1
|
Li J, Pan C, Huang B, Qiu J, Jiang C, Dong Z, Li J, Lian Q, Wu B. NMDA receptor within nucleus accumbens shell regulates propofol self-administration through D1R/ERK/CREB signalling pathway. Addict Biol 2024; 29:e13401. [PMID: 38782631 PMCID: PMC11116088 DOI: 10.1111/adb.13401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Addictive properties of propofol have been demonstrated in both humans and animals. The nucleus accumbens (NAc) shell (NAsh) in the brain, along with the interactions between N-methyl-D-aspartate receptor (NMDAR) and the dopamine D1 receptor (D1R), as well as their downstream ERK/CREB signalling pathway in the NAc, are integral in regulating reward-seeking behaviour. Nevertheless, it remains unclear whether NMDARs and the NMDAR-D1R/ERK/CREB signalling pathway in the NAsh are involved in mediating propofol addiction. To investigate it, we conducted experiments with adult male Sprague-Dawley rats to establish a model of propofol self-administration behaviour. Subsequently, we microinjected D-AP5 (a competitive antagonist of NMDARs, 1.0-4.0 μg/0.3 μL/site) or vehicle into bilateral NAsh in rats that had previously self-administered propofol to examine the impact of NMDARs within the NAsh on propofol self-administration behaviour. Additionally, we examined the protein expressions of NR2A and NR2B subunits, and the D1R/ERK/CREB signalling pathways within the NAc. The results revealed that propofol administration behaviour was enhanced by D-AP5 pretreatment in NAsh, accompanied by elevated expressions of phosphorylation of NR2A (Tyr1246) and NR2B (Tyr1472) subunits. There were statistically significant increases in the expressions of D1Rs, as well as in the phosphorylated ERK1/2 (p-ERK1/2) and CREB (p-CREB). This evidence substantiates a pivotal role of NMDARs in the NAsh, with a particular emphasis on the NR2A and NR2B subunits, in mediating propofol self-administration behaviour. Furthermore, it suggests that this central reward processing mechanism may operate through the NMDAR-D1R/ERK/CREB signal transduction pathway.
Collapse
Affiliation(s)
- Jiajia Li
- Department of Anesthesiology, Perioperative and Pain MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Anesthesiology of Zhejiang ProvinceThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Pediatric Anesthesiology, Ministry of EducationWenzhou Medical UniversityWenzhouChina
| | - Chi Pan
- Department of Anesthesiology, Perioperative and Pain MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Anesthesiology of Zhejiang ProvinceThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Pediatric Anesthesiology, Ministry of EducationWenzhou Medical UniversityWenzhouChina
| | - Bingwu Huang
- Department of Anesthesiology, Perioperative and Pain MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Anesthesiology of Zhejiang ProvinceThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Pediatric Anesthesiology, Ministry of EducationWenzhou Medical UniversityWenzhouChina
| | - Jiani Qiu
- Department of Anesthesiology, Perioperative and Pain MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Anesthesiology of Zhejiang ProvinceThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Pediatric Anesthesiology, Ministry of EducationWenzhou Medical UniversityWenzhouChina
| | - Chenchen Jiang
- Clinical Research UnitThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Zhanglei Dong
- Department of Anesthesiology, Perioperative and Pain MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Anesthesiology of Zhejiang ProvinceThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Pediatric Anesthesiology, Ministry of EducationWenzhou Medical UniversityWenzhouChina
| | - Jun Li
- Department of Anesthesiology, Perioperative and Pain MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Anesthesiology of Zhejiang ProvinceThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Pediatric Anesthesiology, Ministry of EducationWenzhou Medical UniversityWenzhouChina
| | - Qingquan Lian
- Department of Anesthesiology, Perioperative and Pain MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Anesthesiology of Zhejiang ProvinceThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Pediatric Anesthesiology, Ministry of EducationWenzhou Medical UniversityWenzhouChina
| | - Binbin Wu
- Department of Anesthesiology, Perioperative and Pain MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Anesthesiology of Zhejiang ProvinceThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Pediatric Anesthesiology, Ministry of EducationWenzhou Medical UniversityWenzhouChina
| |
Collapse
|
2
|
