1
|
Rasmussen T, Filmer HL, Dux PE. On the role of prefrontal and parietal cortices in mind wandering and dynamic thought. Cortex 2024; 178:249-268. [PMID: 39053349 DOI: 10.1016/j.cortex.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/08/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
Mind wandering is a common phenomenon in our daily lives and can have both an adaptive and detrimental impact. Recently, a dynamic framework has been proposed to characterise the heterogeneity of internal thoughts, suggesting there are three distinct thought types which can change over time - freely moving, deliberately constrained, and automatically constrained (thoughts). There is currently very little evidence on how different types of dynamic thought are represented in the brain. Previous research has applied non-invasive transcranial direct current stimulation (tDCS) to causally implicate the prefrontal cortex and inferior parietal lobule in mind wandering. However, a more recently developed and nuanced technique, high-definition tDCS (HD-tDCS), delivers more focal stimulation able to target specific brain regions. Therefore, the current study investigated the effect of anodal HD-tDCS applied to the left prefrontal and right inferior parietal cortices (with the occipital cortex included as an active control) on mind wandering, and specifically, the causal neural substrates of the three internal dynamic thought types. This was a single session study using a novel task which allows investigation into how dynamic thoughts are associated with behavioural variability and the recruitment of executive control operations across the three brain regions. There was no evidence to support our hypothesised effect of stimulation reducing task unrelated thought. Furthermore, the hypothesis driven analyses found no evidence of stimulation affecting the dynamic thought types, nor any evidence for our hypothesised effects of stimulation reducing behavioural variability and increasing randomness. There was only evidence for a relationship between these two measures of performance when participants thoughts were freely moving. However, there was evidence from our exploratory analyses that anodal stimulation to the prefrontal cortex decreased freely moving thought and anodal stimulation to the parietal lobule decreased deliberately constrained thought, relative to the sham conditions. The exploratory analyses also suggested stimulation may increase freely moving thought in the occipital cortex. Overall, these findings suggest stimulation does not affect the dynamic thought types, however there is preliminary evidence to support the heterogenous nature of mind wandering, whereby different brain regions may be causally implicated in distinct dynamic thought types.
Collapse
Affiliation(s)
- Tara Rasmussen
- School of Psychology, The University of Queensland, Australia.
| | - Hannah L Filmer
- School of Psychology, The University of Queensland, Australia
| | - Paul E Dux
- School of Psychology, The University of Queensland, Australia
| |
Collapse
|
2
|
Arif Y, Song RW, Springer SD, John JA, Embury CM, Killanin AD, Son JJ, Okelberry HJ, McDonald KM, Picci G, Wilson TW. High-definition transcranial direct current stimulation of the parietal cortices modulates the neural dynamics underlying verbal working memory. Hum Brain Mapp 2024; 45:e70001. [PMID: 39169661 PMCID: PMC11339318 DOI: 10.1002/hbm.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/23/2024] Open
Abstract
Verbal working memory (vWM) is an essential limited-capacity cognitive system that spans the fronto-parietal network and utilizes the subprocesses of encoding, maintenance, and retrieval. With the recent widespread use of noninvasive brain stimulation techniques, multiple recent studies have examined whether such stimulation may enhance cognitive abilities such as vWM, but the findings to date remain unclear in terms of both behavior and critical brain regions. In the current study, we applied high-definition direct current stimulation to the left and right parietal cortices of 39 healthy adults in three separate sessions (left anodal, right anodal, and sham). Following stimulation, participants completed a vWM task during high-density magnetoencephalography (MEG). Significant neural responses at the sensor-level were imaged using a beamformer and whole-brain ANOVAs were used to identify the specific neuromodulatory effects of the stimulation conditions on neural responses serving distinct phases of vWM. We found that right stimulation had a faciliatory effect relative to left stimulation and sham on theta oscillations during encoding in the right inferior frontal, while the opposite pattern was observed for left supramarginal regions. Stimulation also had a faciliatory effect on theta in occipital regions and alpha in temporal regions regardless of the laterality of stimulation. In summary, our data suggest that parietal HD-tDCS both facilitates and interferes with neural responses underlying both the encoding and maintenance phases of vWM. Future studies are warranted to determine whether specific tDCS parameters can be tuned to accentuate the facilitation responses and attenuate the interfering aspects.
Collapse
Affiliation(s)
- Yasra Arif
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Richard W. Song
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Vanderbilt UniversityNashvilleTennesseeUSA
| | - Seth D. Springer
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of Medicine, University of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Jason A. John
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Christine M. Embury
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Abraham D. Killanin
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of Medicine, University of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Jake J. Son
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of Medicine, University of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Hannah J. Okelberry
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Kellen M. McDonald
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Giorgia Picci
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Tony W. Wilson
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of Medicine, University of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| |
Collapse
|
3
|
Otstavnov N, Nieto-Doval C, Galli G, Feurra M. Frontoparietal Brain Network Plays a Crucial Role in Working Memory Capacity during Complex Cognitive Task. eNeuro 2024; 11:ENEURO.0394-23.2024. [PMID: 39029954 PMCID: PMC11315429 DOI: 10.1523/eneuro.0394-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 07/21/2024] Open
Abstract
Recent neurophysiological studies provide inconsistent results of frontoparietal network (FPN) stimulation for altering working memory (WM) capacity. This study aimed to boost WM capacity by manipulating the activity of the FPN via dual-site high-definition transcranial direct current stimulation. Forty-eight participants were randomly assigned to three stimulation groups, receiving either simultaneous anodal stimulation of the frontal and parietal areas (double stimulation), or stimulation of the frontal area only (single stimulation), or the placebo stimulation (sham) to frontal and parietal areas. After the stimulation, we used an operation span task to test memory accuracy, mathematical accuracy, time of calculation and memorizing, and recall response time across the three groups. The results revealed an enhancement of memory accuracy and a reduction of time of calculation in the double stimulation group compared with that in others. In addition, recall response time was significantly decreased in the double and single stimulation groups compared with that in sham. No differences in mathematical accuracy were observed. Our results confirm the pivotal role of the FPN in WM and suggest its functional dissociation, with the frontal component more implicated in the retrieval stage and the parietal component in the processing and retention stages.
Collapse
Affiliation(s)
- Nikita Otstavnov
- Centre for Cognition and Decision making, Institute for Cognitive Neuroscience, Higher School of Economics University, Moscow 101000, Russia
| | - Carlos Nieto-Doval
- Centre for Cognition and Decision making, Institute for Cognitive Neuroscience, Higher School of Economics University, Moscow 101000, Russia
| | - Giulia Galli
- Department of Psychology, Kingston University, London KT1 2EE, United Kingdom
| | - Matteo Feurra
- Centre for Cognition and Decision making, Institute for Cognitive Neuroscience, Higher School of Economics University, Moscow 101000, Russia
| |
Collapse
|
4
|
Hou W, Zhou F, Wang Q, Li H, Qin X, Ding Y, Dong F, Bo Q, Li A, Zhang L, Chen Z, Wang Z, Li X, Lee J, Wang C. Effect of transcranial direct current stimulation with concurrent cognitive performance targeting posterior parietal cortex vs prefrontal cortex on working memory in schizophrenia: a randomized clinical trial. Transl Psychiatry 2024; 14:279. [PMID: 38977683 PMCID: PMC11231223 DOI: 10.1038/s41398-024-02994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
Working memory deficits are linked to irregularities in the dorsolateral prefrontal cortex (DLPFC) and the posterior parietal cortex (PPC) in schizophrenia, effective intervention strategies are lacking. We evaluated the differential efficacy and underlying neuromechanisms of targeting transcranial direct current stimulation (tDCS) at the DLPFC and the PPC with concurrent cognitive performance for working memory in schizophrenia. In a randomized and double-blind clinical trial, sixty clinically stable schizophrenic patients with below-average working memory were randomly assigned to active DLPFC, active PPC, and sham tDCS groups. Two sessions of tDCS during N-back task were delivered daily for five days. The primary outcome was changes in spatial span test scores from baseline to week 1. The secondary outcomes included changes in scores of color delay-estimation task, other cognitive tasks, and mismatch negativity (biomarker of N-methyl-d-aspartate receptor functioning). Compared with the active DLPFC group, the active PPC group demonstrated significantly greater improvement in spatial span test scores (p = 0.008, d = 0.94) and an augmentation in color delay-estimation task capacity at week 1; the latter sustained to week 2. Compared with the sham tDCS group, the active PPC group did not show a significant improvement in spatial span test scores at week 1 and 2; however, significant enhancement was observed in their color delay-estimation task capacity at week 2. Additionally, mismatch negativity amplitude was enhanced, and changes in theta band measures were positively correlated with working memory improvement in the active PPC group, while no such correlations were observed in the active DLPFC group or the sham tDCS group. Our results suggest that tDCS targeting the PPC relative to the DLPFC during concurrent cognitive performance may improve working memory in schizophrenia, meriting further investigation. The improvement in working memory appears to be linked to enhanced N-methyl-d-aspartate receptor functioning.
