1
|
Rose O, Huber S, Trinka E, Pachmayr J, Clemens S. Treatment of Parkinson's Disease Psychosis-A Systematic Review and Multi-Methods Approach. Biomedicines 2024; 12:2317. [PMID: 39457629 PMCID: PMC11505035 DOI: 10.3390/biomedicines12102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
OBJECTIVES Parkinson's disease psychosis (PDP) is a prevalent non-motor symptom associated with Parkinson's disease. The treatment options for PDP are limited, and its pharmacological management remains ambiguous. This study aimed to evaluate the existing evidence in relation to clinical practice. METHODS This multi-methods study consisted of a systematic review of reviews, adhering to the PRISMA guidelines. The review was registered with PROSPERO. Following data extraction and assessment using the AMSTAR 2 tool, a narrative synthesis was performed. In the second phase of the study, a questionnaire was developed, validated, piloted, and distributed to the heads of specialized PD clinics in Germany and Austria. RESULTS The search resulted in the inclusion of eleven reviews. The quality of eight of these reviews was rated as high (n = 7) or moderate (n = 1). The reviews indicated that clozapine and pimavanserin demonstrated the highest efficacy and tolerability. Other antipsychotic medications either failed to alleviate PDP symptoms or resulted in distinct motor complications. The survey findings also favored clozapine for its efficacy in managing PDP and improving quality of life, although quetiapine was regarded as effective and pimavanserin was not available. Clinicians reported initiating antipsychotic treatment at various stages of PDP, with a tendency to reduce the dosage or discontinue D2 agonists or anticholinergics. CONCLUSIONS The reviewed literature and the survey results consistently favored clozapine for its efficacy and tolerability in treating PDP. It may be considered the first-line treatment, with pimavanserin as an alternative option.
Collapse
Affiliation(s)
- Olaf Rose
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
- Center of Public Health and Health Services Research, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Sophia Huber
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Centre for Cognitive Neuroscience, EpiCARE, Christian-Doppler University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria
- Paracelsus Medical University Centre for Cognitive Neuroscience, Neuroscience Institute, Christian-Doppler University Hospital, 5020 Salzburg, Austria
- Institute of Public Health, Medical Decision-Making and HTA, UMIT—Private University for Health Sciences, Medical Informatics and Technology, 6060 Hall in Tyrol, Austria
| | - Johanna Pachmayr
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
- Center of Public Health and Health Services Research, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Stephanie Clemens
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
- Center of Public Health and Health Services Research, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| |
Collapse
|
2
|
Saccaro LF, Mallet C, Wullschleger A, Sabé M. Psychiatric manifestations in moyamoya disease: more than a puff of smoke? a systematic review and a case-reports meta-analysis. Front Psychiatry 2024; 15:1371763. [PMID: 38585478 PMCID: PMC10995700 DOI: 10.3389/fpsyt.2024.1371763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Moyamoya disease (MMD) is a life-threatening condition characterized by stenosis of intracranial arteries. Despite the frequency and the impact of psychiatric symptoms on the long-term prognosis and quality of life of MMD patients, no systematic review on this topic exists. Methods This systematic review and meta-analysis included 41 studies (29 being case reports), from PubMed, Scopus, Embase until 27/3/2023, on MMD patients exhibiting psychiatric symptoms. Results Despite a fair average quality of the articles, quantitative synthesis through logistic regression was possible only for case reports, due to heterogeneity between the other studies. Psychosis, the most frequent psychiatric symptom reported in case reports, was more frequent in MMD patients with left hemisphere involvement. Neurological symptoms occurrence increased the odds of MMD diagnosis preceding psychiatric symptoms. Psychiatric symptoms are highly prevalent in MMD patients and are relatively often the only presenting symptoms. Discussion We discuss the diagnostic, therapeutic, and prognostic implications of recognizing and characterizing specific psychiatric symptoms in MMD, outlining preliminary guidelines for targeted pharmacological and psychotherapeutic interventions. Lastly, we outline future research and clinical perspectives, striving to enhance the oft-overlooked psychiatric care for MMD patients and to ameliorate their long-term outcome. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023406303.
