1
|
Sharma A, Bansal C, Sharma KL, Kumar A. Circular RNA: The evolving potential in the disease world. World J Med Genet 2024; 12:93011. [DOI: 10.5496/wjmg.v12.i1.93011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 09/19/2024] Open
Abstract
Circular RNAs (circRNAs), a new star of noncoding RNAs, are a group of endogenous RNAs that form a covalently closed circle and occur widely in the mammalian genome. Most circRNAs are conserved throughout species and frequently show stage-specific expression during various stages of tissue development. CircRNAs were a mystery discovery, as they were initially believed to be a product of splicing errors; however, subsequent research has shown that circRNAs can perform various functions and help in the regulation of splicing and transcription, including playing a role as microRNA (miRNA) sponges. With the application of high throughput next-generation technologies, circRNA hotspots were discovered. There are emerging indications that explain the association of circRNAs with human diseases, like cancers, developmental disorders, and inflammation, and circRNAs may be a new potential biomarker for the diagnosis and treatment outcome of various diseases, including cancer. After the discoveries of miRNAs and long noncoding RNAs, circRNAs are now acting as a novel research entity of interest in the field of RNA disease biology. In this review, we aim to focus on major updates on the biogeny and metabolism of circRNAs, along with their possible/established roles in major human diseases.
Collapse
Affiliation(s)
- Aarti Sharma
- Department of Research, Mayo Clinic Arizona, Phoenix, AZ 85054, United States
| | - Cherry Bansal
- Department of Pathology, Dr. S Tantia Medical College, Hospital and Research Center, Sri Ganganagar 335002, Rajasthan, India
| | - Kiran Lata Sharma
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Ashok Kumar
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
2
|
Gao J, Wang C, Zhang J, Shawuti Z, Wang S, Ma C, Wang J. CircZNF609 inhibits miR-150-5p to promote high glucose-induced damage to retinal microvascular endothelial cells. Mol Cell Endocrinol 2024; 590:112261. [PMID: 38679361 DOI: 10.1016/j.mce.2024.112261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Hyperglycemia is a key contributor to diabetic macrovascular and ocular complications. It triggers a cascade of cellular damage, particularly in the retinal microvascular endothelial cells (RMECs). However, the underlying molecular mechanisms remain only partially understood. This study hypothesizes that CircZNF609 plays a pivotal role in mediating high glucose-induced damage in RMECs by modulating miR-150-5p and its downstream target genes, thereby affecting cellular survival, apoptosis, and oxidative stress. Gene expression datasets (GSE193974 and GSE160308) and clinical samples were used to investigate the expression levels of CircZNF609 and its interaction with miR-150-5p in the context of diabetic retinopathy (DR). Our results demonstrate that CircZNF609 is upregulated in both peripheral blood stem cells from DR patients and high glucose-stimulated hRMECs. Functional experiments reveal that silencing CircZNF609 improves cell viability, reduces apoptosis, inhibits tube formation, and modulates oxidative stress markers, whereas CircZNF609 overexpression exacerbates these effects. Moreover, miR-150-5p, a microRNA, was found to be negatively regulated by CircZNF609 and downregulated in DR. Its overexpression mitigates high glucose-induced cell injury. Our findings suggest a novel mechanism whereby CircZNF609 exacerbates high glucose-induced endothelial cell damage by sponging miR-150-5p, implicating the CircZNF609/miR-150-5p axis as a potential therapeutic target in diabetic retinopathy.
Collapse
Affiliation(s)
- Jing Gao
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi 830054, China
| | - Chenfei Wang
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi 830054, China
| | - Jie Zhang
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Zulifeiya Shawuti
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Siyao Wang
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Cunhua Ma
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Juan Wang
- Department of Cardiology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
3
|
Unlu I, Maguire S, Guan S, Sun Z. Induro-RT mediated circRNA-sequencing (IMCR-seq) enables comprehensive profiling of full-length and long circular RNAs from low input total RNA. Nucleic Acids Res 2024; 52:e55. [PMID: 38850158 PMCID: PMC11260445 DOI: 10.1093/nar/gkae465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/23/2024] [Accepted: 05/17/2024] [Indexed: 06/10/2024] Open
Abstract
Circular RNA (circRNA) has recently gained attention for its emerging biological activities, relevance to disease, potential as biomarkers, and promising an alternative modality for RNA vaccines. Nevertheless, sequencing circRNAs has presented challenges. In this context, we introduce a novel circRNA sequencing method called Induro-RT mediated circRNA-sequencing (IMCR-seq), which relies on a group II intron reverse transcriptase with robust rolling circle reverse transcription activity. The IMCR-seq protocol eliminates the need for conventional circRNA enrichment methods such as rRNA depletion and RNaseR digestion yet achieved the highest circRNA enrichment and detected 6-1000 times more circRNAs for the benchmarked human samples compared to other methods. IMCR-seq is applicable to any organism, capable of detecting circRNAs of longer than 7000 nucleotides, and is effective on samples as small as 10 ng of total RNA. These enhancements render IMCR-seq suitable for clinical samples, including disease tissues and liquid biopsies. We demonstrated the clinical relevance of IMCR-seq by detecting cancer-specific circRNAs as potential biomarkers from IMCR-seq results on lung tumor tissues together with blood plasma samples from both a healthy individual and a lung cancer patient. In summary, IMCR-seq presents an efficient and versatile circRNA sequencing method with high potential for research and clinical applications.