Collapse
Affiliation(s)
- Wenpeng Hou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Fuchun Zhou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qi Wang
- Fengtai Mental Health Center, Beijing, China
| | - Hang Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xiangqin Qin
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yushen Ding
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Fang Dong
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qijing Bo
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Anning Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Liang Zhang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Zhenzhu Chen
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Zhimin Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xianbin Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jimmy Lee
- Institute of Mental Health, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chuanyue Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Fromm AE, Grittner U, Brodt S, Flöel A, Antonenko D. No Object-Location Memory Improvement through Focal Transcranial Direct Current Stimulation over the Right Temporoparietal Cortex. Life (Basel) 2024; 14:539. [PMID: 38792561 PMCID: PMC11122124 DOI: 10.3390/life14050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
Remembering objects and their associated location (object-location memory; OLM), is a fundamental cognitive function, mediated by cortical and subcortical brain regions. Previously, the combination of OLM training and transcranial direct current stimulation (tDCS) suggested beneficial effects, but the evidence remains heterogeneous. Here, we applied focal tDCS over the right temporoparietal cortex in 52 participants during a two-day OLM training, with anodal tDCS (2 mA, 20 min) or sham (40 s) on the first day. The focal stimulation did not enhance OLM performance on either training day (stimulation effect: -0.09, 95%CI: [-0.19; 0.02], p = 0.08). Higher electric field magnitudes in the target region were not associated with individual performance benefits. Participants with content-related learning strategies showed slightly superior performance compared to participants with position-related strategies. Additionally, training gains were associated with individual verbal learning skills. Consequently, the lack of behavioral benefits through focal tDCS might be due to the involvement of different cognitive processes and brain regions, reflected by participant's learning strategies. Future studies should evaluate whether other brain regions or memory-relevant networks may be involved in the modulation of object-location associations, investigating other target regions, and further exploring individualized stimulation parameters.
Collapse
Affiliation(s)
- Anna Elisabeth Fromm
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Ulrike Grittner
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
- Institute of Biometry and Clinical Epidemiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Svenja Brodt
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, 17489 Greifswald, Germany
| | - Daria Antonenko
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| |
Collapse
|
6
|
Hooyman A, Haikalis NK, Wang P, Schambra HM, Lohse KR, Schaefer SY. Evidence and sources of placebo effects in transcranial direct current stimulation during a single session of visuospatial working memory practice. Sci Rep 2024; 14:9094. [PMID: 38643299 PMCID: PMC11032394 DOI: 10.1038/s41598-024-59927-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/16/2024] [Indexed: 04/22/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) can be used to non-invasively augment cognitive training. However, the benefits of tDCS may be due in part to placebo effects, which have not been well-characterized. The purpose of this study was to determine whether tDCS can have a measurable placebo effect on cognitive training and to identify potential sources of this effect. Eighty-three right-handed adults were randomly assigned to one of three groups: control (no exposure to tDCS), sham tDCS, or active tDCS. The sham and active tDCS groups were double-blinded. Each group performed 20 min of an adapted Corsi Block Tapping Task (CBTT), a visuospatial working memory task. Anodal or sham tDCS was applied during CBTT training in a right parietal-left supraorbital montage. After training, active and sham tDCS groups were surveyed on expectations about tDCS efficacy. Linear mixed effects models showed that the tDCS groups (active and sham combined) improved more on the CBTT with training than the control group, suggesting a placebo effect of tDCS. Participants' tDCS expectations were significantly related to the placebo effect, as was the belief of receiving active stimulation. This placebo effect shows that the benefits of tDCS on cognitive training can occur even in absence of active stimulation. Future tDCS studies should consider how treatment expectations may be a source of the placebo effect in tDCS research, and identify ways to potentially leverage them to maximize treatment benefit.
Collapse
Affiliation(s)
- Andrew Hooyman
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, MC 9709, Tempe, AZ, 85287, USA
| | - Nicole K Haikalis
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, MC 9709, Tempe, AZ, 85287, USA
| | - Peiyuan Wang
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, MC 9709, Tempe, AZ, 85287, USA
| | - Heidi M Schambra
- Department of Neurology and Department of Physical Medicine and Rehabilitation, Grossman School of Medicine, New York University, New York, NY, USA
| | - Keith R Lohse
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Sydney Y Schaefer
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, MC 9709, Tempe, AZ, 85287, USA.
| |
Collapse
|
7
|
Lee S, Park J, Lee C, Ahn J, Ryu J, Lee SH, Im CH. Determination of optimal injection current pattern for multichannel transcranial electrical stimulation without individual MRI using multiple head models. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107878. [PMID: 37890288 DOI: 10.1016/j.cmpb.2023.107878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND AND OBJECTIVE Multichannel transcranial electrical stimulation (tES) is widely used to achieve improved stimulation focality. In the multichannel tES, the injection current pattern is generally determined through an optimization process with a finite element (FE) head model extracted from individual magnetic resonance images (MRIs). Although using an individual head model ensures the best outcome, acquiring MRIs of individual subjects in many practical applications is often difficult. Alternatively, a standard head model can be used to determine the optimal injection current pattern to stimulate a specific target; however, this may result in a relatively inaccurate delivery of stimulation current owing to the difference in individual anatomical structures. To address this issue, we propose a new approach for determining the injection current pattern using multiple head models, which can improve the stimulation focality compared to that achieved with a single standard head model. METHODS Twenty FE head models were used to optimize the injection current patterns to stimulate three cortical regions that are widely considered targets for tES. The individual injection current patterns were then averaged to obtain each target's mean injection current pattern. The stimulation focality for each target was then calculated by applying different current patterns (the mean current, individual current, and current from a standard model). RESULTS Our results showed that the stimulation focality obtained using the mean injection current pattern was significantly higher than that obtained using the injection current pattern from a standard head model. Additionally, our results demonstrated that a minimum of 13 head models are required to determine mean current pattern, allowing for a higher stimulation focality than when using the current from a standard head model. CONCLUSIONS Hence, using multiple head models can provide a viable solution for improving the stimulation efficacy of multichannel tES when individual MRIs are not available.
Collapse
Affiliation(s)
- Sangjun Lee
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea; Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Jimin Park
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Chany Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jeongyeol Ahn
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Juhyoung Ryu
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang-Hun Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chang-Hwan Im
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea; Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Jain V, Forssell M, Tansel DZ, Goswami C, Fedder GK, Grover P, Chamanzar M. Focused Epicranial Brain Stimulation by Spatial Sculpting of Pulsed Electric Fields Using High Density Electrode Arrays. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2207251. [PMID: 37114777 PMCID: PMC10369286 DOI: 10.1002/advs.202207251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Transcranial electrical neuromodulation of the central nervous system is used as a non-invasive method to induce neural and behavioral responses, yet targeted non-invasive electrical stimulation of the brain with high spatial resolution remains elusive. This work demonstrates a focused, steerable, high-density epicranial current stimulation (HD-ECS) approach to evoke neural activity. Custom-designed high-density (HD) flexible surface electrode arrays are employed to apply high-resolution pulsed electric currents through skull to achieve localized stimulation of the intact mouse brain. The stimulation pattern is steered in real time without physical movement of the electrodes. Steerability and focality are validated at the behavioral, physiological, and cellular levels using motor evoked potentials (MEPs), intracortical recording, and c-fos immunostaining. Whisker movement is also demonstrated to further corroborate the selectivity and steerability. Safety characterization confirmed no significant tissue damage following repetitive stimulation. This method can be used to design novel therapeutics and implement next-generation brain interfaces.
