical Sciences, University of Shizuoka Shizuoka, Japan
| | - Haruna Tamano
- Department of Bioorganic Chemistry, School of Pharmaceutical Sciences, University of Shizuoka Shizuoka, Japan
| |
Collapse
|
32
|
Hansen N, Manahan-Vaughan D. Locus Coeruleus Stimulation Facilitates Long-Term Depression in the Dentate Gyrus That Requires Activation of β-Adrenergic Receptors. Cereb Cortex 2014; 25:1889-96. [PMID: 24464942 PMCID: PMC4459289 DOI: 10.1093/cercor/bht429] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Synaptic plasticity comprises a cellular mechanism through which the hippocampus most likely enables memory formation. Neuromodulation, related to arousal, is a key aspect in information storage. The activation of locus coeruleus (LC) neurons by novel experience leads to noradrenaline release in the hippocampus at the level of the dentate gyrus (DG). We explored whether synaptic plasticity in the DG is influenced by activation of the LC via electrical stimulation. Coupling of test-pulses that evoked stable basal synaptic transmission in the DG with stimulation of the LC induced β-adrenoreceptor-dependent long-term depression (LTD) at perforant path–DG synapses in adult rats. Furthermore, persistent LTD (>24 h) induced by perforant path stimulation also required activation of β-adrenergic receptors: Whereas a β-adrenergic receptor antagonist (propranolol) prevented, an agonist (isoproterenol) strengthened the persistence of LTD for over 24 h. These findings support the hypothesis that persistent LTD in the DG is modulated by β-adrenergic receptors. Furthermore, LC activation potently facilitates DG LTD. This suggests in turn that synaptic plasticity in the DG is tightly regulated by activity in the noradrenergic system. This may reflect the role of the LC in selecting salient information for subsequent synaptic processing in the hippocampus.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, 44780 Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
33
|
Goh JJ, Manahan-Vaughan D. Hippocampal long-term depression in freely behaving mice requires the activation of beta-adrenergic receptors. Hippocampus 2013; 23:1299-308. [PMID: 23878012 DOI: 10.1002/hipo.22168] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/19/2013] [Accepted: 07/03/2013] [Indexed: 12/20/2022]
Abstract
In the intact mouse hippocampus patterned afferent stimulation does not lead to long-term depression (LTD) at Schaffer collateral (Sc)-CA1 synapses, but the same synapses express robust LTD (<24 h) if test-pulse or patterned afferent experience is coupled with novel spatial learning. This suggests that the failure of sole afferent stimulation to elicit LTD relates to the absence of neuromodulatory input related to increased arousal or novelty during learning. Locus coeruleus (LC) firing increases during novel experience, and in rats patterned stimulation of the LC together with test-pulse stimulation of Sc-CA1 synapses leads to robust LTD in vivo. This effect is mediated by beta-adrenergic receptors. Here, we explored if activation of beta-adrenergic receptors supports the expression of LTD in freely behaving mice. We also explored if beta-adrenergic receptors contribute to endogenous LTD that is expressed following spatial learning. Patterned stimulation of Sc-CA1 synapses at 3 Hz (200 pulses) resulted in short-term depression (STD). Pretreatment with isoproterenol, an agonist of beta-adrenergic receptors, resulted in robust LTD (<24 h). Test-pulse stimulation under control conditions elicited field potentials that were stable for the 24-h monitoring period. Coupling of test-pulses with a novel spatial object recognition task resulted in robust endogenous LTD (<24 h). Pretreatment with propranolol, a beta-adrenergic receptor antagonist, completely prevented endogenous LTD that was enabled by learning and prevented object recognition learning itself. These data indicate that the absence of LTD in freely behaving mice, under standard recording conditions, does not reflect an inability of mice to express LTD, rather it is due to the absence of a noradrenalin tonus. Our data also support that spatial object recognition requires beta-adrenergic receptor activation. Furthermore, LTD that is enabled by novel spatial learning critically depends on activation of beta-adrenergic receptors that are presumably activated by noradrenalin released by the LC in response to the novel experience.