Macedo-Lima M, Remage-Healey L. Dopamine Modulation of Motor and Sensory Cortical Plasticity among Vertebrates. Integr Comp Biol 2021; 61:316-336. [PMID: 33822047 PMCID: PMC8600016 DOI: 10.1093/icb/icab019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Goal-directed learning is a key contributor to evolutionary fitness in animals. The neural mechanisms that mediate learning often involve the neuromodulator dopamine. In higher order cortical regions, most of what is known about dopamine's role is derived from brain regions involved in motivation and decision-making, while significantly less is known about dopamine's potential role in motor and/or sensory brain regions to guide performance. Research on rodents and primates represents over 95% of publications in the field, while little beyond basic anatomy is known in other vertebrate groups. This significantly limits our general understanding of how dopamine signaling systems have evolved as organisms adapt to their environments. This review takes a pan-vertebrate view of the literature on the role of dopamine in motor/sensory cortical regions, highlighting, when available, research on non-mammalian vertebrates. We provide a broad perspective on dopamine function and emphasize that dopamine-induced plasticity mechanisms are widespread across all cortical systems and associated with motor and sensory adaptations. The available evidence illustrates that there is a strong anatomical basis-dopamine fibers and receptor distributions-to hypothesize that pallial dopamine effects are widespread among vertebrates. Continued research progress in non-mammalian species will be crucial to further our understanding of how the dopamine system evolved to shape the diverse array of brain structures and behaviors among the vertebrate lineage.
Collapse
Affiliation(s)
- Matheus Macedo-Lima
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, USA
- CAPES Foundation, Ministry of Education of Brazil, 70040-031 Brasília, Brazil
| | - Luke Remage-Healey
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Dopamine-Dependent QR2 Pathway Activation in CA1 Interneurons Enhances Novel Memory Formation. J Neurosci 2020; 40:8698-8714. [PMID: 33046554 DOI: 10.1523/jneurosci.1243-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 01/18/2023] Open
Abstract
The formation of memory for a novel experience is a critical cognitive capacity. The ability to form novel memories is sensitive to age-related pathologies and disease, to which prolonged metabolic stress is a major contributing factor. Presently, we describe a dopamine-dependent redox modulation pathway within the hippocampus of male mice that promotes memory consolidation. Namely, following novel information acquisition, quinone reductase 2 (QR2) is suppressed by miRNA-182 (miR-182) in the CA1 region of the hippocampus via dopamine D1 receptor (D1R) activation, a process largely facilitated by locus coeruleus activity. This pathway activation reduces ROS generated by QR2 enzymatic activity, a process that alters the intrinsic properties of CA1 interneurons 3 h following learning, in a form of oxidative eustress. Interestingly, novel experience decreases QR2 expression predominately in inhibitory interneurons. Additionally, we find that in aged animals this newly described QR2 pathway is chronically under activated, resulting in miR-182 underexpression and QR2 overexpression. This leads to accumulative oxidative stress, which can be seen in CA1 via increased levels of oxidized, inactivated potassium channel Kv2.1, which undergoes disulfide bridge oligomerization. This newly described interneuron-specific molecular pathway lies alongside the known mRNA translation-dependent processes necessary for long-term memory formation, entrained by dopamine in CA1. It is a process crucial for the distinguishing features of novel memory, and points to a promising new target for memory enhancement in aging and age-dependent diseases.SIGNIFICANCE STATEMENT One way in which evolution dictates which sensory information will stabilize as an internal representation, relies on information novelty. Dopamine is a central neuromodulator involved in this process in the mammalian hippocampus. Here, we describe for the first time a dopamine D1 receptor-dependent quinone reductase 2 pathway in interneurons. This is a targeted redox event necessary to delineate a novel experience to a robust long-term internal representation. Activation of this pathway alone can explain the effect novelty has on "flashbulb" memories, and it can become dysfunctional with age and diseases, such as Alzheimer's disease.