Collapse
Affiliation(s)
- Vishal Jain
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA-15213, USA
| | - Mats Forssell
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA-15213, USA
| | - Derya Z Tansel
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA-15213, USA
| | - Chaitanya Goswami
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA-15213, USA
| | - Gary K Fedder
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA-15213, USA
| | - Pulkit Grover
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA-15213, USA
- Neuroscience Insttitute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Maysamreza Chamanzar
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA-15213, USA
- Neuroscience Insttitute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
9
|
Martin DM, Rushby JA, De Blasio FM, Wearne T, Osborne-Crowley K, Francis H, Xu M, Loo C, McDonald S. The effect of tDCS electrode montage on attention and working memory. Neuropsychologia 2023; 179:108462. [PMID: 36563998 DOI: 10.1016/j.neuropsychologia.2022.108462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The effects of transcranial direct current stimulation (tDCS) for improving attention and working memory have been generally mixed and small, potentially due to variability between studies with montages, stimulus parameters and outcome measures. The tDCS montage is an important parameter which determines the degree and intensity of stimulation in targeted brain regions. This study aimed to examine the effects of using three different montages for modulating attention and working memory performance: Bi-frontal, Broad-frontal and Broad-parietal. Ninety-three healthy adults participated in a counterbalanced cross-over study. Participants received both active and sham tDCS with either the Bi-frontal, Broad-frontal or Broad-parietal montage during performance of both a 1- and 2-back task. TDCS montage moderated 2-back working memory reaction time performance, though not accuracy, with faster reaction times observed for active compared to sham tDCS with the Broad-frontal montage only (F (1,90) = 5.26, p = .024, η2 = 0.06). TDCS montage did not significantly moderate performance on the 1-back task. The cognitive effects of tDCS varied according to montage, task, and outcome measure. TDCS administered with the cathode placed extracephalically in a Broad-frontal montage may be beneficial for improving working memory.
Collapse
Affiliation(s)
- Donel M Martin
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, 2502, Australia; Black Dog Institute, University of New South Wales, Sydney, NSW, 2031, Australia.
| | - Jacqueline A Rushby
- School of Psychology, University of New South Wales, Sydney, NSW, 2502, Australia
| | - Frances M De Blasio
- School of Psychology, University of New South Wales, Sydney, NSW, 2502, Australia
| | - Travis Wearne
- School of Psychology, University of New South Wales, Sydney, NSW, 2502, Australia
| | | | - Heather Francis
- School of Psychology, University of New South Wales, Sydney, NSW, 2502, Australia
| | - Mei Xu
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, 2502, Australia; Black Dog Institute, University of New South Wales, Sydney, NSW, 2031, Australia
| | - Colleen Loo
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, 2502, Australia; Black Dog Institute, University of New South Wales, Sydney, NSW, 2031, Australia
| | - Skye McDonald
- School of Psychology, University of New South Wales, Sydney, NSW, 2502, Australia
| |
Collapse
|
10
|
The effect of tDCS electrode montage on attention and working memory. Neuropsychologia 2023. [DOI: 10.1016/j.neuropsychologia.2022.10846t2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Tedla JS, Sangadala DR, Reddy RS, Gular K, Dixit S. High-definition trans cranial direct current stimulation and its effects on cognitive function: a systematic review. Cereb Cortex 2022; 33:6077-6089. [PMID: 36533541 DOI: 10.1093/cercor/bhac485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
Abstract
High-Definition Transcranial Direct Current Stimulation (HD-tDCS) is focal and improves higher mental functions. Due to the lack of published evidence, we conducted this review on the effect of HD-tDCS on cognitive functions in healthy and diseased individuals. We performed an electronic-data and gray-literature search to obtain the relevant studies for the review. The two distinct literature searches obtained a total of 468 studies. Out of these, a total of 12 studies were conducted on higher mental functions, and of these, two were on disordered consciousness, five were on memory, two were on speech, two were on cognition, and one was on execution. We submitted nine studies with control group to methodological quality assessment using the PEDro Scale. Remaining three studies underwent quality assessment by Quality Assessment Tool for Before-After (Pre-Post) Studies with No Control Group. We found that anodal HD-tDCS stimulation is significantly effective in treating disordered consciousness and improving memory, speech, cognition, and execution.
Collapse
Affiliation(s)
- Jaya Shanker Tedla
- King Khalid University Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, , Abha 61421, Kingdom of Saudi Arabia
| | - Devika Rani Sangadala
- King Khalid University Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, , Abha 61421, Kingdom of Saudi Arabia
| | - Ravi Shankar Reddy
- King Khalid University Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, , Abha 61421, Kingdom of Saudi Arabia
| | - Kumar Gular
- King Khalid University Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, , Abha 61421, Kingdom of Saudi Arabia
| | - Snehil Dixit
- King Khalid University Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, , Abha 61421, Kingdom of Saudi Arabia
| |
Collapse
|
12
|
Wang L, Li C, Han Z, Wu Q, Sun L, Zhang X, Go R, Wu J, Yan T. Spatiotemporal and sensory modality attention processing with domain-specific representations in frontoparietal areas. Cereb Cortex 2022; 32:5489-5502. [PMID: 35136999 DOI: 10.1093/cercor/bhac029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/10/2022] [Accepted: 02/12/2022] [Indexed: 01/25/2023] Open
Abstract
The frontoparietal network (FPN), including bilateral frontal eye field, inferior parietal sulcus, and supplementary motor area, has been linked to attention processing, including spatiotemporal and sensory modality domains. However, it is unclear whether FPN encodes representations of these domains that are generalizable across subdomains. We decomposed multivariate patterns of functional magnetic resonance imaging activity from 20 participants into domain-specific components and identified latent multivariate representations that generalized across subdomains. The 30 experimental conditions were organized into unimodal-bimodal and spatial-temporal models. We found that brain areas in the FPN, form the primary network that modulated during attention across domains. However, the activation patterns of areas within the FPN were reorganized according to the specific attentional demand, especially when pay attention to different sensory, suggesting distinct regional neural representations associated with specific attentional processes within FPN. In addition, there were also other domain-specific areas outside the FPN, such as the dorsolateral prefrontal cortex. Our conclusion is that, according to the results of the analysis of representation similarity, 2 types of activated brain regions, related to attention domain detailed information processing and general information processing, can be revealed.
Collapse
Affiliation(s)
- Luyao Wang
- School of Life Science, Shanghai University, Shanghai 200444, China
| | - Chunlin Li
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Ziteng Han
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qiong Wu
- Department of Psychology, Suzhou University of Science and Technology, Suzhou 215009, China.,Cognitive Neuroscience Lab, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-0084, Japan
| | - Liwei Sun
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Xu Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Ritsu Go
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jinglong Wu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China.,Cognitive Neuroscience Lab, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-0084, Japan
| | - Tianyi Yan
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
13
|
Müller D, Habel U, Brodkin ES, Weidler C. High-definition transcranial direct current stimulation (HD-tDCS) for the enhancement of working memory - A systematic review and meta-analysis of healthy adults. Brain Stimul 2022; 15:1475-1485. [PMID: 36371009 DOI: 10.1016/j.brs.2022.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/19/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND High-definition transcranial direct current stimulation (HD-tDCS) administers weak electric current through multiple electrodes, enabling focal brain stimulation. An increasing number of studies investigate the effects of anodal HD-tDCS on the enhancement of working memory (WM). The effectiveness of the technique is, however, still unclear. OBJECTIVE/HYPOTHESIS This systematic review analyzed the current literature on anodal HD-tDCS for WM enhancement, investigating its effectiveness and the influence of different moderators to allow for comparison with conventional tDCS. METHODS Following the Preferred Reporting Items for Systematic Reviews (PRISMA) guidelines, a comprehensive literature review was conducted using PubMed, Web of Science, and Scopus. Sixteen single- or double-blind, sham-controlled studies were included in the review. Eleven studies were included in the meta-analysis, focusing solely on stimulation of the left prefrontal cortex (PFC). RESULTS No significant effect of anodal HD-tDCS on the left PFC for WM accuracy (g = 0.23, p = 0.08), and reaction time (g = 0.03, p = 0.75 after trim-and-fill) was found. Further analysis revealed heterogeneity in the accuracy results. Here, moderator analysis indicated a significant difference between studies that repeatedly used HD-tDCS enhanced WM training and studies with one-time use of HD-tDCS (p < 0.001), the latter having a smaller effect size. Another moderator was the research design, with differences between within-subjects-, and between-subjects designs (p < 0.05). Within-subject studies showed lower effect sizes and substantially lower heterogeneity. Qualitative analysis reinforced this finding and indicated that the motivation of the participant to engage in the task also moderates the effectiveness of HD-tDCS. CONCLUSION This review highlights the importance of inter-individual differences and the setup for the effectiveness of anodal, HD-tDCS augmented WM training. Limited evidence for increased sensitivity of HD-tDCS to these factors as compared to conventional tDCS is provided.