Collapse
Affiliation(s)
- Jinzhong Jeremy Goh
- Department of Neurophysiology, Ruhr University Bochum, Medical Faculty, Bochum, 44780, Germany
| | | |
Collapse
|
34
|
Aksoy-Aksel A, Manahan-Vaughan D. The temporoammonic input to the hippocampal CA1 region displays distinctly different synaptic plasticity compared to the Schaffer collateral input in vivo: significance for synaptic information processing. Front Synaptic Neurosci 2013; 5:5. [PMID: 23986697 PMCID: PMC3750210 DOI: 10.3389/fnsyn.2013.00005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 08/03/2013] [Indexed: 11/28/2022] Open
Abstract
In terms of its sub-regional differentiation, the hippocampal CA1 region receives cortical information directly via the perforant (temporoammonic) path (pp-CA1 synapse) and indirectly via the tri-synaptic pathway where the last relay station is the Schaffer collateral-CA1 synapse (Sc-CA1 synapse). Research to date on pp-CA1 synapses has been conducted predominantly in vitro and never in awake animals, but these studies hint that information processing at this synapse might be distinct to processing at the Sc-CA1 synapse. Here, we characterized synaptic properties and synaptic plasticity at the pp-CA1 synapse of freely behaving adult rats. We observed that field excitatory postsynaptic potentials at the pp-CA1 synapse have longer onset latencies and a shorter time-to-peak compared to the Sc-CA1 synapse. LTP (>24 h) was successfully evoked by tetanic afferent stimulation of pp-CA1 synapses. Low frequency stimulation evoked synaptic depression at Sc-CA1 synapses, but did not elicit LTD at pp-CA1 synapses unless the Schaffer collateral afferents to the CA1 region had been severed. Paired-pulse responses also showed significant differences. Our data suggest that synaptic plasticity at the pp-CA1 synapse is distinct from the Sc-CA1 synapse and that this may reflect its specific role in hippocampal information processing.
Collapse
Affiliation(s)
- Ayla Aksoy-Aksel
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum Bochum, Germany ; International Graduate School for Neuroscience, Ruhr University Bochum Bochum, Germany
| | | |
Collapse
|
35
|
André MAE, Manahan-Vaughan D. Spatial olfactory learning facilitates long-term depression in the hippocampus. Hippocampus 2013; 23:963-8. [PMID: 23804412 DOI: 10.1002/hipo.22158] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2013] [Indexed: 11/06/2022]
Abstract
Recently, it has emerged that visual spatial exploration facilitates synaptic plasticity at different synapses within the trisynaptic network. Particularly striking is the finding that visuospatial contexts facilitate hippocampal long-term depression (LTD), raising the possibility that this form of plasticity may be important for memory formation. It is not known whether other sensory modalities elicit similar permissive effects on LTD. Here, we explored if spatial olfactory learning facilitates LTD in the hippocampus region of freely behaving rats. Patterned afferent stimulation of the Schaffer collaterals elicited short-term depression (STD) (<1 h) of evoked responses in the Stratum radiatum of the CA1 region. Coupling of this protocol with novel exploration of a spatial constellation of olfactory cues facilitated short-term depression into LTD that lasted for over 24 h. Facilitation of LTD did not occur when animals were re-exposed 1 week later to the same odors in the same spatial constellation. Evaluation of learning behavior revealed that 1 week after the 1st odor exposure, the animals remembered the odors and their relative positions. These data support that the hippocampus can use nonvisuospatial resources, and specifically can use spatial olfactory information, to facilitate LTD and to generate spatial representations. The data also support that a tight relationship exists between the processing of spatial contextual information and the expression of LTD in the hippocampus.