Collapse
|
4
|
Molero-Chamizo A, Rivera-Urbina GN. Taste Processing: Insights from Animal Models. Molecules 2020; 25:molecules25143112. [PMID: 32650432 PMCID: PMC7397205 DOI: 10.3390/molecules25143112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
Taste processing is an adaptive mechanism involving complex physiological, motivational and cognitive processes. Animal models have provided relevant data about the neuroanatomical and neurobiological components of taste processing. From these models, two important domains of taste responses are described in this review. The first part focuses on the neuroanatomical and neurophysiological bases of olfactory and taste processing. The second part describes the biological and behavioral characteristics of taste learning, with an emphasis on conditioned taste aversion as a key process for the survival and health of many species, including humans.
Collapse
Affiliation(s)
- Andrés Molero-Chamizo
- Department of Psychology, Psychobiology Area, University of Huelva, Campus El Carmen, 21071 Huelva, Spain
- Correspondence: ; Tel.: +34-959-21-84-78
| | | |
Collapse
|
5
|
David O, Barrera I, Gould N, Gal-Ben-Ari S, Rosenblum K. D1 Dopamine Receptor Activation Induces Neuronal eEF2 Pathway-Dependent Protein Synthesis. Front Mol Neurosci 2020; 13:67. [PMID: 32499677 PMCID: PMC7242790 DOI: 10.3389/fnmol.2020.00067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022] Open
Abstract
Dopamine, alongside other neuromodulators, defines brain and neuronal states, inter alia through regulation of global and local mRNA translation. Yet, the signaling pathways underlying the effects of dopamine on mRNA translation and psychiatric disorders are not clear. In order to examine the molecular pathways downstream of dopamine receptors, we used genetic, pharmacologic, biochemical, and imaging methods, and found that activation of dopamine receptor D1 but not D2 leads to rapid dephosphorylation of eEF2 at Thr56 but not eIF2α in cortical primary neuronal culture in a time-dependent manner. NMDA receptor, mTOR, and ERK pathways are upstream of the D1 receptor-dependent eEF2 dephosphorylation and essential for it. Furthermore, D1 receptor activation resulted in a major reduction in dendritic eEF2 phosphorylation levels. D1-dependent eEF2 dephosphorylation results in an increase of BDNF and synapsin2b expression which was followed by a small yet significant increase in general protein synthesis. These results reveal the role of dopamine D1 receptor in the regulation of eEF2 pathway translation in neurons and present eEF2 as a promising therapeutic target for addiction and depression as well as other psychiatric disorders.
Collapse
Affiliation(s)
- Orit David
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Iliana Barrera
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Nathaniel Gould
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | | | - Kobi Rosenblum
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
6
|
Ke X, Lin J, Li P, Wu Z, Xu R, Ci Z, Yang M, Han L, Zhang D. Transcriptional profiling of genes in tongue epithelial tissue from immature and adult rats by the RNA-Seq technique. J Cell Physiol 2019; 235:3069-3078. [PMID: 31549403 DOI: 10.1002/jcp.29211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/03/2019] [Indexed: 12/29/2022]
Abstract
Children are more sensitive than adults to bitterness and thus dislike bitter tastes more than adults do. However, why children are more sensitive to bitterness has never been revealed. To elucidate the effects of age on taste perception, a double-bottle preference test was first performed with immature and adult rats. Then, RNA-Seq analysis was performed on tongues obtained from rats of the same ages as those in the double-bottle test. The immature rats exhibited a lower consumption rate of bitter solution than the adult rats. Bioinformatics analysis yielded 1,347 differentially expressed genes (DEGs) between male adult rats (MARs, 80 days old) and male immature rats (MIRs, 20 days old) and 380 DEGs between female adult rats (FARs, 80 days old) and female immature rats (FIRs, 20 days old). These DEGs were mainly associated with growth, development, differentiation, and extracellular processes, among other mechanisms. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the DEGs were enriched for bitter taste transduction. Specifically, the Gnb3 and TRPM5 genes were downregulated in FARs compared with FIRs and in MARs compared with MIRs, and the protein expression of TRPM5 was significantly downregulated in MARs compared with MIRs. The data presented herein suggest that transcriptional regulation of taste-associated signal transduction occurs differently in tongue epithelial tissue of rats at different ages, although additional analyses are needed to confirm this conclusion.