Collapse
Affiliation(s)
- Dario Müller
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Pauwelsstraße 30, Aachen, 52074, North Rhine-Westphalia, Germany.
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Pauwelsstraße 30, Aachen, 52074, North Rhine-Westphalia, Germany; Institute of Neuroscience and Medicine, JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Wilhelm-Johnen-Straße, 52438, Jülich, Germany
| | - Edward S Brodkin
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, 3535 Market Street, Suite 3080, Philadelphia, PA, 19104-3309, USA
| | - Carmen Weidler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Pauwelsstraße 30, Aachen, 52074, North Rhine-Westphalia, Germany
| |
Collapse
|
14
|
Zhang Y, Li C, Chen D, Tian R, Yan X, Zhou Y, Song Y, Yang Y, Wang X, Zhou B, Gao Y, Jiang Y, Zhang X. Repeated High-Definition Transcranial Direct Current Stimulation Modulated Temporal Variability of Brain Regions in Core Neurocognitive Networks Over the Left Dorsolateral Prefrontal Cortex in Mild Cognitive Impairment Patients. J Alzheimers Dis 2022; 90:655-666. [DOI: 10.3233/jad-220539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Early intervention of amnestic mild cognitive impairment (aMCI) may be the most promising way for delaying or even preventing the progression to Alzheimer’s disease. Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that has been recognized as a promising approach for the treatment of aMCI. Objective: In this paper, we aimed to investigate the modulating mechanism of tDCS on the core neurocognitive networks of brain. Methods: We used repeated anodal high-definition transcranial direct current stimulation (HD-tDCS) over the left dorsolateral prefrontal cortex and assessed the effect on cognition and dynamic functional brain network in aMCI patients. We used a novel method called temporal variability to depict the characteristics of the dynamic brain functional networks. Results: We found that true anodal stimulation significantly improved cognitive performance as measured by the Montreal Cognitive Assessment after simulation. Meanwhile, the Mini-Mental State Examination scores showed a clear upward trend. More importantly, we found significantly altered temporal variability of dynamic functional connectivity of regions belonging to the default mode network, central executive network, and the salience network after true anodal stimulation, indicating anodal HD-tDCS may enhance brain function by modulating the temporal variability of the brain regions. Conclusion: These results imply that ten days of anodal repeated HD-tDCS over the LDLPFC exerts beneficial effects on the temporal variability of the functional architecture of the brain, which may be a potential neural mechanism by which HD-tDCS enhances brain functions. Repeated HD-tDCS may have clinical uses for the intervention of brain function decline in aMCI patients.
Collapse
Affiliation(s)
- Yanchun Zhang
- Department of Neurology, Second Medical Center, National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
- Department of Rehabilitation, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Chenxi Li
- Department of the Psychology of Military Medicine, Air Force Medical University, Xi’an, Shaanxi, P.R. China
| | - Deqiang Chen
- Department of CT, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Rui Tian
- Department of Rehabilitation, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Xinyue Yan
- Department of Rehabilitation, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Yingwen Zhou
- Department of MR, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Yancheng Song
- Department of MR, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Yanlong Yang
- Department of MR, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Xiaoxuan Wang
- Department of MR, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Bo Zhou
- Department of Neurology, Second Medical Center, National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Yuhong Gao
- Institute of Geriatrics, Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yujuan Jiang
- Department of Rehabilitation, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Xi Zhang
- Department of Neurology, Second Medical Center, National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
15
|
Wang J, Li J. High-Definition Transcranial Stimulation over the Dorsolateral Prefrontal Cortex Alters the Sunk Cost Effect: A Mental Accounting Framework. J Neurosci 2022; 42:6770-6781. [PMID: 35853719 PMCID: PMC9436013 DOI: 10.1523/jneurosci.0127-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
The sunk cost effect refers to the fact that human decisions are consistently influenced by previous irrecoverable and irrelevant costs. Recent neuroimaging experiments suggest that the dorsolateral prefrontal cortex (dlPFC) plays a pivotal role in the sunk cost effect yet the causal and neurocomputational role of the dlPFC remains elusive. In this study, two cohorts of healthy human male and female adults were recruited to complete a novel two-step decision-making task during the anodal-sham or cathodal-sham high-definition transcranial direct current stimulation (HD-tDCS) over the dlPFC, respectively. Consistent with previous studies, we showed that the sunk cost deterred participants from making further investment and therefore engendered a de-escalation effect. Such behavior can be captured by a weighted mental accounting model with a recalibrated reference point in which the direction and magnitude of the sunk cost effects hinge on the decision weights apportioned to the option values. Interestingly, transcranial stimulation did not influence participants' initial willingness to incur sunk costs but only altered sunk costs' downstream effects. Specifically, anodal stimulation over the right dlPFC amplified the de-escalation effect of sunk costs whereas cathodal stimulation yielded the opposite result. HD-tDCS also changed the decision weights of the mental accounting model, providing a causal and computational link between PFC and sunk cost effects.SIGNIFICANCE STATEMENT Traditional economic theory assumes that decisions only concern the marginal costs and benefits yet human choices are notoriously susceptible to previously-incurred costs (termed the sunk cost effect). In the current study, we showed that direct current stimulation (DCS) of the right dorsolateral prefrontal cortex (dlPFC) altered sunk cost effects in participants' subsequent choices. Such effects can be captured by a mental accounting model where transcranial stimulation modulates the decision weights assigned to different options in the value integration process. These findings help elucidate the computational and causal role of the dlPFC in the context of sunk costs.
Collapse
Affiliation(s)
- Jiashu Wang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China
| | - Jian Li
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China,
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Nasimova M, Huang Y. Applications of open-source software ROAST in clinical studies: A review. Brain Stimul 2022; 15:1002-1010. [PMID: 35843597 PMCID: PMC9378654 DOI: 10.1016/j.brs.2022.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Transcranial electrical stimulation (TES) is broadly investigated as a therapeutic technique for a wide range of neurological disorders. The electric fields induced by TES in the brain can be estimated by computational models. A realistic and volumetric approach to simulate TES (ROAST) has been recently released as an open-source software package and has been widely used in TES research and its clinical applications. Rigor and reproducibility of TES studies have recently become a concern, especially in the context of computational modeling. METHODS Here we reviewed 94 clinical TES studies that leveraged ROAST for computational modeling. When reviewing each study, we pay attention to details related to the rigor and reproducibility as defined by the locations of stimulation electrodes and the dose of stimulating current. Specifically, we compared across studies the electrode montages, stimulated brain areas, achieved electric field strength, and the relations between modeled electric field and clinical outcomes. RESULTS We found that over 1800 individual heads have been modeled by ROAST for more than 30 different clinical applications. Similar electric field intensities were found to be reproducible by ROAST across different studies at the same brain area under same or similar stimulation montages. CONCLUSION This article reviews the use cases of ROAST and provides an overview of how ROAST has been leveraged to enhance the rigor and reproducibility of TES research and its applications.