Collapse
Affiliation(s)
- Irem Unlu
- New England Biolabs Inc., Beverly, MA 01915, USA
| | - Sean Maguire
- New England Biolabs Inc., Beverly, MA 01915, USA
| | - Shengxi Guan
- New England Biolabs Inc., Beverly, MA 01915, USA
| | - Zhiyi Sun
- New England Biolabs Inc., Beverly, MA 01915, USA
| |
Collapse
|
4
|
Yu G, Chen X, Lu W, Li Y, Chen Y, Yin C, Zheng Z, Huang X, Xu D. Decreasing circ_0014614 promotes the differentiation of bone marrow flineage cells into megakaryocytes in essential thrombocythemia via activiation of miR-138-5p/caspase3 axis. Blood Cells Mol Dis 2024; 107:102855. [PMID: 38703475 DOI: 10.1016/j.bcmd.2024.102855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Circular RNAs (circRNA) are pivotal in hematological diseases. Previous study showed that circ_0014614 (circDAP3) was significantly underexpressed in bone marrow-derived exosomes from essential thrombocythemia (ET) patients, affecting the differentiation of bone marrow lineage cells into megakaryocytes. METHODS Fluorescence in situ hybridization (FISH) was used to display circ_0014614's primary cytoplasmic location in K562 cells. Cytoscape software was used to predict the circRNA-miRNA-mRNA networks, and their expression at the cellular level was detected by Quantitative reverse transcription-polymerase chain reaction (qRT-PCR). qRT-PCR was utilized to detect the expression levels of circ_0014614,miR-138-5p and caspase3 mRNA. Western blot was used to determine the protein levels of GATA-1, RUNX-1, NF-E2, CD41 and caspase3. The proliferation of K562 cells was assessed using the Cell Counting Kit-8 (CCK-8) Assay. Furthermore, the interplay between miR-138-5p and circ_0014614 or caspase3 was elucidated through a Dual-luciferase reporter assay. RESULTS FISH assay indicated circ_0014614's primary cytoplasmic location in K562 cells. In ET bone marrow and K562 cells, circ_0014614 and caspase3 were down-regulated, whereas miR-138-5p saw a significant surge. Overexpressing circ_0014614 curtailed K562 cells' proliferation and differentiation. Further, circ_0014614 targeted miR-138-5p, with heightened miR-138-5p levels counteracting circ_0014614's inhibition. MiR-138-5p further targeted caspase3, and caspase3 silencing neutralized suppressed miR-138-5p's effects on K562 cell differentiation. CONCLUSION Circ_0014614 was down-regulated in ET bone marrow and bone marrow lineage cells, and upregulating circ_0014614 can inhibit bone marrow lineage cells' proliferation and differentiation into megakaryocytes. Mechanistically, circ_0014614 functioned as ceRNA via sponging miR-138-5p and alleviated the inhibitory effect of miR-138-5p on its target caspase3, which potentially deters tumor activity in ET.
Collapse
Affiliation(s)
- Guopan Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaofan Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Weixiang Lu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanlin Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanxiao Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Changxin Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhongxin Zheng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoshan Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dan Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
5
|
Hu B, Zhao Y, Chen C, Wu B, Zhang H, Liu B, Zheng R, Fang F. Research hotspots and trends of microRNAs in spinal cord injury: a comprehensive bibliometric analysis. Front Neurol 2024; 15:1406977. [PMID: 38836004 PMCID: PMC11149023 DOI: 10.3389/fneur.2024.1406977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/25/2024] [Indexed: 06/06/2024] Open
Abstract
Background Spinal cord injury (SCI) is a nervous system disease leading to motor and sensory dysfunction below the injury level, and can result in paralysis. MicroRNAs (miRNAs) play a key role in SCI treatment, and related research provides insights for SCI diagnosis and treatment. Bibliometrics is an important tool for literature statistics and evaluation, objectively summarizing multidimensional information. This study comprehensively overviews the field through bibliometric analysis of miRNA and SCI research, providing contemporary resources for future collaboration and clinical treatment. Materials and methods In this study, we searched the Web of Science Core Collection (WOSCC) database. After careful screening and data import, we extracted annual publications, citation counts, countries, institutions, authors, journals, highly cited articles, co-cited articles, keywords, and H-index. Bibliometrics and visualization analyses employed VOSviewer, CiteSpace, the R package "bibliometrix," and online analytic platforms. Using Arrowsmith, we determined miRNA-SCI relationships and discussed potential miRNA mechanisms in SCI. Results From 2008 to 2024, the number of related papers increased annually, reaching 754. The number of yearly publications remained high and entered a period of rapid development. Researchers from 50 countries/regions, 802 institutions, 278 journals, and 3,867 authors participated in the field. Currently, China has advantages in the number of national papers, citations, institutions, and authors. However, it is necessary to strengthen cooperation among different authors, institutions, and countries to promote the production of important academic achievements. The research in the field currently focuses on nerve injury, apoptosis, and gene expression. Future research directions mainly involve molecular mechanisms, clinical trials, exosomes, and inflammatory reactions. Conclusion Overall, this study comprehensively analyzes the research status and frontier of miRNAs in SCI. A systematic summary provides a complete and intuitive understanding of the relationship between SCI and miRNAs. The presented findings establish a basis for future research and clinical application in this field.
Collapse
Affiliation(s)
- Baoyang Hu
- Spinal Surgery, Tongliao People's Hospital, Tongliao, Inner Mongolia, China
| | - Yue Zhao
- Computer Network Information Center, Tongliao People's Hospital, Tongliao, Inner Mongolia, China
| | - Chao Chen
- Spinal Surgery, Tongliao People's Hospital, Tongliao, Inner Mongolia, China
| | - Bin Wu
- Spinal Surgery, Tongliao People's Hospital, Tongliao, Inner Mongolia, China
| | - Hongbin Zhang
- Spinal Surgery, Tongliao People's Hospital, Tongliao, Inner Mongolia, China
| | - Bin Liu
- Spinal Surgery, Tongliao People's Hospital, Tongliao, Inner Mongolia, China
| | - Runquan Zheng
- Bone Trauma Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, Shandong, China
| | - Fang Fang
- Spinal Surgery, Tongliao People's Hospital, Tongliao, Inner Mongolia, China
| |
Collapse
|
6
|
Zhang D, Dong X, Li X, Yang Y, Li H, Hong Y, Yang G, Kong X, Wang X, Ma X. Moxibustion ameliorates chronic inflammatory visceral pain via spinal circRNA-miRNA-mRNA networks: a central mechanism study. Mol Brain 2024; 17:23. [PMID: 38750560 PMCID: PMC11097453 DOI: 10.1186/s13041-024-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
This study aimed to unveil the central mechanism of moxibustion treating chronic inflammatory visceral pain (CIVP) from the angle of circRNA-miRNA-mRNA networks in the spinal cord. The rat CIVP model was established using a mixture of 5% (w/v) 2,4,6-trinitrobenzene sulfonic acid and 50% ethanol at a volume ratio of 2:1 via enema. Rats in the moxibustion group received herb-partitioned moxibustion at Tianshu (ST25, bilateral) and Qihai (CV6) points. The abdominal withdrawal reflex (AWR), mechanical withdrawal threshold (MWT), and thermal withdrawal latency (TWL) were adopted for pain behavior observation and pain sensitivity assessment. The circRNA, miRNA, and mRNA expression profiles were detected using the high-throughput sequencing technique. Relevant databases and bioinformatics analysis methods were used to screen for differentially expressed (DE) RNAs and build a circRNA-miRNA-mRNA (competing endogenous RNA) ceRNA regulatory network. The real-time quantitative PCR was employed to verify the sequencing result. CIVP rat models had a significantly higher AWR and lower TWL and MWT than normal rats. Between normal and model rats, there were 103 DE-circRNAs, 16 DE-miRNAs, and 397 DE-mRNAs in the spinal cord. Compared with the model group, the moxibustion group had a lower AWR and higher TWL and MWT; between these two groups, there were 118 DE-circRNAs, 15 DE-miRNAs, and 804 DE-mRNAs in the spinal cord. Two ceRNA networks were chosen to be verified. As a result, moxibustion's analgesic effect on visceral pain in CIVP rats may be associated with regulating the circRNA_02767/rno-miR-483-3p/Gfap network in the spinal cord and improving central sensitization.