Collapse
Affiliation(s)
- Xiumei Ke
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Basic Medical Sciences, Jiujiang University, Jiujiang, China
| | - Junzhi Lin
- Central Laboratory, The Teaching Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pan Li
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenfeng Wu
- School of pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Runchun Xu
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhimin Ci
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Yang
- School of pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Li Han
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dingkun Zhang
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Effects of 5-Aza on p-Y1472 NR2B related to learning and memory in the mouse hippocampus. Biomed Pharmacother 2018; 109:701-707. [PMID: 30551522 DOI: 10.1016/j.biopha.2018.10.090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND We have previously reported that 5-Aza-2-deoxycytidine (5-Aza-cdR) can repress protein serine/threonine phosphatase-1γ (PP1γ) expression and activity in the mouse hippocampus and affect the behaviour of mice in a water maze. It is well known that the phosphorylation of N-methyl-d-aspartate receptor 2B subunit (NR2B) plays a role in behaviour. In this study, we examined whether 5-Aza-cdR affects NR2B phosphorylation at tyrosine 1472 (p-Y1472 NR2B) and whether it affected the responses of the mice in a passive avoidance test. METHODS 5-Aza-cdR (10 μM) was administered to mice via intracerebroventricular injection (i.c.v). The learning and memory behaviour of the mice were evaluated by measuring their response in a step-down type passive avoidance test 24 h after the injection. The mRNA level of NR2B was measured by real-time PCR. NR2B and p-Y1472 NR2B protein expression in the mouse hippocampus was detected by western blot and immunofluorescence. CDK5 activity was detected by the ADP-Glo™ + CDK5/p35 Kinase Enzyme System. To further clarify whether the 5-Aza-cdR effects on behaviour were dependent on cellular proliferation or not, the effect of 5-Aza-cdR on the expression level of NR2B, the phosphorylation level of p-Y1472 NR2B, cell viability and the cell cycle were analysed using the immortalized mouse hippocampal neuronal cells neural cell line HT22 treated with 10 μM 5-Aza-cdR compared with an untreated control group. RESULTS After injection with 5-Aza-cdR, the behaviour of the mice in the step-down test was improved, while their phosphorylation level of p-Y1472 NR2B was increased and their CDK5 activity was decreased in the hippocampus. In vitro experiments showed 10 μM 5-Aza-cdR increased the p-Y1472 NR2B phosphorylation level with inhibition of cell viability and cell cycle arrest. CONCLUSIONS Our results suggested that the effect of 5-Aza-cdR on behaviour may be related to the increase in phosphorylation of p-Y1472 NR2B in the hippocampus.