Collapse
Affiliation(s)
- Mohigul Nasimova
- Department of Biomedical Engineering, City College of the City University of New York, New York, NY, 10031, USA
| | - Yu Huang
- Department of Biomedical Engineering, City College of the City University of New York, New York, NY, 10031, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
17
|
Caulfield KA, Indahlastari A, Nissim NR, Lopez JW, Fleischmann HH, Woods AJ, George MS. Electric Field Strength From Prefrontal Transcranial Direct Current Stimulation Determines Degree of Working Memory Response: A Potential Application of Reverse-Calculation Modeling? Neuromodulation 2022; 25:578-587. [PMID: 35670064 DOI: 10.1111/ner.13342] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) for working memory is an enticing treatment, but there is mixed evidence to date. OBJECTIVES We tested the effects of electric field strength from uniform 2 mA dosing on working memory change from prestimulation to poststimulation. Second, we statistically evaluated a reverse-calculation method of individualizing tDCS dose and its effect on normalizing electric field at the cortex. MATERIALS AND METHODS We performed electric field modeling on a data set of 28 healthy older adults (15 women, mean age = 73.7, SD = 7.3) who received ten sessions of active 2 mA tDCS (N = 14) or sham tDCS (N = 14) applied over bilateral dorsolateral prefrontal cortices (DLPFC) in a triple-blind design. We evaluated the relationship between electric field strength and working memory change on an N-back task in conditions of above-median, high electric field from active 2 mA (N = 7), below-median, low electric field from active 2 mA (N = 7), and sham (N = 14) at regions of interest (ROI) at the left and right DLPFC. We then determined the individualized reverse-calculation dose to produce the group average electric field and measured the electric field variance between uniform 2 mA doses vs individualized reverse-calculation doses at the same ROIs. RESULTS Working memory improvements from pre- to post-tDCS were significant for the above-median electric field from active 2 mA condition at the left DLPFC (mixed ANOVA, p = 0.013). Furthermore, reverse-calculation modeling significantly reduced electric field variance at both ROIs (Levene's test; p < 0.001). CONCLUSIONS Higher electric fields at the left DLPFC from uniform 2 mA doses appear to drive working memory improvements from tDCS. Individualized doses from reverse-calculation modeling significantly reduce electric field variance at the cortex. Taken together, using reverse-calculation modeling to produce the same, high electric fields at the cortex across participants may produce more effective future tDCS treatments for working memory.
Collapse
Affiliation(s)
- Kevin A Caulfield
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA.
| | - Aprinda Indahlastari
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Nicole R Nissim
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - James W Lopez
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Holly H Fleischmann
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Mark S George
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
18
|
Senkowski D, Sobirey R, Haslacher D, Soekadar SR. Boosting working memory: Uncovering the differential effects of tDCS and tACS. Cereb Cortex Commun 2022; 3:tgac018. [PMID: 35592391 PMCID: PMC9113288 DOI: 10.1093/texcom/tgac018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Working memory (WM) is essential for reasoning, decision making and problem solving. Recently, there has been an increasing effort in improving WM through non-invasive brain stimulation, especially transcranial direct and alternating current stimulation (tDCS/tACS). Studies suggest that tDCS and tACS can modulate WM performance, but large variability in research approaches hinders identification of optimal stimulation protocols and interpretation of study results. Moreover, it is unclear whether tDCS and tACS differentially affect WM. Here, we summarize and compare studies examining the effects of tDCS and tACS on WM performance in healthy adults. Following PRISMA-selection criteria, our systematic review resulted in 43 studies (29 tDCS, 11 tACS, 3 both) with a total of 1826 adult participants. For tDCS, only 4 out of 23 single-session studies reported effects on WM, while 7 out of 9 multi-session experiments showed positive effects on WM training. For tACS, 10 out of 14 studies demonstrated effects on WM, which were frequency dependent and robust for frontoparietal stimulation. Our review revealed no reliable effect of single-session tDCS on WM, but moderate effects of multi-session tDCS and single-session tACS. We discuss implications of these findings and future directions in the emerging research field of non-invasive brain stimulation and WM.
Collapse
Affiliation(s)
- Daniel Senkowski
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charitéplatz 1, 10117 Berlin
| | - Rabea Sobirey
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charitéplatz 1, 10117 Berlin
| | - David Haslacher
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charitéplatz 1, 10117 Berlin
| | - Surjo R Soekadar
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charitéplatz 1, 10117 Berlin
| |
Collapse
|
19
|
Veenakumari M, Goyal N, Kumar M, Kshitiz KK, Kumar P. Serum glial cell derived neurotrophic factor (GDNF) as a predictor of response to HD-tDCS in bipolar affective disorder. Asian J Psychiatr 2022; 68:102965. [PMID: 34952447 DOI: 10.1016/j.ajp.2021.102965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/30/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022]
Abstract
Serum glial cell line derived neurotrophic factor (GDNF) homeostasis within brain circuits represent target for focal neuromodulation techniques such as high-definition transcranial direct current stimulation (HD-tDCS). In current trial 37 inpatients with bipolar disorder (BD) received active (n = 18) or sham (n = 19) anodal HD-tDCS over right dorsolateral prefrontal cortex (DLPFC). Outcome measures evaluated by YMRS (p = 0.001, effect size=0.946), BPRS (p = 0.015, effect size=0.220) scales and serum GDNF (p = 0.003, effect size = 0.287) at baseline, before and after receiving HD-tDCS revealed significant improvement (active>sham) with modest effect size. However, the study findings are limited due to small sample size and shorter duration of follow-up.
Collapse
Affiliation(s)
- M Veenakumari
- Central Institute of Psychiatry, Ranchi 834006, Jharkhand, India.
| | - Nishant Goyal
- Central Institute of Psychiatry, Ranchi 834006, Jharkhand, India
| | - Mahesh Kumar
- Central Institute of Psychiatry, Ranchi 834006, Jharkhand, India
| | - K K Kshitiz
- Central Institute of Psychiatry, Ranchi 834006, Jharkhand, India
| | - Pramod Kumar
- Rajendra Institute of Medical Sciences, Ranchi 834009, Jharkhand, India
| |
Collapse
|
20
|
Soleimani G, Kupliki R, Bodurka J, Paulus M, Ekhtiari H. How structural and functional MRI can inform dual-site tACS parameters: A case study in a clinical population and its pragmatic implications. Brain Stimul 2022; 15:337-351. [PMID: 35042056 DOI: 10.1016/j.brs.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Abnormalities in frontoparietal network (FPN) were observed in many neuropsychiatric diseases including substance use disorders. A growing number of studies are using dual-site-tACS with frontoparietal synchronization to engage this network. However, a computational pathway to inform and optimize parameter space for frontoparietal synchronization is still lacking. In this case study, in a group of participants with methamphetamine use disorders, we proposed a computational pathway to extract optimal electrode montage while accounting for stimulation intensity using structural and functional MRI. METHODS Sixty methamphetamine users completed an fMRI drug cue-reactivity task. Four main steps were taken to define electrode montage and adjust stimulation intensity using 4x1 high-definition (HD) electrodes for a dual-site-tACS; (1) Frontal seed was defined based on the maximum electric fields (EF) predicted by simulation of HD montage over DLPFC (F3/F4 in EEG 10-20), (2) frontal seed-to-whole brain context-dependent correlation was calculated to determine connected regions to frontal seeds, (3) center of connected cluster in parietal cortex was selected as a location for placing the second set of HD electrodes to shape the informed montage, (4) individualized head models were used to determine optimal stimulation intensity considering underlying brain structure. The informed montage was compared to montages with large electrodes and classic frontoparietal HD montages (F3-P3/F4-P4) in terms of tACS-induced EF and ROI-to-ROI task-based/resting-state connectivity. RESULTS Compared to the large electrodes, HD frontoparietal montages allow for a finer control of the spatial peak fields in the main nodes of the FPN at the cost of lower maximum EF (large-pad/HD: max EF[V/m] = 0.37/0.11, number of cortical sub-regions that EF exceeds 50% of the max = 77/13). For defining stimulation targets based on EF patterns, using group-level head models compared to a single standard head model results in comparable but significantly different seed locations (6.43mm Euclidean distance between the locations of the frontal maximum EF in standard-space). As expected, significant task-based/resting-state connections were only found between frontal-parietal locations in the informed montage. Cue-induced craving score was correlated with frontoparietal connectivity only in the informed montage (r = -0.24). Stimulation intensity in the informed montage, and not in the classic HD montage, needs 40% reduction in the parietal site to reduce the disparity in EF between sites. CONCLUSION This study provides some empirical insights to montage and dose selection in dual-site-tACS using individual brain structures and functions and proposes a computational pathway to use head models and functional MRI to define (1) optimum electrode montage for targeting FPN in a context of interest (drug-cue-reactivity) and (2) proper transcranial stimulation intensity.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Rayus Kupliki
- Laureate Institute for Brain Research, Tulsa, OK, United States
| | - Jerzy Bodurka
- Laureate Institute for Brain Research, Tulsa, OK, United States
| | - Martin Paulus
- Laureate Institute for Brain Research, Tulsa, OK, United States
| | - Hamed Ekhtiari
- Laureate Institute for Brain Research, Tulsa, OK, United States.