Collapse
Affiliation(s)
- Dan Zhang
- Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Xiaoqing Dong
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Department of Acupuncture and Moxibustion, Xi'an Hospital of Encephalopathy, Shaanxi University of Chinese Medicine, Shaanxi, 710032, China
| | - Xiaoying Li
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yanting Yang
- Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Hongna Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yue Hong
- Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Guang Yang
- Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Xiehe Kong
- Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Xuejun Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| | - Xiaopeng Ma
- Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China.
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
7
|
Qi L, Xing J, Yuan Y, Lei M. Noncoding RNAs in atherosclerosis: regulation and therapeutic potential. Mol Cell Biochem 2024; 479:1279-1295. [PMID: 37418054 PMCID: PMC11116212 DOI: 10.1007/s11010-023-04794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/18/2023] [Indexed: 07/08/2023]
Abstract
Atherosclerosis, a chronic disease of arteries, results in high mortality worldwide as the leading cause of cardiovascular disease. The development of clinically relevant atherosclerosis involves the dysfunction of endothelial cells and vascular smooth muscle cells. A large amount of evidence indicates that noncoding RNAs, such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), are involved in various physiological and pathological processes. Recently, noncoding RNAs were identified as key regulators in the development of atherosclerosis, including the dysfunction of endothelial cells, and vascular smooth muscle cells and it is pertinent to understand the potential function of noncoding RNAs in atherosclerosis development. In this review, the latest available research relates to the regulatory role of noncoding RNAs in the progression of atherosclerosis and the therapeutic potential for atherosclerosis is summarized. This review aims to provide a comprehensive overview of the regulatory and interventional roles of ncRNAs in atherosclerosis and to inspire new insights for the prevention and treatment of this disease.
Collapse
MESH Headings
- Humans
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/therapy
- Atherosclerosis/pathology
- Animals
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Gene Expression Regulation
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
Collapse
Affiliation(s)
- Luyao Qi
- Critical Care Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 200137, Shanghai, China
| | - Jixiang Xing
- Peripheral Vascular Department, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 300150, Tianjin, China
| | - Yuesong Yuan
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, 250014, Jinan, Shandong, China
| | - Ming Lei
- Critical Care Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 200137, Shanghai, China.
| |
Collapse
|
8
|
Wang SS, Wang X, He JJ, Zheng WB, Zhu XQ, Elsheikha HM, Zhou CX. Expression profiles of host miRNAs and circRNAs and ceRNA network during Toxoplasma gondii lytic cycle. Parasitol Res 2024; 123:145. [PMID: 38418741 PMCID: PMC10902104 DOI: 10.1007/s00436-024-08152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
Toxoplasma gondii is an opportunistic protozoan parasite that is highly prevalent in the human population and can lead to adverse health consequences in immunocompromised patients and pregnant women. Noncoding RNAs, such as microRNAs (miRNAs) and circular RNAs (circRNAs), play important regulatory roles in the pathogenesis of many infections. However, the differentially expressed (DE) miRNAs and circRNAs implicated in the host cell response during the lytic cycle of T. gondii are unknown. In this study, we profiled the expression of miRNAs and circRNAs in human foreskin fibroblasts (HFFs) at different time points after T. gondii infection using RNA sequencing (RNA-seq). We identified a total of 7, 7, 27, 45, 70, 148, 203, and 217 DEmiRNAs and 276, 355, 782, 1863, 1738, 6336, 1229, and 1680 DEcircRNAs at 1.5, 3, 6, 9, 12, 24, 36, and 48 h post infection (hpi), respectively. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses revealed that the DE transcripts were enriched in immune response, apoptosis, signal transduction, and metabolism-related pathways. These findings provide new insight into the involvement of miRNAs and circRNAs in the host response to T. gondii infection.
Collapse
Affiliation(s)
- Sha-Sha Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, Gansu Province, China
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, Gansu Province, China
| | - Jun-Jun He
- Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650500, Yunnan Province, China
| | - Wen-Bin Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Xing-Quan Zhu
- Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650500, Yunnan Province, China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Chun-Xue Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250100, Shandong Province, China.