Collapse
|
8
|
Yang H, Yan H, Li X, Liu J, Cao S, Huang B, Huang D, Wu L. Inhibition of Connexin 43 and Phosphorylated NR2B in Spinal Astrocytes Attenuates Bone Cancer Pain in Mice. Front Cell Neurosci 2018; 12:129. [PMID: 29867362 PMCID: PMC5951934 DOI: 10.3389/fncel.2018.00129] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/23/2018] [Indexed: 12/14/2022] Open
Abstract
Bone cancer pain (BCP) is common in patients with advanced cancers when the tumors are metastasized to bone. The limited understanding of the complex pathogenesis of BCP leads to the poor effectiveness of clinical treatment. Previous studies have shown that astrocyte-specific connexin (Cx) 43, a forming protein of gap junction (GJ) and hemichannel, and N-methyl-D-aspartate receptors (NMDARs), especially the phosphorylated NMDAR 2B subunit (NR2B) phosphorylated NR2B (p-NR2B) subunit are involved in BCP. However, the relationship between Cx43 and p-NR2B in BCP remains unclear. In the present study, we investigated the expressions of Cx43, glial fibrillary acidic protein (GFAP, a marker of astrocytes), and p-NR2B in the spinal dorsal horn (SDH) in a mouse model of BCP established by intra-femural inoculation of Lewis lung carcinoma (LLC) cells via intrathecal (ith) injection of the GJ/hemichannel blocker carbenoxolone (CARB) and the NMDAR antagonist MK801, respectively. We found that the characters of BCP were mimicked by intra-femural inoculation of LLC cells in mice, and the expressions of Cx43, GFAP and p-NR2B in BCP mice were remarkably increased in a time-dependent manner from day 7 to day 21 after cell inoculation with a gradual aggravate in spontaneous pain and mechanical allodynia. Furthermore, Cx43 was predominantly expressed in the spinal astrocytes. Both CARB and MK801 inhibited the expressions of Cx43, GFAP and p-NR2B with attenuated pain hypersensitivity in BCP mice. In addition, Cx43 was co-localized with p-NR2B in the SDH, which further evidenced the presence of functional NR2B in the spinal astrocytes in BCP mice. Our findings demonstrate that inhibition of Cx43 and p-NR2B in spinal astrocytes could attenuate BCP in mice and Cx43 and p-NR2B in the astrocytes of the SDH may play an important role via their combination action in the development and maintenance of BCP in mice. These results may provide a potential therapeutic target in the prevention and/or treatment of BCP.
Collapse
Affiliation(s)
- Hui Yang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China.,Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Hui Yan
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xin Li
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Jing Liu
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Baisheng Huang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Dong Huang
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Lixiang Wu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
9
|
Sun Y, Xu Y, Cheng X, Chen X, Xie Y, Zhang L, Wang L, Hu J, Gao Z. The differences between GluN2A and GluN2B signaling in the brain. J Neurosci Res 2018; 96:1430-1443. [PMID: 29682799 DOI: 10.1002/jnr.24251] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 12/24/2022]
Abstract
The N-methyl-d-aspartate (NMDA) receptor, a typical ionotropic glutamate receptor, is a crucial protein for maintaining brain function. GluN2A and GluN2B are the main types of NMDA receptor subunit in the adult forebrain. Studies have demonstrated that they play different roles in a number of pathophysiological processes. Although the underlying mechanism for this has not been clarified, the most fundamental reason may be the differences between the signaling pathways associated with GluN2A and GluN2B. With the aim of elucidating the reasons behind the diverse roles of these two subunits, we described the signaling differences between GluN2A and GluN2B from the aspects of C-terminus-associated molecules, effects on typical downstream signaling proteins, and metabotropic signaling. Because there are several factors interfering with the determination of subunit-specific signaling, there is still a long way to go toward clarifying the signaling differences between these two subunits. Developing better pharmacology tools, such as highly selective antagonists for triheteromeric GluN2A- and GluN2B-containing NMDA receptors, and establishing new molecular biological methods, for example, engineering photoswitchable NMDA receptors, may be useful for clarifying the signaling differences between GluN2A and GluN2B.