Collapse
Affiliation(s)
- Marion Agnès Emma André
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Germany; International Graduate School for Neuroscience, Ruhr University Bochum, Germany
| | | |
Collapse
|
36
|
Hagena H, Manahan-Vaughan D. Differentiation in the protein synthesis-dependency of persistent synaptic plasticity in mossy fiber and associational/commissural CA3 synapses in vivo. Front Integr Neurosci 2013; 7:10. [PMID: 23459947 PMCID: PMC3585440 DOI: 10.3389/fnint.2013.00010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/12/2013] [Indexed: 11/19/2022] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are two mechanisms involved in the long-term storage of information in hippocampal synapses. In the hippocampal CA1 region, the late phases of LTP and LTD are protein-synthesis dependent. In the dentate gyrus, late-LTP but not LTD requires protein synthesis. The protein synthesis-dependency of persistent plasticity at CA3 synapses has not yet been characterized. Here, the roles of protein transcription and translation at mossy fiber (mf) and associational/commissural (AC)- synapses were studied in freely behaving rats. In control animals, low-frequency stimulation (LFS) evoked robust LTD (>24 h), whereas high-frequency stimulation (HFS) elicited robust LTP (>24 h) at both mf-CA3 and AC-CA3 synapses. Translation inhibitors prevented early and late phases of LTP and LTD at mf-CA3 synapses. In contrast, at AC–CA3 synapses, translation inhibitors prevented intermediate/late-LTP and late-LTD only. Transcription effects were also synapse-specific: whereas transcription inhibitors inhibited late-LTP and late-LTD (>3 h) at mf-CA3 synapses, at AC–CA3 synapses, protein transcription affected early-LTP and late-LTD. These results show that the AC-CA3 and mf-CA3 synapses display different properties in terms of their protein synthesis dependency, suggesting different roles in the processing of short- and long term synaptic plasticity.
Collapse
Affiliation(s)
- Hardy Hagena
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum Bochum, Germany ; International Graduate School for Neuroscience, Ruhr University Bochum Bochum, Germany
| | | |
Collapse
|
37
|
Goh JJ, Manahan-Vaughan D. Synaptic depression in the CA1 region of freely behaving mice is highly dependent on afferent stimulation parameters. Front Integr Neurosci 2013; 7:1. [PMID: 23355815 PMCID: PMC3555076 DOI: 10.3389/fnint.2013.00001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/02/2013] [Indexed: 11/13/2022] Open
Abstract
Persistent synaptic plasticity has been subjected to intense study in the decades since it was first described. Occurring in the form of long-term potentiation (LTP) and long-term depression (LTD), it shares many cellular and molecular properties with hippocampus-dependent forms of persistent memory. Recent reports of both LTP and LTD occurring endogenously under specific learning conditions provide further support that these forms of synaptic plasticity may comprise the cellular correlates of memory. Most studies of synaptic plasticity are performed using in vitro or in vivo preparations where patterned electrical stimulation of afferent fibers is implemented to induce changes in synaptic strength. This strategy has proven very effective in inducing LTP, even under in vivo conditions. LTD in vivo has proven more elusive: although LTD occurs endogenously under specific learning conditions in both rats and mice, its induction has not been successfully demonstrated with afferent electrical stimulation alone. In this study we screened a large spectrum of protocols that are known to induce LTD either in hippocampal slices or in the intact rat hippocampus, to clarify if LTD can be induced by sole afferent stimulation in the mouse CA1 region in vivo. Low frequency stimulation at 1, 2, 3, 5, 7, or 10 Hz given in the range of 100 through 1800 pulses produced, at best, short-term depression (STD) that lasted for up to 60 min. Varying the administration pattern of the stimuli (e.g., 900 pulses given twice at 5 min intervals), or changing the stimulation intensity did not improve the persistency of synaptic depression. LTD that lasts for at least 24 h occurs under learning conditions in mice. We conclude that a coincidence of factors, such as afferent activity together with neuromodulatory inputs, play a decisive role in the enablement of LTD under more naturalistic (e.g., learning) conditions.