| |
Collapse
|
9
|
Huang XY, Fu FY, Qian K, Feng QL, Cao S, Wu WY, Luo YL, Chen WJ, Zhang Z, Huang SC. CircHAT1 regulates the proliferation and phenotype switch of vascular smooth muscle cells in lower extremity arteriosclerosis obliterans through targeting SFRS1. Mol Cell Biochem 2024:10.1007/s11010-024-04932-2. [PMID: 38409514 DOI: 10.1007/s11010-024-04932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/05/2024] [Indexed: 02/28/2024]
Abstract
This study aimed to decipher the mechanism of circular ribonucleic acids (circRNAs) in lower extremity arteriosclerosis obliterans (LEASO). First, bioinformatics analysis was performed for screening significantly down-regulated cardiac specific circRNA-circHAT1 in LEASO. The expression of circHAT1 in LEASO clinical samples was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The protein expression of splicing factor arginine/serine-rich 1 (SFRS1), α-smooth muscle actin (α-SMA), Calponin (CNN1), cyclin D1 (CNND1) and smooth muscle myosin heavy chain 11 (SMHC) in vascular smooth muscle cells (VSMCs) was detected by Western blotting. Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) and Transwell assays were used to evaluate cell proliferation and migration, respectively. RNA immunoprecipitation (RNA-IP) and RNA pulldown verified the interaction between SFRS1 and circHAT1. By reanalyzing the dataset GSE77278, circHAT1 related to VSMC phenotype conversion was screened, and circHAT1 was found to be significantly reduced in peripheral blood mononuclear cells (PBMCs) of LEASO patients compared with healthy controls. Knockdown of circHAT1 significantly promoted the proliferation and migration of VSMC cells and decreased the expression levels of contractile markers. However, overexpression of circHAT1 induced the opposite cell phenotype and promoted the transformation of VSMCs from synthetic to contractile. Besides, overexpression of circHAT1 inhibited platelet-derived growth factor-BB (PDGF-BB)-induced phenotype switch of VSMC cells. Mechanistically, SFRS1 is a direct target of circHAT1 to mediate phenotype switch, proliferation and migration of VSMCs. Overall, circHAT1 regulates SFRS1 to inhibit the cell proliferation, migration and phenotype switch of VSMCs, suggesting that it may be a potential therapeutic target for LEASO.
Collapse
Affiliation(s)
- Xian-Ying Huang
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Fang-Yong Fu
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Kai Qian
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Qiao-Li Feng
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Sai Cao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Wei-Yu Wu
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Yuan-Lin Luo
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Wei-Jie Chen
- Department of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong Province, China
| | - Zhi Zhang
- Department of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong Province, China.
| | - Shui-Chuan Huang
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
| |
Collapse
|
10
|
Barbosa DF, Oliveira LS, Nachtigall PG, Valentini Junior R, de Souza N, Paschoal AR, Kashiwabara AY. cirCodAn: A GHMM-based tool for accurate prediction of coding regions in circRNA. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:289-334. [PMID: 38448139 DOI: 10.1016/bs.apcsb.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Studies focusing on characterizing circRNAs with the potential to translate into peptides are quickly advancing. It is helping to elucidate the roles played by circRNAs in several biological processes, especially in the emergence and development of diseases. While various tools are accessible for predicting coding regions within linear sequences, none have demonstrated accurate open reading frame detection in circular sequences, such as circRNAs. Here, we present cirCodAn, a novel tool designed to predict coding regions in circRNAs. We evaluated the performance of cirCodAn using datasets of circRNAs with strong translation evidence and showed that cirCodAn outperformed the other tools available to perform a similar task. Our findings demonstrate the applicability of cirCodAn to identify coding regions in circRNAs, which reveals the potential of use of cirCodAn in future research focusing on elucidating the biological roles of circRNAs and their encoded proteins. cirCodAn is freely available at https://github.com/denilsonfbar/cirCodAn.
Collapse
Affiliation(s)
- Denilson Fagundes Barbosa
- Programa de Pós-Graduação Associado em Bioinformática (UFPR/UTFPR), Departamento Acadêmico de Computação (DACOM), Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Paraná, Brazil; Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina (IFSC), Canoinhas, Santa Catarina, Brazil
| | - Liliane Santana Oliveira
- Programa de Pós-Graduação Associado em Bioinformática (UFPR/UTFPR), Departamento Acadêmico de Computação (DACOM), Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Paraná, Brazil
| | - Pedro Gabriel Nachtigall
- Laboratório de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, SP, Brazil; Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Rodolpho Valentini Junior
- Programa de Pós-Graduação Associado em Bioinformática (UFPR/UTFPR), Departamento Acadêmico de Computação (DACOM), Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Paraná, Brazil
| | - Nayane de Souza
- Programa de Pós-Graduação Associado em Bioinformática (UFPR/UTFPR), Departamento Acadêmico de Computação (DACOM), Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Paraná, Brazil
| | - Alexandre Rossi Paschoal
- Programa de Pós-Graduação Associado em Bioinformática (UFPR/UTFPR), Departamento Acadêmico de Computação (DACOM), Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Paraná, Brazil
| | - André Yoshiaki Kashiwabara
- Programa de Pós-Graduação Associado em Bioinformática (UFPR/UTFPR), Departamento Acadêmico de Computação (DACOM), Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Paraná, Brazil.
| |
Collapse
|
11
|
Atrian F, Ramirez P, De Mange J, Marquez M, Gonzalez EM, Minaya M, Karch CM, Frost B. m6A-dependent circular RNA formation mediates tau-induced neurotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577211. [PMID: 38328044 PMCID: PMC10849734 DOI: 10.1101/2024.01.25.577211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Circular RNAs (circRNAs), covalently closed RNA molecules that form due to back-splicing of RNA transcripts, have recently been implicated in Alzheimer's disease and related tauopathies. circRNAs are regulated by N6-methyladenosine (m6A) RNA methylation, can serve as "sponges" for proteins and RNAs, and can be translated into protein via a cap-independent mechanism. Mechanisms underlying circRNA dysregulation in tauopathies and causal relationships between circRNA and neurodegeneration are currently unknown. In the current study, we aimed to determine whether pathogenic forms of tau drive circRNA dysregulation and whether such dysregulation causally mediates neurodegeneration. We identify circRNAs that are differentially expressed in the brain of a Drosophila model of tauopathy and in induced pluripotent stem cell (iPSC)-derived neurons carrying a tau mutation associated with autosomal dominant tauopathy. We leverage Drosophila to discover that depletion of circular forms of muscleblind (circMbl), a circRNA that is particularly abundant in brains of tau transgenic Drosophila, significantly suppresses tau neurotoxicity, suggesting that tau-induced circMbl elevation is neurotoxic. We detect a general elevation of m6A RNA methylation and circRNA methylation in tau transgenic Drosophila and find that tau-induced m6A methylation is a mechanistic driver of circMbl formation. Interestingly, we find that circRNA and m6A RNA accumulate within nuclear envelope invaginations of tau transgenic Drosophila and in iPSC-derived cerebral organoid models of tauopathy. Taken together, our studies add critical new insight into the mechanisms underlying circRNA dysregulation in tauopathy and identify m6A-modified circRNA as a causal factor contributing to neurodegeneration. These findings add to a growing literature implicating pathogenic forms of tau as drivers of altered RNA metabolism.