Collapse
Affiliation(s)
- Luigi F. Saccaro
- Psychiatry Department, Geneva University Hospital, Geneva, Switzerland
- Psychiatry Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Clément Mallet
- Psychiatry Department, Geneva University Hospital, Geneva, Switzerland
| | - Alexandre Wullschleger
- Psychiatry Department, Geneva University Hospital, Geneva, Switzerland
- Psychiatry Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Michel Sabé
- Psychiatry Department, Geneva University Hospital, Geneva, Switzerland
- Psychiatry Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Pagonabarraga J, Bejr-Kasem H, Martinez-Horta S, Kulisevsky J. Parkinson disease psychosis: from phenomenology to neurobiological mechanisms. Nat Rev Neurol 2024; 20:135-150. [PMID: 38225264 DOI: 10.1038/s41582-023-00918-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/17/2024]
Abstract
Parkinson disease (PD) psychosis (PDP) is a spectrum of illusions, hallucinations and delusions that are associated with PD throughout its disease course. Psychotic phenomena can manifest from the earliest stages of PD and might follow a continuum from minor hallucinations to structured hallucinations and delusions. Initially, PDP was considered to be a complication associated with dopaminergic drug use. However, subsequent research has provided evidence that PDP arises from the progression of brain alterations caused by PD itself, coupled with the use of dopaminergic drugs. The combined dysfunction of attentional control systems, sensory processing, limbic structures, the default mode network and thalamocortical connections provides a conceptual framework to explain how new incoming stimuli are incorrectly categorized, and how aberrant hierarchical predictive processing can produce false percepts that intrude into the stream of consciousness. The past decade has seen the publication of new data on the phenomenology and neurobiological basis of PDP from the initial stages of the disease, as well as the neurotransmitter systems involved in PDP initiation and progression. In this Review, we discuss the latest clinical, neuroimaging and neurochemical evidence that could aid early identification of psychotic phenomena in PD and inform the discovery of new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Javier Pagonabarraga
- Movement Disorder Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain.
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.
- Centro de Investigación en Red - Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Helena Bejr-Kasem
- Movement Disorder Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red - Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Saul Martinez-Horta
- Movement Disorder Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red - Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jaime Kulisevsky
- Movement Disorder Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red - Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
4
|
Cook BRH, Griffin JD. Can the Predictive Processing Framework Explain the Persistence of Delusional Beliefs? Schizophr Bull 2023; 49:1411-1413. [PMID: 37931622 PMCID: PMC10686351 DOI: 10.1093/schbul/sbad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Affiliation(s)
| | - Juliet D Griffin
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Rootes-Murdy K, Edmond JT, Jiang W, Rahaman MA, Chen J, Perrone-Bizzozero NI, Calhoun VD, van Erp TGM, Ehrlich S, Agartz I, Jönsson EG, Andreassen OA, Westlye LT, Wang L, Pearlson GD, Glahn DC, Hong E, Buchanan RW, Kochunov P, Voineskos A, Malhotra A, Tamminga CA, Liu J, Turner JA. Clinical and cortical similarities identified between bipolar disorder I and schizophrenia: A multivariate approach. Front Hum Neurosci 2022; 16:1001692. [PMID: 36438633 PMCID: PMC9684186 DOI: 10.3389/fnhum.2022.1001692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/17/2022] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Structural neuroimaging studies have identified similarities in the brains of individuals diagnosed with schizophrenia (SZ) and bipolar I disorder (BP), with overlap in regions of gray matter (GM) deficits between the two disorders. Recent studies have also shown that the symptom phenotypes associated with SZ and BP may allow for a more precise categorization than the current diagnostic criteria. In this study, we sought to identify GM alterations that were unique to each disorder and whether those alterations were also related to unique symptom profiles. MATERIALS AND METHODS We analyzed the GM patterns and clinical symptom presentations using independent component analysis (ICA), hierarchical clustering, and n-way biclustering in a large (N ∼ 3,000), merged dataset of neuroimaging data from healthy volunteers (HV), and individuals with either SZ or BP. RESULTS Component A showed a SZ and BP < HV GM pattern in the bilateral insula and cingulate gyrus. Component B showed a SZ and BP < HV GM pattern in the cerebellum and vermis. There were no significant differences between diagnostic groups in these components. Component C showed a SZ < HV and BP GM pattern bilaterally in the temporal poles. Hierarchical clustering of the PANSS scores and the ICA components did not yield new subgroups. N-way biclustering identified three unique subgroups of individuals within the sample that mapped onto different combinations of ICA components and symptom profiles categorized by the PANSS but no distinct diagnostic group differences. CONCLUSION These multivariate results show that diagnostic boundaries are not clearly related to structural differences or distinct symptom profiles. Our findings add support that (1) BP tend to have less severe symptom profiles when compared to SZ on the PANSS without a clear distinction, and (2) all the gray matter alterations follow the pattern of SZ < BP < HV without a clear distinction between SZ and BP.