| |
Collapse
|
21
|
Yu H, Wang A, Li Q, Liu Y, Yang J, Takahashi S, Ejima Y, Zhang M, Wu J. Semantically Congruent Bimodal Presentation with Divided-Modality Attention Accelerates Unisensory Working Memory Retrieval. Perception 2021; 50:917-932. [PMID: 34841972 DOI: 10.1177/03010066211052943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although previous studies have shown that semantic multisensory integration can be differentially modulated by attention focus, it remains unclear whether attentionally mediated multisensory perceptual facilitation could impact further cognitive performance. Using a delayed matching-to-sample paradigm, the present study investigated the effect of semantically congruent bimodal presentation on subsequent unisensory working memory (WM) performance by manipulating attention focus. The results showed that unisensory WM retrieval was faster in the semantically congruent condition than in the incongruent multisensory encoding condition. However, such a result was only found in the divided-modality attention condition. This result indicates that a robust multisensory representation was constructed during semantically congruent multisensory encoding with divided-modality attention; this representation then accelerated unisensory WM performance, especially auditory WM retrieval. Additionally, an overall faster unisensory WM retrieval was observed under the modality-specific selective attention condition compared with the divided-modality condition, indicating that the division of attention to address two modalities demanded more central executive resources to encode and integrate crossmodal information and to maintain a constructed multisensory representation, leaving few resources for WM retrieval. Additionally, the present finding may support the amodal view that WM has an amodal central storage component that is used to maintain modal-based attention-optimized multisensory representations.
Collapse
Affiliation(s)
- Hongtao Yu
- Cognitive Neuroscience Laboratory, Graduate School of Interdisciplinary Science and Engineering in Health Systems, 12997Okayama University, Japan
| | - Aijun Wang
- Department of Psychology, Research Center for Psychology and Behavioral Sciences, 12582Soochow University, Suzhou, China
| | | | | | | | | | - Yoshimichi Ejima
- Cognitive Neuroscience Laboratory, Graduate School of Interdisciplinary Science and Engineering in Health Systems, 12997Okayama University, Japan
| | - Ming Zhang
- Department of Psychology, Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, China; Cognitive Neuroscience Laboratory, Graduate School of Interdisciplinary Science and Engineering in Health Systems, 12997Okayama University, Japan
| | - Jinglong Wu
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China; Cognitive Neuroscience Laboratory, Graduate School of Interdisciplinary Science and Engineering in Health Systems, 12997Okayama University, Japan
| |
Collapse
|
22
|
Wischnewski M, Mantell KE, Opitz A. Identifying regions in prefrontal cortex related to working memory improvement: A novel meta-analytic method using electric field modeling. Neurosci Biobehav Rev 2021; 130:147-161. [PMID: 34418436 DOI: 10.1016/j.neubiorev.2021.08.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/09/2021] [Accepted: 08/15/2021] [Indexed: 12/17/2022]
Abstract
Altering cortical activity using transcranial direct current stimulation (tDCS) has been shown to improve working memory (WM) performance. Due to large inter-experimental variability in the tDCS montage configuration and strength of induced electric fields, results have been mixed. Here, we present a novel meta-analytic method relating behavioral effect sizes to electric field strength to identify brain regions underlying largest tDCS-induced WM improvement. Simulations on 69 studies targeting left prefrontal cortex showed that tDCS electric field strength in lower dorsolateral prefrontal cortex (Brodmann area 45/47) relates most strongly to improved WM performance. This region explained 7.8 % of variance, equaling a medium effect. A similar region was identified when correlating WM performance and electric field strength of right prefrontal tDCS studies (n = 18). Maximum electric field strength of five previously used tDCS configurations were outside of this location. We thus propose a new tDCS montage which maximizes the tDCS electric field strength in that brain region. Our findings can benefit future tDCS studies that aim to affect WM function.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States.
| | - Kathleen E Mantell
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
23
|
Transcranial Direct Current Stimulation (tDCS) over the Intraparietal Sulcus Does Not Influence Working Memory Performance. Psychol Belg 2021; 61:200-211. [PMID: 34277028 PMCID: PMC8269793 DOI: 10.5334/pb.534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Mixed results of the impact of transcranial direct current stimulation (tDCS) on working memory have been reported. Contrarily to previous studies who focused mainly on stimulating the dorsolateral prefrontal cortex, we modulated the left intraparietal sulcus (IPS) area which is considered to support attentional control aspects of working memory. Using a within-participant experimental design, participants completed three different conditions: anodal stimulation of the IPS, cathodal stimulation of the IPS, and sham stimulation of the IPS. Both visual and verbal working memory tasks were administered. In the visual task, participants had to memorize a random set of colored figures. In the verbal task, participants had to memorize a string of letters. Working memory load was manipulated in both tasks (six figures/letters vs. two figures/letters). No significant differences in accuracy or reaction time between the anodal, cathodal and sham conditions were found. Bayesian analysis supported evidence for an absence of effect. The results of the present study add to the growing body of contradictory evidence regarding the modulatory effects of single session tDCS on working memory performance.
Collapse
|
24
|
Haque ZZ, Samandra R, Mansouri FA. Neural substrate and underlying mechanisms of working memory: insights from brain stimulation studies. J Neurophysiol 2021; 125:2038-2053. [PMID: 33881914 DOI: 10.1152/jn.00041.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The concept of working memory refers to a collection of cognitive abilities and processes involved in the short-term storage of task-relevant information to guide the ongoing and upcoming behavior and therefore describes an important aspect of executive control of behavior for achieving goals. Deficits in working memory and related cognitive abilities have been observed in patients with brain damage or neuropsychological disorders and therefore it is important to better understand neural substrate and underlying mechanisms of working memory. Working memory relies on neural mechanisms that enable encoding, maintenance, and manipulation of stored information as well as integrating them with ongoing and future goals. Recently, a surge in brain stimulation studies have led to development of various noninvasive techniques for localized stimulation of prefrontal and other cortical regions in humans. These brain stimulation techniques can potentially be tailored to influence neural activities in particular brain regions and modulate cognitive functions and behavior. Combined use of brain stimulation with neuroimaging and electrophysiological recording have provided a great opportunity to monitor neural activity in various brain regions and noninvasively intervene and modulate cognitive functions in cognitive tasks. These studies have shed more light on the neural substrate and underlying mechanisms of working memory in humans. Here, we review findings and insight from these brain stimulation studies about the contribution of brain regions, and particularly prefrontal cortex, to working memory.
Collapse
Affiliation(s)
- Zakia Z Haque
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ranshikha Samandra
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Farshad Alizadeh Mansouri
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,ARC Centre for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
25
|
Using high-definition transcranial direct current stimulation to investigate the role of the dorsolateral prefrontal cortex in explicit sequence learning. PLoS One 2021; 16:e0246849. [PMID: 33735211 PMCID: PMC7971701 DOI: 10.1371/journal.pone.0246849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/26/2021] [Indexed: 11/19/2022] Open
Abstract
Though we have a general understanding of the brain areas involved in motor sequence learning, there is more to discover about the neural mechanisms underlying skill acquisition. Skill acquisition may be subserved, in part, by interactions between the cerebellum and prefrontal cortex through a cerebello-thalamo-prefrontal network. In prior work, we investigated this network by targeting the cerebellum; here, we explored the consequence of stimulating the dorsolateral prefrontal cortex using high-definition transcranial direct current stimulation (HD-tDCS) before administering an explicit motor sequence learning paradigm. Using a mixed within- and between- subjects design, we employed anodal (n = 24) and cathodal (n = 25) HD-tDCS (relative to sham) to temporarily alter brain function and examine effects on skill acquisition. The results indicate that both anodal and cathodal prefrontal stimulation impedes motor sequence learning, relative to sham. These findings suggest an overall negative influence of active prefrontal stimulation on the acquisition of a sequential pattern of finger movements. Collectively, this provides novel insight on the role of the dorsolateral prefrontal cortex in initial skill acquisition, when cognitive processes such as working memory are used. Exploring methods that may improve motor learning is important in developing therapeutic strategies for motor-related diseases and rehabilitation.