Collapse
Affiliation(s)
- Farzaneh Atrian
- Sam & Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX
- Department of Cell Systems and Anatomy, San Antonio, TX
- University of Texas Health San Antonio, San Antonio, TX
| | - Paulino Ramirez
- Sam & Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX
- Department of Cell Systems and Anatomy, San Antonio, TX
- University of Texas Health San Antonio, San Antonio, TX
| | - Jasmine De Mange
- Sam & Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX
- Department of Cell Systems and Anatomy, San Antonio, TX
- University of Texas Health San Antonio, San Antonio, TX
| | - Marissa Marquez
- Sam & Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX
- Department of Cell Systems and Anatomy, San Antonio, TX
- University of Texas Health San Antonio, San Antonio, TX
| | - Elias M. Gonzalez
- Sam & Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX
- Department of Cell Systems and Anatomy, San Antonio, TX
- University of Texas Health San Antonio, San Antonio, TX
| | - Miguel Minaya
- Department of Psychiatry, Washington University, St Louis, MO
| | | | - Bess Frost
- Sam & Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX
- Department of Cell Systems and Anatomy, San Antonio, TX
- University of Texas Health San Antonio, San Antonio, TX
| |
Collapse
|
12
|
Tan W, Ma J, Fu J, Wu B, Zhu Z, Huang X, Du M, Wu C, Balawi E, Zhou Q, Zhang J, Liao Z. Transcriptomic and bioinformatics analysis of the mechanism by which erythropoietin promotes recovery from traumatic brain injury in mice. Neural Regen Res 2024; 19:171-179. [PMID: 37488864 PMCID: PMC10479836 DOI: 10.4103/1673-5374.374135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/04/2023] [Accepted: 03/11/2023] [Indexed: 07/26/2023] Open
Abstract
Recent studies have found that erythropoietin promotes the recovery of neurological function after traumatic brain injury. However, the precise mechanism of action remains unclear. In this study, we induced moderate traumatic brain injury in mice by intraperitoneal injection of erythropoietin for 3 consecutive days. RNA sequencing detected a total of 4065 differentially expressed RNAs, including 1059 mRNAs, 92 microRNAs, 799 long non-coding RNAs, and 2115 circular RNAs. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses revealed that the coding and non-coding RNAs that were differentially expressed after traumatic brain injury and treatment with erythropoietin play roles in the axon guidance pathway, Wnt pathway, and MAPK pathway. Constructing competing endogenous RNA networks showed that regulatory relationship between the differentially expressed non-coding RNAs and mRNAs. Because the axon guidance pathway was repeatedly enriched, the expression of Wnt5a and Ephb6, key factors in the axonal guidance pathway, was assessed. Ephb6 expression decreased and Wnt5a expression increased after traumatic brain injury, and these effects were reversed by treatment with erythropoietin. These findings suggest that erythropoietin can promote recovery of nerve function after traumatic brain injury through the axon guidance pathway.
Collapse
Affiliation(s)
- Weilin Tan
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Ma
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiayuanyuan Fu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Biying Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ziyu Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuekang Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mengran Du
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chenrui Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ehab Balawi
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengbu Liao
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Sundram S, Dhiman N, Malviya R, Awasthi R. Non-coding RNAs in Regulation of Protein Aggregation and Clearance Pathways: Current Perspectives Towards Alzheimer's Research and Therapy. Curr Gene Ther 2024; 24:8-16. [PMID: 37519207 DOI: 10.2174/1566523223666230731093030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 05/07/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, affecting approximately 45.0 million people worldwide and ranking as the fifth leading cause of mortality. AD is identified by neurofibrillary tangles (NFTs), which include abnormally phosphorylated tau-protein and amyloid protein (amyloid plaques). Peptide dysregulation is caused by an imbalance between the production and clearance of the amyloid-beta (Aβ) and NFT. AD begins to develop when these peptides are not cleared from the body. As a result, understanding the processes that control both normal and pathological protein recycling in neuronal cells is critical. Insufficient Aβ and NFT clearance are important factors in the development of AD. Autophagy, lysosomal dysfunction, and ubiquitin-proteasome dysfunction have potential roles in the pathogenesis of many neurodegenerative disorders, particularly in AD. Modulation of these pathways may provide a novel treatment strategy for AD. Non-coding RNAs (ncRNAs) have recently emerged as important biological regulators, with particular relevance to the emergence and development of neurodegenerative disorders such as AD. ncRNAs can be used as potential therapeutic targets and diagnostic biomarkers due to their critical regulatory functions in several biological processes involved in disease development, such as the aggregation and accumulation of Aβ and NFT. It is evident that ncRNAs play a role in the pathophysiology of AD. In this communication, we explored the link between ncRNAs and AD and their regulatory mechanisms that may help in finding new therapeutic targets and AD medications.