Collapse
Affiliation(s)
- Yongjun Sun
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China.,Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China
| | - Yingge Xu
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China
| | - Xiaokun Cheng
- Department of Physical and Chemical Analysis, North China Pharmaceutical Group New Drug Research and Development Co., Ltd, Shijiazhuang, People's Republic of China
| | - Xi Chen
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China
| | - Yinghua Xie
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China.,Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China
| | - Linan Zhang
- Department of Pathophysiology, College of Basic Medical Science, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Long Wang
- Department of Family and Consumer Sciences, California State University, Long Beach, California
| | - Jie Hu
- Nursing Research Center, School of Nursing, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Zibin Gao
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China.,Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China.,State Key Laboratory Breeding Base, Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China
| |
Collapse
|
10
|
Krania P, Dimou E, Bantouna M, Kouvaros S, Tsiamaki E, Papatheodoropoulos C, Sarantis K, Angelatou F. Adenosine A 2A receptors are required for glutamate mGluR5- and dopamine D1 receptor-evoked ERK1/2 phosphorylation in rat hippocampus: involvement of NMDA receptor. J Neurochem 2018; 145:217-231. [PMID: 29205377 DOI: 10.1111/jnc.14268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/11/2017] [Accepted: 11/24/2017] [Indexed: 12/17/2022]
Abstract
Interaction between mGluR5 and NMDA receptors (NMDAR) is vital for synaptic plasticity and cognition. We recently demonstrated that stimulation of mGluR5 enhances NMDAR responses in hippocampus by phosphorylating NR2B(Tyr1472) subunit, and this reaction was enabled by adenosine A2A receptors (A2A R) (J Neurochem, 135, 2015, 714). In this study, by using in vitro phosphorylation and western blot analysis in hippocampal slices of male Wistar rats, we show that mGluR5 stimulation or mGluR5/NMDARs co-stimulation synergistically activate ERK1/2 signaling leading to c-Fos expression. Interestingly, both reactions are under the permissive control of endogenous adenosine acting through A2A Rs. Moreover, mGluR5-mediated ERK1/2 phosphorylation depends on NMDAR, which however exhibits a metabotropic way of function, since no ion influx through its ion channel is required. Furthermore, our results demonstrate that mGluR5 and mGluR5/NMDAR-evoked ERK1/2 activation correlates well with the mGluR5/NMDAR-evoked NR2B(Tyr1472) phosphorylation, since both phenomena coincide temporally, are Src dependent, and are both enabled by A2A Rs. This indicates a functional involvement of NR2B(Tyr1472) phosphorylation in the ERK1/2 activation. Our biochemical results are supported by electrophysiological data showing that in CA1 region of hippocampus, the theta burst stimulation (TBS)-induced long-term potentiation coincides temporally with an increase in ERK1/2 activation and both phenomena are dependent on the tripartite A2A , mGlu5, and NMDARs. Furthermore, we show that the dopamine D1 receptors evoked ERK1/2 activation as well as the NR2B(Tyr1472) phosphorylation are also regulated by endogenous adenosine and A2A Rs. In conclusion, our results highlight the A2A Rs as a crucial regulator not only for NMDAR responses, but also for regulating ERK1/2 signaling and its downstream pathways, leading to gene expression, synaptic plasticity, and memory consolidation.
Collapse
Affiliation(s)
- Paraskevi Krania
- Physiology Department, Medical School, University of Patras, Patras, Greece
| | - Eleni Dimou
- Physiology Department, Medical School, University of Patras, Patras, Greece
| | - Maria Bantouna
- Physiology Department, Medical School, University of Patras, Patras, Greece
| | - Stylianos Kouvaros
- Physiology Department, Medical School, University of Patras, Patras, Greece
| | - Eirini Tsiamaki
- Physiology Department, Medical School, University of Patras, Patras, Greece
| | | | | | - Fevronia Angelatou
- Physiology Department, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
11
|
Yiannakas A, Rosenblum K. The Insula and Taste Learning. Front Mol Neurosci 2017; 10:335. [PMID: 29163022 PMCID: PMC5676397 DOI: 10.3389/fnmol.2017.00335] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/03/2017] [Indexed: 12/29/2022] Open
Abstract
The sense of taste is a key component of the sensory machinery, enabling the evaluation of both the safety as well as forming associations regarding the nutritional value of ingestible substances. Indicative of the salience of the modality, taste conditioning can be achieved in rodents upon a single pairing of a tastant with a chemical stimulus inducing malaise. This robust associative learning paradigm has been heavily linked with activity within the insular cortex (IC), among other regions, such as the amygdala and medial prefrontal cortex. A number of studies have demonstrated taste memory formation to be dependent on protein synthesis at the IC and to correlate with the induction of signaling cascades involved in synaptic plasticity. Taste learning has been shown to require the differential involvement of dopaminergic GABAergic, glutamatergic, muscarinic neurotransmission across an extended taste learning circuit. The subsequent activation of downstream protein kinases (ERK, CaMKII), transcription factors (CREB, Elk-1) and immediate early genes (c-fos, Arc), has been implicated in the regulation of the different phases of taste learning. This review discusses the relevant neurotransmission, molecular signaling pathways and genetic markers involved in novel and aversive taste learning, with a particular focus on the IC. Imaging and other studies in humans have implicated the IC in the pathophysiology of a number of cognitive disorders. We conclude that the IC participates in circuit-wide computations that modulate the interception and encoding of sensory information, as well as the formation of subjective internal representations that control the expression of motivated behaviors.