Collapse
Affiliation(s)
- Jinzhong J Goh
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum Bochum, Germany ; International Graduate School of Neuroscience Bochum, Germany
| | | |
Collapse
|
38
|
Sidharta SL, Sajeev JK, Nelson AJ, Cooke JC, Worthley MI. Stress-induced cardiomyopathy and possible link to cerebral executive function: a case report. Prim Care Companion CNS Disord 2013; 15:13l01557. [PMID: 24800117 DOI: 10.4088/pcc.13l01557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Samuel L Sidharta
- Cardiovascular Research Centre, Department of Medicine, University of Adelaide, Adelaide (Drs Sidharta, Nelson, and Worthley); and Eastern Health, Department of Cardiology, Box Hill Hospital, Victoria (Drs Sajeev and Cooke), Australia
| | - Jithin K Sajeev
- Cardiovascular Research Centre, Department of Medicine, University of Adelaide, Adelaide (Drs Sidharta, Nelson, and Worthley); and Eastern Health, Department of Cardiology, Box Hill Hospital, Victoria (Drs Sajeev and Cooke), Australia
| | - Adam J Nelson
- Cardiovascular Research Centre, Department of Medicine, University of Adelaide, Adelaide (Drs Sidharta, Nelson, and Worthley); and Eastern Health, Department of Cardiology, Box Hill Hospital, Victoria (Drs Sajeev and Cooke), Australia
| | - Jennifer C Cooke
- Cardiovascular Research Centre, Department of Medicine, University of Adelaide, Adelaide (Drs Sidharta, Nelson, and Worthley); and Eastern Health, Department of Cardiology, Box Hill Hospital, Victoria (Drs Sajeev and Cooke), Australia
| | - Matthew I Worthley
- Cardiovascular Research Centre, Department of Medicine, University of Adelaide, Adelaide (Drs Sidharta, Nelson, and Worthley); and Eastern Health, Department of Cardiology, Box Hill Hospital, Victoria (Drs Sajeev and Cooke), Australia
| |
Collapse
|
39
|
Buschler A, Manahan-Vaughan D. Brief environmental enrichment elicits metaplasticity of hippocampal synaptic potentiation in vivo. Front Behav Neurosci 2012; 6:85. [PMID: 23248592 PMCID: PMC3522088 DOI: 10.3389/fnbeh.2012.00085] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/17/2012] [Indexed: 11/24/2022] Open
Abstract
Long-term environmental enrichment (EE) elicits enduring effects on the adult brain, including altered synaptic plasticity. Synaptic plasticity may underlie memory formation and includes robust (>24 h) and weak (<2 h) forms of long-term potentiation (LTP) and long-term depression (LTD). Most studies of the effect of EE on synaptic efficacy have examined the consequences of very prolonged EE-exposure. It is unclear whether brief exposure to EE can alter synaptic plasticity. Clarifying this issue could help develop strategies to address cognitive deficits arising from neglect in children or adults. We assessed whether short-term EE elicits alterations in hippocampal synaptic plasticity and if social context may play a role. Adult mice were exposed to EE for 14 consecutive days. We found that robust late-LTP (>24 h) and short-term depression (<2 h) at Schaffer-collateral-CA1 synapses in freely behaving mice were unaltered, whereas early-LTP (E-LTP, <2 h) was significantly enhanced by EE. Effects were transient: E-LTP returned to control levels 1 week after cessation of EE. Six weeks later, animals were re-exposed to EE for 14 days. Under these conditions, E-LTP was facilitated into L-LTP (>24 h), suggesting that metaplasticity was induced during the first EE experience and that EE-mediated modifications are cumulative. Effects were absent in mice that underwent solitary enrichment or were group-housed without EE. These data suggest that EE in naïve animals strengthens E-LTP, and also promotes L-LTP in animals that underwent EE in the past. This indicates that brief exposure to EE, particularly under social conditions can elicit lasting positive effects on synaptic strength that may have beneficial consequences for cognition that depends on synaptic plasticity.
Collapse
Affiliation(s)
- Arne Buschler
- Department of Neurophysiology, Faculty of Medicine, Ruhr University Bochum Bochum, Germany ; International Graduate School for Neuroscience, Ruhr University Bochum Bochum, Germany
| | | |
Collapse
|