Collapse
Affiliation(s)
- Sonali Sundram
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Neerupma Dhiman
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand, India
| |
Collapse
|
14
|
Li W, Pang H, Xie L. Depletion of circ_0006459 protects human brain microvascular endothelial cells from oxygen-glucose deprivation-induced damage through the miR-940/FOXJ2 pathway. Transpl Immunol 2023; 80:101780. [PMID: 36608833 DOI: 10.1016/j.trim.2022.101780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Multiple circular RNAs (circRNAs) play important roles in ischemic stroke. The present study aims to reveal the role and the mechanism of circ_0006459 in ischemic stroke. METHODS Human brain microvascular endothelial cells (HBMECs) were treated with oxygen-glucose deprivation (OGD) to mimic an in vitro ischemic stroke model. RNA expression of circ_0006459, microRNA-940 (miR-940), and forkhead box J2 (FOXJ2) was detected by quantitative real-time polymerase chain reaction. Cell proliferation was analyzed by cell counting kit-8 (CCK-8) and 5-Ethynyl-29-deoxyuridine (EdU) assays. Cell apoptotic rate was quantified by flow cytometry analysis. The protein expression of proliferating cell nuclear antigen (PCNA), clusters of differentiation 6 (CDK6), BCL2-associated x protein (Bax), B-cell lymphoma 2 (Bcl2), interleukin-1β (IL-1β), IL-8, IL-18 and tumor necrosis factor-α (TNF-α) was analyzed by Western blotting. The regulatory relationships among circ_0006459, miR-940, and F 《》 OXJ2 were identified by dual-luciferase reporter assay, RNA immunoprecipitation assay, and RNA pull-down assay. RESULTS Circ_0006459 and FOXJ2 expression were significantly upregulated, whereas miR-940 expression was downregulated in HBMECs after OGD. Circ_0006459 depletion assuaged OGD-induced inhibition in cell proliferation and promotion in cell apoptosis and inflammation in HBMECs. Circ_0006459 acted as a sponge for miR-940, and miR-940 targeted FOXJ2 in HBMECs. Besides, miR-940 silencing or FOXJ2 overexpression relieved circ_0006459 knockdown-induced promotion in cell proliferation and inhibition in cell apoptosis and inflammation in OGD-induced HBMECs. Further, circ_0006459 depletion decreased FOXJ2 protein expression by interacting with miR-940. CONCLUSION Depletion of circ_0006459 protected human brain microvascular endothelial cells from oxygen-glucose deprivation-induced damage through miR-940/FOXJ2 pathway, providing a promising therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Wei Li
- Department of Rehabilitation Medicine, Yantai Yuhuangding Hospital, Yantai, City, 264000, Shandong, China
| | - Hong Pang
- Department of Rehabilitation Medicine, Yantai Yuhuangding Hospital, Yantai, City, 264000, Shandong, China
| | - Lin Xie
- Department of Rehabilitation Medicine, Yantai Yuhuangding Hospital, Yantai, City, 264000, Shandong, China.
| |
Collapse
|
15
|
Singh M, Guru A, Murugan R, Gopi M, Arockiaraj J. Circular RNA ciRS-7 signature as a potential biomarker for the early detection of diabetes with Alzheimer's disease: a hypothesis. Mol Biol Rep 2023; 50:8705-8714. [PMID: 37620738 DOI: 10.1007/s11033-023-08729-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
In the 1970s, Circular RNAs (CircRNAs) were first discovered in RNA viruses as viroids and were initially assumed to be RNA splicing defects. The roles and topologies of these circular RNA loops were later revealed using computer analysis and RNA-sequencing. They were found to demonstrate various functions, including protein scaffolding, parental gene regulation, microRNA sponges, and RNA-protein interactions. CircRNAs play a crucial role in controlling gene expression and are essential for biological development and illness detection, as demonstrated by their roles as miRNA sponges, endogenous RNAs, and potential biomarkers. Insulin resistance is caused by damage to β-cells in the pancreatic islets, which reduces the body's response to the hormone insulin. This reduction in insulin response hinders glucose from entering cells and providing energy for critical processes. As a result, insulin-resistant cells elevate blood sugar levels, leading to diabetes. Diabetes, in turn, increases the risk of heart disease and stroke, which can damage the heart and arteries. Additionally, an excess of insulin can impact the brain's chemical balance, contributing to the development of Alzheimer's disease. Furthermore, oxidative stress created by damaged pancreatic cells during high blood sugar conditions may lead to the destruction of brain cells and the onset of Alzheimer's disease. The hypothesis of this review is to provide an overview of the most dominant ciRS-7 circRNA identified in pancreatic islet cell dysfunction and neurologic disorders, such as Alzheimer's disease. By considering ciRS-7 circRNA as a potential biomarker for diabetes, early detection and treatment of diabetes may be facilitated, potentially reducing the risk of Alzheimer's disease onset in the future.
Collapse
Affiliation(s)
- Mahima Singh
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai, Tamil Nadu, 600 077, India.
| | - Raghul Murugan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Muthukaruppan Gopi
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
16
|
Theron D, Hopkins LN, Sutherland HG, Griffiths LR, Fernandez F. Can Genetic Markers Predict the Sporadic Form of Alzheimer's Disease? An Updated Review on Genetic Peripheral Markers. Int J Mol Sci 2023; 24:13480. [PMID: 37686283 PMCID: PMC10488021 DOI: 10.3390/ijms241713480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia that affects millions of individuals worldwide. Although the research over the last decades has provided new insight into AD pathophysiology, there is currently no cure for the disease. AD is often only diagnosed once the symptoms have become prominent, particularly in the late-onset (sporadic) form of AD. Consequently, it is essential to further new avenues for early diagnosis. With recent advances in genomic analysis and a lower cost of use, the exploration of genetic markers alongside RNA molecules can offer a key avenue for early diagnosis. We have here provided a brief overview of potential genetic markers differentially expressed in peripheral tissues in AD cases compared to controls, as well as considering the changes to the dynamics of RNA molecules. By integrating both genotype and RNA changes reported in AD, biomarker profiling can be key for developing reliable AD diagnostic tools.
Collapse
Affiliation(s)
- Danelda Theron
- School of Behavioural and Health Sciences, Faculty of Heath Sciences, Australian Catholic University, Banyo, QLD 4014, Australia;
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Lloyd N. Hopkins
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Heidi G. Sutherland
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Lyn R. Griffiths
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Francesca Fernandez
- School of Behavioural and Health Sciences, Faculty of Heath Sciences, Australian Catholic University, Banyo, QLD 4014, Australia;
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| |
Collapse
|
17
|
Olufunmilayo EO, Holsinger RMD. Roles of Non-Coding RNA in Alzheimer's Disease Pathophysiology. Int J Mol Sci 2023; 24:12498. [PMID: 37569871 PMCID: PMC10420049 DOI: 10.3390/ijms241512498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is accompanied by deficits in memory and cognitive functions. The disease is pathologically characterised by the accumulation and aggregation of an extracellular peptide referred to as amyloid-β (Aβ) in the form of amyloid plaques and the intracellular aggregation of a hyperphosphorelated protein tau in the form of neurofibrillary tangles (NFTs) that cause neuroinflammation, synaptic dysfunction, and oxidative stress. The search for pathomechanisms leading to disease onset and progression has identified many key players that include genetic, epigenetic, behavioural, and environmental factors, which lend support to the fact that this is a multi-faceted disease where failure in various systems contributes to disease onset and progression. Although the vast majority of individuals present with the sporadic (non-genetic) form of the disease, dysfunctions in numerous protein-coding and non-coding genes have been implicated in mechanisms contributing to the disease. Recent studies have provided strong evidence for the association of non-coding RNAs (ncRNAs) with AD. In this review, we highlight the current findings on changes observed in circular RNA (circRNA), microRNA (miRNA), short interfering RNA (siRNA), piwi-interacting RNA (piRNA), and long non-coding RNA (lncRNA) in AD. Variations in these ncRNAs could potentially serve as biomarkers or therapeutic targets for the diagnosis and treatment of Alzheimer's disease. We also discuss the results of studies that have targeted these ncRNAs in cellular and animal models of AD with a view for translating these findings into therapies for Alzheimer's disease.