Collapse
|
26
|
Lu H, Gong Y, Huang P, Zhang Y, Guo Z, Zhu X, You X. Effect of Repeated Anodal HD-tDCS on Executive Functions: Evidence From a Pilot and Single-Blinded fNIRS Study. Front Hum Neurosci 2021; 14:583730. [PMID: 33536886 PMCID: PMC7847848 DOI: 10.3389/fnhum.2020.583730] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/17/2020] [Indexed: 12/01/2022] Open
Abstract
Executive functions are of vital importance in the process of active cognition, which is thought to be associated with the dorsolateral prefrontal cortex (DLPFC). As a valid brain stimulation technology, high-definition transcranial direct current stimulation (HD-tDCS) has been used to optimize cognitive function in healthy adults. Substantial evidence indicates that short-term or single anodal tDCS sessions over the left DLPFC will enhance the performance of executive functions. However, the changes in performance and cortical activation of executive functions after modulation by repeated anodal HD-tDCS is as yet unexplored. This study aims to examine changes in three core components of executive functions (inhibitory control, working memory, and cognitive flexibility) produced by nine HD-tDCS sessions (1.5 mA, over left DLPFC, 20 min per session), and to use functional near-infrared spectroscopy (fNIRS) to bilaterally record DLPFC neural activity. A total of 43 participants were divided randomly into two study groups (anodal group vs. sham group) to complete nine interventions. Our results demonstrate that the enhancement of cognitive flexibility in the anodal group was significantly better than that in the sham group. Additionally, a Stroop effect-related decrease in oxygenated hemoglobin (HbO) concentration in the DLPFC was observed in the anodal group but not the sham group. In conclusion, our study found that repeated anodal HD-tDCS sessions can significantly promote cognitive flexibility, one of the core components of executive function, and that alterations in DLPFC activation can enhance our understanding of the neuroplastic modifications modulated by HD-tDCS.
Collapse
Affiliation(s)
- Hongliang Lu
- Faculty of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Yue Gong
- School of Psychology, Shaanxi Normal University, Xi’an, China
| | - Peng Huang
- Faculty of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Yajuan Zhang
- Faculty of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Zhihua Guo
- Faculty of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Xia Zhu
- Faculty of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Xuqun You
- School of Psychology, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
27
|
Effects of Transcranial Direct Current Stimulation (tDCS) in the Normalization of Brain Activation in Patients with Neuropsychiatric Disorders: A Systematic Review of Neurophysiological and Neuroimaging Studies. Neural Plast 2020; 2020:8854412. [PMID: 33424961 PMCID: PMC7773462 DOI: 10.1155/2020/8854412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/23/2020] [Accepted: 12/03/2020] [Indexed: 11/17/2022] Open
Abstract
Background People with neuropsychiatric disorders have been found to have abnormal brain activity, which is associated with the persistent functional impairment found in these patients. Recently, transcranial direct current stimulation (tDCS) has been shown to normalize this pathological brain activity, although the results are inconsistent. Objective We explored whether tDCS alters and normalizes brain activity among patients with neuropsychiatric disorders. Moreover, we examined whether these changes in brain activity are clinically relevant, as evidenced by brain-behavior correlations. Methods A systematic review was conducted according to PRISMA guidelines. Randomized controlled trials that studied the effects of tDCS on brain activity by comparing experimental and sham control groups using either electrophysiological or neuroimaging methods were included. Results With convergent evidence from 16 neurophysiological/neuroimaging studies, active tDCS was shown to be able to induce changes in brain activation patterns in people with neuropsychiatric disorders. Importantly, anodal tDCS appeared to normalize aberrant brain activation in patients with schizophrenia and substance abuse, and the effect was selectively correlated with reaction times, task-specific accuracy performance, and some symptom severity measures. Limitations and Conclusions. Due to the inherent heterogeneity in brain activity measurements for tDCS studies among people with neuropsychiatric disorders, no meta-analysis was conducted. We recommend that future studies investigate the effect of repeated cathodal tDCS on brain activity. We suggest to clinicians that the prescription of 1-2 mA anodal stimulation for patients with schizophrenia may be a promising treatment to alleviate positive symptoms. This systematic review is registered with registration number CRD42020183608.
Collapse
|
28
|
Rushby JA, De Blasio FM, Logan JA, Wearne T, Kornfeld E, Wilson EJ, Loo C, Martin D, McDonald S. tDCS effects on task-related activation and working memory performance in traumatic brain injury: A within group randomized controlled trial. Neuropsychol Rehabil 2020; 31:814-836. [PMID: 32114899 DOI: 10.1080/09602011.2020.1733620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Non-invasive transcranial direct current stimulation (tDCS) has been reported to facilitate working memory in normal adults. There is some evidence in people with Traumatic Brain Injury (TBI) but overall evidence is mixed. This study aimed to address shortcomings of prior study designs in TBI to examine whether a single dose of tDCS would lead to benefits in working memory. Thirty people with severe, chronic TBI were administered a single session of either anodal tDCS (2 mA for 20 min) or sham tDCS (2 mA for 30 s), in a counterbalanced order, over the left parietal cortex while performing 1-back and 2-back working memory tasks. Skin conductance levels were examined as a measure of task activated arousal, a possible functional analogue of cortical excitability. We found that tDCS led to no improvements in accuracy on the working memory tasks. A slight increase in variability and reaction time with tDCS was related to decreased task activated arousal. Overall, this study yielded no evidence that a single session of tDCS can facilitate working memory for people with TBI.
Collapse
Affiliation(s)
| | | | - Jodie A Logan
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Travis Wearne
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Emma Kornfeld
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Emily Jane Wilson
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Colleen Loo
- School of Psychiatry & Black Dog Institute, University of New South Wales, Sydney, Australia
| | - Donel Martin
- School of Psychiatry & Black Dog Institute, University of New South Wales, Sydney, Australia
| | - Skye McDonald
- School of Psychology, University of New South Wales, Sydney, Australia
| |
Collapse
|
29
|
Mioni G, Grondin S, Bardi L, Stablum F. Understanding time perception through non-invasive brain stimulation techniques: A review of studies. Behav Brain Res 2020; 377:112232. [DOI: 10.1016/j.bbr.2019.112232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 01/08/2023]
|
30
|
Bikson M, Dmochowski J. What it means to go deep with non-invasive brain stimulation. Clin Neurophysiol 2019; 131:752-754. [PMID: 31917081 DOI: 10.1016/j.clinph.2019.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/14/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States.
| | - Jacek Dmochowski
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States
| |
Collapse
|
31
|
Effects of High-Definition Transcranial Direct Current Stimulation and Theta Burst Stimulation for Modulating the Posterior Parietal Cortex. J Int Neuropsychol Soc 2019; 25:972-984. [PMID: 31397255 DOI: 10.1017/s1355617719000766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Noninvasive brain stimulation methods, including high-definition transcranial direct current stimulation (HD-tDCS) and theta burst stimulation (TBS) have emerged as novel tools to modulate and explore brain function. However, the relative efficacy of these newer stimulation approaches for modulating cognitive functioning remains unclear. This study investigated the cognitive effects of HD-tDCS, intermittent TBS (iTBS) and prolonged continuous TBS (ProcTBS) and explored the potential of these approaches for modulating hypothesized functions of the left posterior parietal cortex (PPC). METHODS Twenty-two healthy volunteers attended four experimental sessions in a cross-over experimental design. In each session, participants either received HD-tDCS, iTBS, ProcTBS or sham, and completed cognitive tasks, including a divided attention task, a working memory maintenance task and an attention task (emotional Stroop test). RESULTS The results showed that compared to sham, HD-tDCS, iTBS and ProcTBS caused significantly faster response times on the emotional Stroop task. The effect size (Cohen's d) was d = .32 for iTBS (p < .001), .21 for ProcTBS (p = .01) and .15 for HD-tDCS (p = .044). However, for the performance on the divided attention and working memory maintenance tasks, no significant effect of stimulation was found. CONCLUSIONS The results suggest that repetitive transcranial magnetic stimulation techniques, including TBS, may have greater efficacy for modulating cognition compared with HD-tDCS, and extend existing knowledge about specific functions of the left PPC.