Collapse
Affiliation(s)
- Kelly Rootes-Murdy
- Department of Psychology, Georgia State University, Atlanta, GA, United States
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
| | - Jesse T. Edmond
- Department of Psychology, Georgia State University, Atlanta, GA, United States
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
| | - Wenhao Jiang
- Department of Psychosomatics and Psychiatry, Medical School, Zhongda Hospital, Institute of Psychosomatics, Southeast University, Nanjing, China
| | - Md A. Rahaman
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
| | - Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
| | | | - Vince D. Calhoun
- Department of Psychology, Georgia State University, Atlanta, GA, United States
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
| | - Theo G. M. van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Ingrid Agartz
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institute and Stockholm Health Care Services, Stockholm, Sweden
- K. G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Erik G. Jönsson
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institute and Stockholm Health Care Services, Stockholm, Sweden
| | - Ole A. Andreassen
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
- K. G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Lars T. Westlye
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
- K. G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Lei Wang
- Psychiatry and Behavioral Health, Ohio State Wexner Medical Center, Columbus, OH, United States
| | - Godfrey D. Pearlson
- Department of Psychiatry, Yale University, New Haven, CT, United States
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, CT, United States
| | - David C. Glahn
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, CT, United States
- Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Elliot Hong
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Robert W. Buchanan
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Peter Kochunov
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Aristotle Voineskos
- Department of Psychiatry, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Anil Malhotra
- Division of Psychiatry Research, Zucker Hillside Hospital, Queens, NY, United States
| | - Carol A. Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX, United States
| | - Jingyu Liu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
| | - Jessica A. Turner
- Psychiatry and Behavioral Health, Ohio State Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
6
|
Dourron HM, Strauss C, Hendricks PS. Self-Entropic Broadening Theory: Toward a New Understanding of Self and Behavior Change Informed by Psychedelics and Psychosis. Pharmacol Rev 2022; 74:982-1027. [DOI: 10.1124/pharmrev.121.000514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/22/2022] Open
|
7
|
Khoury MA, Bahsoun MA, Fadhel A, Shunbuli S, Venkatesh S, Ghazvanchahi A, Mitha S, Chan K, Fornazzari LR, Churchill NW, Ismail Z, Munoz DG, Schweizer TA, Moody AR, Fischer CE, Khademi A. Delusional Severity Is Associated with Abnormal Texture in FLAIR MRI. Brain Sci 2022; 12:600. [PMID: 35624987 PMCID: PMC9139341 DOI: 10.3390/brainsci12050600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Background: This study examines the relationship between delusional severity in cognitively impaired adults with automatically computed volume and texture biomarkers from the Normal Appearing Brain Matter (NABM) in FLAIR MRI. Methods: Patients with mild cognitive impairment (MCI, n = 24) and Alzheimer’s Disease (AD, n = 18) with delusions of varying severities based on Neuropsychiatric Inventory-Questionnaire (NPI-Q) (1—mild, 2—moderate, 3—severe) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) were analyzed for this task. The NABM region, which is gray matter (GM) and white matter (WM) combined, was automatically segmented in FLAIR MRI volumes with intensity standardization and thresholding. Three imaging biomarkers were computed from this region, including NABM volume and two texture markers called “Integrity” and “Damage”. Together, these imaging biomarkers quantify structural changes in brain volume, microstructural integrity and tissue damage. Multivariable regression was used to investigate relationships between imaging biomarkers and delusional severities (1, 2 and 3). Sex, age, education, APOE4 and baseline cerebrospinal fluid (CSF) tau were included as co-variates. Results: Biomarkers were extracted from a total of 42 participants with longitudinal time points representing 164 imaging volumes. Significant associations were found for all three NABM biomarkers between delusion level 3 and level 1. Integrity was also sensitive enough to show differences between delusion level 1 and delusion level 2. A significant specified interaction was noted with severe delusions (level 3) and CSF tau for all imaging biomarkers (p < 0.01). APOE4 homozygotes were also significantly related to the biomarkers. Conclusion: Cognitively impaired older adults with more severe delusions have greater global brain disease burden in the WM and GM combined (NABM) as measured using FLAIR MRI. Relative to patients with mild delusions, tissue degeneration in the NABM was more pronounced in subjects with higher delusional symptoms, with a significant association with CSF tau. Future studies are required to establish potential tau-associated mechanisms of increased delusional severity.