Collapse
Affiliation(s)
- Edward O. Olufunmilayo
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Department of Medicine, University College Hospital, Queen Elizabeth Road, Oritamefa, Ibadan 200212, Nigeria
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
18
|
Gu A, Jaijyan DK, Yang S, Zeng M, Pei S, Zhu H. Functions of Circular RNA in Human Diseases and Illnesses. Noncoding RNA 2023; 9:38. [PMID: 37489458 PMCID: PMC10366867 DOI: 10.3390/ncrna9040038] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/26/2023] Open
Abstract
Circular RNAs (circRNAs) represent single-stranded RNA species that contain covalently closed 3' and 5' ends that provide them more stability than linear RNA, which has free ends. Emerging evidence indicates that circRNAs perform essential functions in many DNA viruses, including coronaviruses, Epstein-Barr viruses, cytomegalovirus, and Kaposi sarcoma viruses. Recent studies have confirmed that circRNAs are present in viruses, including DNA and RNA viruses, and play various important functions such as evading host immune response, disease pathogenesis, protein translation, miRNA sponges, regulating cell proliferation, and virus replication. Studies have confirmed that circRNAs can be biological signatures or pathological markers for autoimmune diseases, neurological diseases, and cancers. However, our understanding of circRNAs in DNA and RNA viruses is still limited, and functional evaluation of viral and host circRNAs is essential to completely understand their biological functions. In the present review, we describe the metabolism and cellular roles of circRNA, including its roles in various diseases and viral and cellular circRNA functions. Circular RNAs are found to interact with RNA, proteins, and DNA, and thus can modulate cellular processes, including translation, transcription, splicing, and other functions. Circular RNAs interfere with various signaling pathways and take part in vital functions in various biological, physiological, cellular, and pathophysiological processes. We also summarize recent evidence demonstrating cellular and viral circRNA's roles in DNA and RNA viruses in this growing field of research.
Collapse
Affiliation(s)
- Alison Gu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Shaomin Yang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Mulan Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Shaokai Pei
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
19
|
Widyarti S, Wibowo S, Sabarudin A, Abhirama I, Sumitro SB. Dysfunctional energy and future perspective of low dose H 2O 2 as protective agent in neurodegenerative disease. Heliyon 2023; 9:e18123. [PMID: 37519743 PMCID: PMC10372669 DOI: 10.1016/j.heliyon.2023.e18123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 05/21/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
The number of people with neurodegenerative disease continues to increase every year. A new perspective is needed to overcome this disease. In this review, researchers collected information about dysfunctional energy in neurodegenerative diseases driven by mitochondria. Mitochondrial dysregulation can cause damage to the neuron system. The increase in the amount and interaction of α-synuclein with SAMM50 and GABARAPL1 in the mitochondria is one of the factors causing neurodegenerative disease. As an energy provider in the body, the existence of harmonization in the regulation of mitochondria, specifically the mitochondrial outer membrane, is important. Low-dose hydrogen peroxide (H2O2) has neuroprotective abilities to overcome the impairment function of mitochondria in neurodegenerative patients. Based on computational simulation of this case, it can be used as a basic concept for the development of the role of H2O2 in neurodegenerative diseases.
Collapse
Affiliation(s)
- Sri Widyarti
- Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran, Malang 65145, East Java, Indonesia
| | - Syahputra Wibowo
- Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran, Malang 65145, East Java, Indonesia
- Postdoctoral Fellow, Faculty of Biology, Gadjah Mada University, Teknika Selatan Sekip Utara, 55281 Yogyakarta, Indonesia
| | - Akhmad Sabarudin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran, Malang 65145, East Java, Indonesia
| | - Intan Abhirama
- Department of Neurology, Bogor Senior Hospital, Jl.Raya Tajur 16137, West Java, Indonesia
| | - Sutiman Bambang Sumitro
- Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran, Malang 65145, East Java, Indonesia
| |
Collapse
|
20
|
Nezhad Nezhad MT, Rajabi M, Nekooeizadeh P, Sanjari S, Pourvirdi B, Heidari MM, Veradi Esfahani P, Abdoli A, Bagheri S, Tobeiha M. Systemic lupus erythematosus: From non-coding RNAs to exosomal non-coding RNAs. Pathol Res Pract 2023; 247:154508. [PMID: 37224659 DOI: 10.1016/j.prp.2023.154508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Systemic lupus erythematosus (SLE), as an immunological illness, frequently impacts young females. Both vulnerabilities to SLE and the course of the illness's clinical symptoms have been demonstrated to be affected by individual differences in non-coding RNA expression. Many non-coding RNAs (ncRNAs) are out of whack in patients with SLE. Because of the dysregulation of several ncRNAs in peripheral blood of patients suffering from SLE, these ncRNAs to be showed valuable as biomarkers for medication response, diagnosis, and activity. NcRNAs have also been demonstrated to influence immune cell activity and apoptosis. Altogether, these facts highlight the need of investigating the roles of both families of ncRNAs in the progress of SLE. Being aware of the significance of these transcripts perhaps elucidates the molecular pathogenesis of SLE and could open up promising avenues to create tailored treatments during this condition. In this review we summarized various non-coding RNAs and Exosomal non-coding RNAs in SLE.
