1
|
Klymenko A, Lutz D. Melatonin signalling in Schwann cells during neuroregeneration. Front Cell Dev Biol 2022; 10:999322. [PMID: 36299487 PMCID: PMC9589221 DOI: 10.3389/fcell.2022.999322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
It has widely been thought that in the process of nerve regeneration Schwann cells populate the injury site with myelinating, non–myelinating, phagocytic, repair, and mesenchyme–like phenotypes. It is now clear that the Schwann cells modify their shape and basal lamina as to accommodate re–growing axons, at the same time clear myelin debris generated upon injury, and regulate expression of extracellular matrix proteins at and around the lesion site. Such a remarkable plasticity may follow an intrinsic functional rhythm or a systemic circadian clock matching the demands of accurate timing and precision of signalling cascades in the regenerating nervous system. Schwann cells react to changes in the external circadian clock clues and to the Zeitgeber hormone melatonin by altering their plasticity. This raises the question of whether melatonin regulates Schwann cell activity during neurorepair and if circadian control and rhythmicity of Schwann cell functions are vital aspects of neuroregeneration. Here, we have focused on different schools of thought and emerging concepts of melatonin–mediated signalling in Schwann cells underlying peripheral nerve regeneration and discuss circadian rhythmicity as a possible component of neurorepair.
Collapse
|
2
|
Kubin L. Breathing during sleep. HANDBOOK OF CLINICAL NEUROLOGY 2022; 188:179-199. [PMID: 35965026 DOI: 10.1016/b978-0-323-91534-2.00005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The depth, rate, and regularity of breathing change following transition from wakefulness to sleep. Interactions between sleep and breathing involve direct effects of the central mechanisms that generate sleep states exerted at multiple respiratory regulatory sites, such as the central respiratory pattern generator, respiratory premotor pathways, and motoneurons that innervate the respiratory pump and upper airway muscles, as well as effects secondary to sleep-related changes in metabolism. This chapter discusses respiratory effects of sleep as they occur under physiologic conditions. Breathing and central respiratory neuronal activities during nonrapid eye movement (NREM) sleep and REM sleep are characterized in relation to activity of central wake-active and sleep-active neurons. Consideration is given to the obstructive sleep apnea syndrome because in this common disorder, state-dependent control of upper airway patency by upper airway muscles attains high significance and recurrent arousals from sleep are triggered by hypercapnic and hypoxic episodes. Selected clinical trials are discussed in which pharmacological interventions targeted transmission in noradrenergic, serotonergic, cholinergic, and other state-dependent pathways identified as mediators of ventilatory changes during sleep. Central pathways for arousals elicited by chemical stimulation of breathing are given special attention for their important role in sleep loss and fragmentation in sleep-related respiratory disorders.
Collapse
Affiliation(s)
- Leszek Kubin
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
3
|
Kelly MN, Smith DN, Sunshine MD, Ross A, Zhang X, Gumz ML, Esser KA, Mitchell GS. Circadian clock genes and respiratory neuroplasticity genes oscillate in the phrenic motor system. Am J Physiol Regul Integr Comp Physiol 2020; 318:R1058-R1067. [PMID: 32348679 DOI: 10.1152/ajpregu.00010.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Circadian rhythms are endogenous and entrainable daily patterns of physiology and behavior. Molecular mechanisms underlie circadian rhythms, characterized by an ~24-h pattern of gene expression of core clock genes. Although it has long been known that breathing exhibits circadian rhythms, little is known concerning clock gene expression in any element of the neuromuscular system controlling breathing. Furthermore, we know little concerning gene expression necessary for specific respiratory functions, such as phrenic motor plasticity. Thus, we tested the hypotheses that transcripts for clock genes (Bmal1, Clock, Per1, and Per2) and molecules necessary for phrenic motor plasticity (Htr2a, Htr2b, Bdnf, and Ntrk2) oscillate in regions critical for phrenic/diaphragm motor function via RT-PCR. Tissues were collected from male Sprague-Dawley rats entrained to a 12-h light-dark cycle at 4 zeitgeber times (ZT; n = 8 rats/group): ZT5, ZT11, ZT17, and ZT23; ZT0 = lights on. Here, we demonstrate that 1) circadian clock genes (Bmal1, Clock, Per1, and Per2) oscillate in regions critical for phrenic/diaphragm function, including the caudal medulla, ventral C3-C5 cervical spinal cord, and diaphragm; 2) the clock protein BMAL1 is localized within CtB-labeled phrenic motor neurons; 3) genes necessary for intermittent hypoxia-induced phrenic/diaphragm motor plasticity (Htr2b and Bdnf) oscillate in the caudal medulla and ventral C3-C5 spinal cord; and 4) there is higher intensity of immunofluorescent BDNF protein within phrenic motor neurons at ZT23 compared with ZT11 (n = 11 rats/group). These results suggest local circadian clocks exist in the phrenic motor system and confirm the potential for local circadian regulation of neuroplasticity and other elements of the neural network controlling breathing.
Collapse
Affiliation(s)
- Mia N Kelly
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida.,Department of Physical Therapy, University of Florida, Gainesville, Florida.,McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Danelle N Smith
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida
| | - Michael D Sunshine
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida.,Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Ashley Ross
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida.,Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Xiping Zhang
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Michelle L Gumz
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Gordon S Mitchell
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida.,Department of Physical Therapy, University of Florida, Gainesville, Florida.,McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|