Collapse
Affiliation(s)
- Marc A. Khoury
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Toronto, ON M5V 1T8, Canada; (M.A.K.); (A.F.); (S.S.); (S.V.); (L.R.F.); (N.W.C.); (D.G.M.); (T.A.S.); (A.K.)
| | - Mohamad-Ali Bahsoun
- Institute for Biomedical Engineering, Science & Tech (iBEST), a Partnership between St. Michael’s Hospital and Ryerson University, Toronto, ON M5V 1T8, Canada; (M.-A.B.); (A.G.); (S.M.); (K.C.)
- Electrical, Computer and Biomedical Engineering Department, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Ayad Fadhel
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Toronto, ON M5V 1T8, Canada; (M.A.K.); (A.F.); (S.S.); (S.V.); (L.R.F.); (N.W.C.); (D.G.M.); (T.A.S.); (A.K.)
| | - Shukrullah Shunbuli
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Toronto, ON M5V 1T8, Canada; (M.A.K.); (A.F.); (S.S.); (S.V.); (L.R.F.); (N.W.C.); (D.G.M.); (T.A.S.); (A.K.)
| | - Saanika Venkatesh
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Toronto, ON M5V 1T8, Canada; (M.A.K.); (A.F.); (S.S.); (S.V.); (L.R.F.); (N.W.C.); (D.G.M.); (T.A.S.); (A.K.)
- Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, ON M5T 3M6, Canada
| | - Abdollah Ghazvanchahi
- Institute for Biomedical Engineering, Science & Tech (iBEST), a Partnership between St. Michael’s Hospital and Ryerson University, Toronto, ON M5V 1T8, Canada; (M.-A.B.); (A.G.); (S.M.); (K.C.)
- Electrical, Computer and Biomedical Engineering Department, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Samir Mitha
- Institute for Biomedical Engineering, Science & Tech (iBEST), a Partnership between St. Michael’s Hospital and Ryerson University, Toronto, ON M5V 1T8, Canada; (M.-A.B.); (A.G.); (S.M.); (K.C.)
- Electrical, Computer and Biomedical Engineering Department, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Karissa Chan
- Institute for Biomedical Engineering, Science & Tech (iBEST), a Partnership between St. Michael’s Hospital and Ryerson University, Toronto, ON M5V 1T8, Canada; (M.-A.B.); (A.G.); (S.M.); (K.C.)
- Electrical, Computer and Biomedical Engineering Department, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Luis R. Fornazzari
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Toronto, ON M5V 1T8, Canada; (M.A.K.); (A.F.); (S.S.); (S.V.); (L.R.F.); (N.W.C.); (D.G.M.); (T.A.S.); (A.K.)
- Division of Neurology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Nathan W. Churchill
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Toronto, ON M5V 1T8, Canada; (M.A.K.); (A.F.); (S.S.); (S.V.); (L.R.F.); (N.W.C.); (D.G.M.); (T.A.S.); (A.K.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zahinoor Ismail
- Departments of Psychiatry, Clinical Neurosciences, and Community Health Sciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - David G. Munoz
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Toronto, ON M5V 1T8, Canada; (M.A.K.); (A.F.); (S.S.); (S.V.); (L.R.F.); (N.W.C.); (D.G.M.); (T.A.S.); (A.K.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tom A. Schweizer
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Toronto, ON M5V 1T8, Canada; (M.A.K.); (A.F.); (S.S.); (S.V.); (L.R.F.); (N.W.C.); (D.G.M.); (T.A.S.); (A.K.)
- Institute for Biomedical Engineering, Science & Tech (iBEST), a Partnership between St. Michael’s Hospital and Ryerson University, Toronto, ON M5V 1T8, Canada; (M.-A.B.); (A.G.); (S.M.); (K.C.)
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Alan R. Moody
- Department of Medical Imaging, University of Toronto, Toronto, ON M5T 1W7, Canada;
| | - Corinne E. Fischer
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Toronto, ON M5V 1T8, Canada; (M.A.K.); (A.F.); (S.S.); (S.V.); (L.R.F.); (N.W.C.); (D.G.M.); (T.A.S.); (A.K.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - April Khademi
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Toronto, ON M5V 1T8, Canada; (M.A.K.); (A.F.); (S.S.); (S.V.); (L.R.F.); (N.W.C.); (D.G.M.); (T.A.S.); (A.K.)
- Institute for Biomedical Engineering, Science & Tech (iBEST), a Partnership between St. Michael’s Hospital and Ryerson University, Toronto, ON M5V 1T8, Canada; (M.-A.B.); (A.G.); (S.M.); (K.C.)
- Electrical, Computer and Biomedical Engineering Department, Ryerson University, Toronto, ON M5B 2K3, Canada
| |
Collapse
|