1
|
Ross LA, Molholm S, Butler JS, Del Bene VA, Brima T, Foxe JJ. Neural correlates of audiovisual narrative speech perception in children and adults on the autism spectrum: A functional magnetic resonance imaging study. Autism Res 2024; 17:280-310. [PMID: 38334251 DOI: 10.1002/aur.3104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/19/2024] [Indexed: 02/10/2024]
Abstract
Autistic individuals show substantially reduced benefit from observing visual articulations during audiovisual speech perception, a multisensory integration deficit that is particularly relevant to social communication. This has mostly been studied using simple syllabic or word-level stimuli and it remains unclear how altered lower-level multisensory integration translates to the processing of more complex natural multisensory stimulus environments in autism. Here, functional neuroimaging was used to examine neural correlates of audiovisual gain (AV-gain) in 41 autistic individuals to those of 41 age-matched non-autistic controls when presented with a complex audiovisual narrative. Participants were presented with continuous narration of a story in auditory-alone, visual-alone, and both synchronous and asynchronous audiovisual speech conditions. We hypothesized that previously identified differences in audiovisual speech processing in autism would be characterized by activation differences in brain regions well known to be associated with audiovisual enhancement in neurotypicals. However, our results did not provide evidence for altered processing of auditory alone, visual alone, audiovisual conditions or AV- gain in regions associated with the respective task when comparing activation patterns between groups. Instead, we found that autistic individuals responded with higher activations in mostly frontal regions where the activation to the experimental conditions was below baseline (de-activations) in the control group. These frontal effects were observed in both unisensory and audiovisual conditions, suggesting that these altered activations were not specific to multisensory processing but reflective of more general mechanisms such as an altered disengagement of Default Mode Network processes during the observation of the language stimulus across conditions.
Collapse
Affiliation(s)
- Lars A Ross
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Imaging Sciences, University of Rochester Medical Center, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, USA
| | - Sophie Molholm
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, USA
| | - John S Butler
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, USA
- School of Mathematics and Statistics, Technological University Dublin, City Campus, Dublin, Ireland
| | - Victor A Del Bene
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, USA
- Heersink School of Medicine, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tufikameni Brima
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - John J Foxe
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, USA
| |
Collapse
|
2
|
Ross LA, Molholm S, Butler JS, Bene VAD, Foxe JJ. Neural correlates of multisensory enhancement in audiovisual narrative speech perception: a fMRI investigation. Neuroimage 2022; 263:119598. [PMID: 36049699 DOI: 10.1016/j.neuroimage.2022.119598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/25/2022] Open
Abstract
This fMRI study investigated the effect of seeing articulatory movements of a speaker while listening to a naturalistic narrative stimulus. It had the goal to identify regions of the language network showing multisensory enhancement under synchronous audiovisual conditions. We expected this enhancement to emerge in regions known to underlie the integration of auditory and visual information such as the posterior superior temporal gyrus as well as parts of the broader language network, including the semantic system. To this end we presented 53 participants with a continuous narration of a story in auditory alone, visual alone, and both synchronous and asynchronous audiovisual speech conditions while recording brain activity using BOLD fMRI. We found multisensory enhancement in an extensive network of regions underlying multisensory integration and parts of the semantic network as well as extralinguistic regions not usually associated with multisensory integration, namely the primary visual cortex and the bilateral amygdala. Analysis also revealed involvement of thalamic brain regions along the visual and auditory pathways more commonly associated with early sensory processing. We conclude that under natural listening conditions, multisensory enhancement not only involves sites of multisensory integration but many regions of the wider semantic network and includes regions associated with extralinguistic sensory, perceptual and cognitive processing.
Collapse
Affiliation(s)
- Lars A Ross
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA; Department of Imaging Sciences, University of Rochester Medical Center, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA; The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, 10461, USA.
| | - Sophie Molholm
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA; The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, 10461, USA
| | - John S Butler
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, 10461, USA; School of Mathematical Sciences, Technological University Dublin, Kevin Street Campus, Dublin, Ireland
| | - Victor A Del Bene
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, 10461, USA; University of Alabama at Birmingham, Heersink School of Medicine, Department of Neurology, Birmingham, Alabama, 35233, USA
| | - John J Foxe
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA; The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, 10461, USA.
| |
Collapse
|
3
|
Yu L, Yu P, Liu W, Gao Z, Sun D, Mei Q, Fernandez J, Gu Y. Understanding Foot Loading and Balance Behavior of Children with Motor Sensory Processing Disorder. CHILDREN 2022; 9:children9030379. [PMID: 35327751 PMCID: PMC8947083 DOI: 10.3390/children9030379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/03/2022]
Abstract
Sensory processing disorder (SPD) could influence the neuromuscular response and adjustment to external sensory discrimination and lead to disruptions in daily locomotion. The objective of the current study was to compare plantar loadings and foot balance during walking, running and turning activities in SPD children in order to reveal the behavioral strategy of movement and balance control. Six SPD children and six age-match healthy controls participated in the test using a FootScan plantar pressure plate. The time-varying parameters of forces, center of pressure and foot balance index were analyzed using an open-source one-dimensional Statistical Parametric Mapping (SPM1d) package. No difference was found in foot balance and plantar loadings during walking, while limited supination–pronation motion was observed in the SPD children during running and turning. The plantar forces were mainly located in the midfoot region while less toe activity was found as well. Findings should be noted that SPD children had limited supination–pronation movement for shock attenuation in the foot complex and reduced ankle pronation to assist push-off and toe gripping movements. Understanding the behavior of plantar loading strategy and balance control during walking, running and turning activities may provide clinical implications for the rehabilitation and training of daily tasks.
Collapse
Affiliation(s)
- Lin Yu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (L.Y.); (P.Y.); (W.L.); (Z.G.); (J.F.)
- Faculty of Sports Sciences and Coaching, Sultan Idris Education University, Tanjong Malim 35910, Malaysia
| | - Peimin Yu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (L.Y.); (P.Y.); (W.L.); (Z.G.); (J.F.)
- Research Academy of Grand Health, Ningbo University, Ningbo 315211, China
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Wei Liu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (L.Y.); (P.Y.); (W.L.); (Z.G.); (J.F.)
- Faculty of Engineering, University of Pannonia, 8200 Veszprém, Hungary
| | - Zixiang Gao
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (L.Y.); (P.Y.); (W.L.); (Z.G.); (J.F.)
- Faculty of Engineering, University of Pannonia, 8200 Veszprém, Hungary
| | - Dong Sun
- Department of Public Service and Management, Ningbo College of Health Sciences, Ningbo 315199, China
- Correspondence: (D.S.); (Q.M.); (Y.G.)
| | - Qichang Mei
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (L.Y.); (P.Y.); (W.L.); (Z.G.); (J.F.)
- Research Academy of Grand Health, Ningbo University, Ningbo 315211, China
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
- Correspondence: (D.S.); (Q.M.); (Y.G.)
| | - Justin Fernandez
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (L.Y.); (P.Y.); (W.L.); (Z.G.); (J.F.)
- Research Academy of Grand Health, Ningbo University, Ningbo 315211, China
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (L.Y.); (P.Y.); (W.L.); (Z.G.); (J.F.)
- Research Academy of Grand Health, Ningbo University, Ningbo 315211, China
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
- Correspondence: (D.S.); (Q.M.); (Y.G.)
| |
Collapse
|