Collapse
Affiliation(s)
- Adonis Yiannakas
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
| | - Kobi Rosenblum
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
- Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
12
|
Dorofeeva NA, Grigorieva YS, Nikitina LS, Lavrova EA, Nasluzova EV, Glazova MV, Chernigovskaya EV. Effects of ERK1/2 kinases inactivation on the nigrostriatal system of Krushinsky-Molodkina rats genetically prone to audiogenic seizures. Neurol Res 2017; 39:918-925. [PMID: 28738742 DOI: 10.1080/01616412.2017.1356156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recently, we demonstrated that inhibition of ERK1/2 activity by SL-327 treatment blocks seizure behavior in Krushinsky-Molodkina (KM) rats, which was mediated by altering of GABA and glutamate release mechanism in the hippocampus. Basal ganglia representing various subcortical cell groups play a significant role in the regulation of motor activity, including epileptiform seizures. OBJECTIVES To verify if nigrostriatal system could be also affected by SL-327 treatment we analyzed the expression of tyrosine hydroxylase, D1 and D2 dopamine receptors, NR2B subunit of NMDA receptor as well as vesicular glutamate transporter VGLUT2 and glutamic acid decarboxylases GAD65/67 in the striatum and substantia nigra of KM rats. METHODS Animals were injected i.p. with SL-327 (50 mg/kg) 60 min before audio stimulation. After audiogenic stimulation the brains of control and SL 327 treated rats were removed for further immunohistochemical and biochemical analysis. RESULTS Obtained results demonstrated a decrease activity in synapsin I, and accumulation of VGLUT2 in the striatum after blockade of audiogenic seizure (AGS) by SL 327 that could lead to inhibition of glutamate release. While in the striatum GAD65/67 level was diminished, in the substantia nigra GAD65/67 was increased showing enhanced inhibitory output to the compact part of the substantia nigra. Analysis of dopaminergic system showed a significant reduction of tyrosine hydroxylase activity and expression in the substantia nigra, and decreased D1 and D2 receptor expression in the striatum. In summary, we propose that changes in the nigrostriatal system could be mediated by inhibitory effect of SL 327 on AGS expression.