Collapse
|
32
|
Savic B, Müri R, Meier B. High Definition Transcranial Direct Current Stimulation Does Not Modulate Implicit Task Sequence Learning and Consolidation. Neuroscience 2019; 414:77-87. [DOI: 10.1016/j.neuroscience.2019.06.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022]
|
33
|
Khatoun A, Asamoah B, Mc Laughlin M. Investigating the Feasibility of Epicranial Cortical Stimulation Using Concentric-Ring Electrodes: A Novel Minimally Invasive Neuromodulation Method. Front Neurosci 2019; 13:773. [PMID: 31396045 PMCID: PMC6667561 DOI: 10.3389/fnins.2019.00773] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 07/10/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Invasive cortical stimulation (ICS) is a neuromodulation method in which electrodes are implanted on the cortex to deliver chronic stimulation. ICS has been used to treat neurological disorders such as neuropathic pain, epilepsy, movement disorders and tinnitus. Noninvasive neuromodulation methods such as transcranial magnetic stimulation and transcranial electrical stimulation (TES) show great promise in treating some neurological disorders and require no surgery. However, only acute stimulation can be delivered. Epicranial current stimulation (ECS) is a novel concept for delivering chronic neuromodulation through subcutaneous electrodes implanted on the skull. The use of concentric-ring ECS electrodes may allow spatially focused stimulation and offer a less invasive alternative to ICS. OBJECTIVES Demonstrate ECS proof-of-concept using concentric-ring electrodes in rats and then use a computational model to explore the feasibility and limitations of ECS in humans. METHODS ECS concentric-ring electrodes were implanted in 6 rats and pulsatile stimulation delivered to the motor cortex. An MRI based electro-anatomical human head model was used to explore different ECS concentric-ring electrode designs and these were compared with ICS and TES. RESULTS Concentric-ring ECS electrodes can selectively stimulate the rat motor cortex. The computational model showed that the concentric-ring ECS electrode design can be optimized to achieve focused cortical stimulation. In general, focality was less than ICS but greater than noninvasive transcranial current stimulation. CONCLUSION ECS could be a promising minimally invasive alternative to ICS. Further work in large animal models and patients is needed to demonstrate feasibility and long-term stability.
Collapse
Affiliation(s)
- Ahmad Khatoun
- Research Group Experimental Oto-Rhino-Laryngology (ExpORL), Department of Neurosciences, KU Leuven, Leuven, Belgium
- The Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Boateng Asamoah
- Research Group Experimental Oto-Rhino-Laryngology (ExpORL), Department of Neurosciences, KU Leuven, Leuven, Belgium
- The Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Myles Mc Laughlin
- Research Group Experimental Oto-Rhino-Laryngology (ExpORL), Department of Neurosciences, KU Leuven, Leuven, Belgium
- The Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
34
|
Bikson M, Esmaeilpour Z, Adair D, Kronberg G, Tyler WJ, Antal A, Datta A, Sabel BA, Nitsche MA, Loo C, Edwards D, Ekhtiari H, Knotkova H, Woods AJ, Hampstead BM, Badran BW, Peterchev AV. Transcranial electrical stimulation nomenclature. Brain Stimul 2019; 12:1349-1366. [PMID: 31358456 DOI: 10.1016/j.brs.2019.07.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/25/2019] [Accepted: 07/14/2019] [Indexed: 01/03/2023] Open
Abstract
Transcranial electrical stimulation (tES) aims to alter brain function non-invasively by applying current to electrodes on the scalp. Decades of research and technological advancement are associated with a growing diversity of tES methods and the associated nomenclature for describing these methods. Whether intended to produce a specific response so the brain can be studied or lead to a more enduring change in behavior (e.g. for treatment), the motivations for using tES have themselves influenced the evolution of nomenclature, leading to some scientific, clinical, and public confusion. This ambiguity arises from (i) the infinite parameter space available in designing tES methods of application and (ii) varied naming conventions based upon the intended effects and/or methods of application. Here, we compile a cohesive nomenclature for contemporary tES technologies that respects existing and historical norms, while incorporating insight and classifications based on state-of-the-art findings. We consolidate and clarify existing terminology conventions, but do not aim to create new nomenclature. The presented nomenclature aims to balance adopting broad definitions that encourage flexibility and innovation in research approaches, against classification specificity that minimizes ambiguity about protocols but can hinder progress. Constructive research around tES classification, such as transcranial direct current stimulation (tDCS), should allow some variations in protocol but also distinguish from approaches that bear so little resemblance that their safety and efficacy should not be compared directly. The proposed framework includes terms in contemporary use across peer-reviewed publications, including relatively new nomenclature introduced in the past decade, such as transcranial alternating current stimulation (tACS) and transcranial pulsed current stimulation (tPCS), as well as terms with long historical use such as electroconvulsive therapy (ECT). We also define commonly used terms-of-the-trade including electrode, lead, anode, and cathode, whose prior use, in varied contexts, can also be a source of confusion. This comprehensive clarification of nomenclature and associated preliminary proposals for standardized terminology can support the development of consensus on efficacy, safety, and regulatory standards.
Collapse
Affiliation(s)
- Marom Bikson
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA.
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA.
| | - Devin Adair
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA
| | - Greg Kronberg
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA
| | - William J Tyler
- Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ, USA
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center Goettingen, Goettingen, Germany; Institute of Medical Psychology, Medical Faculty, Otto-v.-Guericke University of Magdeburg, Magdeburg, Germany
| | | | - Bernhard A Sabel
- Institute of Medical Psychology, Medical Faculty, Otto-v.-Guericke University of Magdeburg, Magdeburg, Germany
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment ant Human Factors, Dept. Psychology and Neurosciences, Dortmund, Germany; University Medical Hospital Bergmannsheil, Dept. Neurology, Bochum, Germany
| | - Colleen Loo
- School of Psychiatry & Black Dog Institute, University of New South Wales, Sydney, Australia
| | - Dylan Edwards
- Moss Rehabilitation Research Institute, Philadelphia, PA, USA; Edith Cowan University, Joondalup, Australia
| | | | - Helena Knotkova
- MJHS Institute for Innovation in Palliative Care, New York, NY, USA; Department of Family and Social Medicine, Albert Einstein College of Medicine, The Bronx, NY, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Benjamin M Hampstead
- Mental Health Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA; Neuropsychology Section, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Bashar W Badran
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Angel V Peterchev
- Department of Psychiatry & Behavioral Sciences, Department of Biomedical Engineering, Department of Electrical & Computer Engineering, Department of Neurosurgery, Duke University, Durham, NC, USA
| |
Collapse
|
35
|
Brunyé TT, Hussey EK, Fontes EB, Ward N. Modulating Applied Task Performance via Transcranial Electrical Stimulation. Front Hum Neurosci 2019; 13:140. [PMID: 31114491 PMCID: PMC6503100 DOI: 10.3389/fnhum.2019.00140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/10/2019] [Indexed: 11/28/2022] Open
Abstract
Basic and applied research are increasingly adopting transcranial electrical stimulation (tES) for modulating perceptual, cognitive, affective, and motor processes. Industry and defense applications of tES hold potential for accelerating training and knowledge acquisition and sustaining work-related performance in the face of fatigue, workload, and stress. This mini-review article describes the promises and perils of tES, and reviews research testing its influence on two broad applied areas: sustaining and dividing attention, and operating in virtual environments. Also included is a discussion of challenges related to viable mechanistic explanations for tES effectiveness, attempts at replication and consideration of null results, and the potential importance of individual differences in predicting tES influences on human performance. Finally, future research directions are proposed to address these challenges and help develop a fuller understanding of tES viability for enhancing real-world performance.
Collapse
Affiliation(s)
- Tad T Brunyé
- Center for Applied Brain and Cognitive Sciences, School of Engineering, Tufts University, Medford, MA, United States.,U.S. Army Combat Capabilities Development Command, Soldier Center (CCDC-SC), Natick, MA, United States.,Department of Psychology, Tufts University, Medford, MA, United States
| | - Erika K Hussey
- Center for Applied Brain and Cognitive Sciences, School of Engineering, Tufts University, Medford, MA, United States.,U.S. Army Combat Capabilities Development Command, Soldier Center (CCDC-SC), Natick, MA, United States
| | - Eduardo B Fontes
- Department of Psychology, Tufts University, Medford, MA, United States.,NEUROEX-Research Group in Physical Activity, Cognition and Behavior, Health Science Center, Department of Physical Education, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Nathan Ward
- Department of Psychology, Tufts University, Medford, MA, United States.,NEUROEX-Research Group in Physical Activity, Cognition and Behavior, Health Science Center, Department of Physical Education, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|