Collapse
Affiliation(s)
- Nadezhda A Dorofeeva
- a Lab of Comparative Neurochemistry of Cellular Functions, Sechenov Institute of Evolutionary Physiology and Biochemistry , Russian Academy of Sciences , Saint-Petersburg , Russia
| | - Yuliya S Grigorieva
- a Lab of Comparative Neurochemistry of Cellular Functions, Sechenov Institute of Evolutionary Physiology and Biochemistry , Russian Academy of Sciences , Saint-Petersburg , Russia
| | - Liubov S Nikitina
- a Lab of Comparative Neurochemistry of Cellular Functions, Sechenov Institute of Evolutionary Physiology and Biochemistry , Russian Academy of Sciences , Saint-Petersburg , Russia.,b Department of Biophysics , Saint-Petersburg State University , Saint-Petersburg , Russia
| | - Elena A Lavrova
- a Lab of Comparative Neurochemistry of Cellular Functions, Sechenov Institute of Evolutionary Physiology and Biochemistry , Russian Academy of Sciences , Saint-Petersburg , Russia
| | - Elizaveta V Nasluzova
- a Lab of Comparative Neurochemistry of Cellular Functions, Sechenov Institute of Evolutionary Physiology and Biochemistry , Russian Academy of Sciences , Saint-Petersburg , Russia
| | - Margarita V Glazova
- a Lab of Comparative Neurochemistry of Cellular Functions, Sechenov Institute of Evolutionary Physiology and Biochemistry , Russian Academy of Sciences , Saint-Petersburg , Russia
| | - Elena V Chernigovskaya
- a Lab of Comparative Neurochemistry of Cellular Functions, Sechenov Institute of Evolutionary Physiology and Biochemistry , Russian Academy of Sciences , Saint-Petersburg , Russia
| |
Collapse
|
13
|
Han C, Nie S, Chen G, Ma K, Xiong N, Zhang Z, Xu Y, Wang T, Papa SM, Cao X. Intrastriatal injection of ionomycin profoundly changes motor response to l-DOPA and its underlying molecular mechanisms. Neuroscience 2016; 340:23-33. [PMID: 27771532 DOI: 10.1016/j.neuroscience.2016.10.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/08/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
Abstract
Long-term l-DOPA treatment of Parkinson's disease is accompanied with fluctuations of motor responses and l-DOPA-induced dyskinesia (LID). Phosphorylation of the dopamine and c-AMP regulated phosphoprotein of 32kDa (DARPP-32) plays a role in the pathogenesis of LID, and thus dephosphorylation of this protein by activated calcineurin may help reduce LID. One important activator of calcineurin is the Ca2+ ionophore ionomycin. Here, we investigated whether intrastriatal injection of ionomycin to hemiparkinsonian rats produced changes in l-DOPA responses including LID. We also analyzed the effects of ionomycin on key molecular mediators of LID. Results confirmed our hypothesis that ionomycin could downregulate the phosphorylation of DARPP32 at Thr-34 and reduce LID. Besides, ionomycin decreased two established molecular markers of LID, FosB/ΔFosB and phosphorylated ERK1/2. Ionomycin also decreased the phosphorylation of three main subunits of the NMDA receptor, NR1 phosphorylated at ser896, NR2A phosphorylated at Tyr-1325, and NR2B phosphorylated at Tyr-1472. Furthermore, the anti-LID effect of striatally injected ionomycin was not accompanied by reduction of the antiparkinsonian action of l-DOPA. These data indicate that ionomycin largely interacts with striatal mechanisms that are critical to the l-DOPA motor response highlighting the role of protein dephosphorylation by calcineurin.
Collapse
Affiliation(s)
- Chao Han
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuke Nie
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guiqin Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kai Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Stella M Papa
- Yerkes National Primate Research Center, Department of Neurology, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
14
|
Cruz FC, Javier Rubio F, Hope BT. Using c-fos to study neuronal ensembles in corticostriatal circuitry of addiction. Brain Res 2014; 1628:157-73. [PMID: 25446457 DOI: 10.1016/j.brainres.2014.11.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/27/2014] [Accepted: 11/01/2014] [Indexed: 01/02/2023]
Abstract
Learned associations between drugs and environment play an important role in addiction and are thought to be encoded within specific patterns of sparsely distributed neurons called neuronal ensembles. This hypothesis is supported by correlational data from in vivo electrophysiology and cellular imaging studies in relapse models in rodents. In particular, cellular imaging with the immediate early gene c-fos and its protein product Fos has been used to identify sparsely distributed neurons that were strongly activated during conditioned drug behaviors such as drug self-administration and context- and cue-induced reinstatement of drug seeking. Here we review how Fos and the c-fos promoter have been employed to demonstrate causal roles for Fos-expressing neuronal ensembles in prefrontal cortex and nucleus accumbens in conditioned drug behaviors. This work has allowed identification of unique molecular and electrophysiological alterations within Fos-expressing neuronal ensembles that may contribute to the development and expression of learned associations in addiction.
Collapse
Affiliation(s)
- Fabio C Cruz
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, United States
| | - F Javier Rubio
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, United States
| | - Bruce T Hope
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, United States.
| |
Collapse
|