Collapse
Affiliation(s)
| | - Mohammadreza Rajabi
- Student Research Committee، Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pegah Nekooeizadeh
- Student Research Committee، Shiraz University of Medical Sciences, Shiraz, Iran
| | - Siavash Sanjari
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Bita Pourvirdi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Mehdi Heidari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Pediatric, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Pegah Veradi Esfahani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Abdoli
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Bagheri
- Diabetes Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Pediatric, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
21
|
Gao L, Tan J, Han C, Fan J, He J, Luo T, Yu S, Che X, Zhang L, Wang X. Identification and characterization of differentially expressed circRNA in 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cleft palate. Hum Exp Toxicol 2023; 42:9603271231183359. [PMID: 37303070 DOI: 10.1177/09603271231183359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Various circular RNAs (circRNAs) are novel class of non-coding RNAs, which are pervasively transcribed in the genome. CircRNAs play important roles in human, animals and plants. Up to now, there was no report regarding circRNAs of cleft palate by 2,3,7,8-tetrachlorodibenzo-pdioxin (TCDD) induce. The present study screened identification and characterization of differential expressed-circRNAs in TCDD-induced cleft palate. 6903 circRNAs candidates came from cleft palates. Among them, 3525 circRNAs are up-regulation, and 3378 circRNAs are down-regulation by TCDD induce. The cluster and GO analysis found that circRNAs involved in biological process, cellular component, and molecular function. Through the analysis of KEGG Pathway, circRNAs made functions via classical signaling pathway in cleft palate, such as TGF-beta signaling pathway, BMP signal pathway, MAPK signaling pathway. In addition, we found down-regulated circRNA224, circRNA3302 and up-regulated circRNA5021 targeted tgfbr3, but up-regulated circRNA4451 targeted tgfbr2. circRNA4451 may make functions through TGF-beta signaling pathway. These results suggested that many different circRNAs may make important role in TCDD-induced cleft palate, which provided a theoretical basis for further research.
Collapse
Affiliation(s)
- Liyun Gao
- School of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Jingwen Tan
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, China
| | - Chunhua Han
- Internal Medicine, First People's Hospital of Jiujiang City, Jiujiang, China
| | - Junfei Fan
- School of Humanities, Shangluo University, Shangluo, China
| | - Jiayin He
- School of Literature and Journalism, South-Central Minzu University, Wuhan, China
| | - Ting Luo
- School of Public Health, Nanchang University, Nanchang, China
| | - Shiqun Yu
- School of Public Health, Nanchang University, Nanchang, China
| | - Xiangxin Che
- School of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Lin Zhang
- Yangze river fisheries research institute, Chinese academy of fisheries sciences, Wuhan, China
| | - Xin Wang
- School of Basic Medicine, Jiujiang University, Jiujiang, China
| |
Collapse
|
22
|
Lu W, Wen J. H 2S-mediated inhibition of RhoA/ROCK pathway and noncoding RNAs in ischemic stroke. Metab Brain Dis 2023; 38:163-176. [PMID: 36469178 DOI: 10.1007/s11011-022-01130-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/22/2022] [Indexed: 12/11/2022]
Abstract
Ischemic stroke is one of major causes of disability. In the pathological process of ischemic stroke, the up-regulation of Ras homolog gene family, member A (RhoA) and its downstream effector, Ras homolog gene family (Rho)-associated coiled coil-containing kinase (ROCK), contribute to the neuroinflammation, blood-brain barrier (BBB) dysfunction, neuronal apoptosis, axon growth inhibition and astrogliosis. Accumulating evidences have revealed that hydrogen sulphide (H2S) could reduce brain injury in animal model of ischemic stroke via inhibiting the RhoA/ROCK pathway. Recently, noncoding RNAs (ncRNAs) such as circular RNAs (circRNAs), long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) have attracted much attention because of their essential role in adjusting gene expression both in physiological and pathological conditions. Numerous studies have uncovered the role of RhoA/ROCK pathway and ncRNAs in ischemic stroke. In this review, we focused on the role of H2S, RhoA/ROCK pathway and ncRNAs in ischemic stroke and aimed to reveal new strategies for preventing and treating this devastating disease.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
23
|
Vakili O, Asili P, Babaei Z, Mirahmad M, Keshavarzmotamed A, Asemi Z, Mafi A. Circular RNAs in Alzheimer's Disease: A New Perspective of Diagnostic and Therapeutic Targets. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 22:CNSNDDT-EPUB-125997. [PMID: 36043720 DOI: 10.2174/1871527321666220829164211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/06/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs), as covalently closed single-stranded noncoding RNA molecules, have been recently identified to involve in several biological processes, principally through targeting microRNAs. Among various neurodegenerative diseases (NDs), accumulating evidence has proposed key roles for circRNAs in the pathogenesis of Alzheimer's disease (AD); although the exact relationship between these RNA molecules and AD progression is not clear, they have been believed to mostly act as miRNA sponges or gene transcription modulators through correlating with multiple proteins, involved in the accumulation of Amyloid β (Aβ) peptides, as well as tau protein, as AD's pathological hallmark. More interestingly, circRNAs have also been reported to play diagnostic and therapeutic roles during AD progression. OBJECTIVE Literature review indicated that circRNAs could essentially contribute to the onset and development of AD. Thus, in the current review, the circRNAs' biogenesis and functions are addressed at first, and then the interplay between particular circRNAs and AD is comprehensively discussed. Eventually, the diagnostic and therapeutic significance of these noncoding RNAs is highlighted in brief. RESULTS A large number of circRNAs are expressed in the brain. Thereby, these RNA molecules are noticed as potential regulators of neural functions in healthy circumstances, as well as neurological disorders. Moreover, circRNAs have also been reported to have potential diagnostic and therapeutic capacities in relation to AD, the most prevalent ND. CONCLUSION CircRNAs have been shown to act as sponges for miRNAs, thereby regulating the function of related miRNAs, including oxidative stress, reduction of neuroinflammation, and the formation and metabolism of Aβ, all of which developed in AD. CircRNAs have also been proposed as biomarkers that have potential diagnostic capacities in AD. Despite these characteristics, the use of circRNAs as therapeutic targets and promising diagnostic biomarkers will require further investigation and characterization of the function of these RNA molecules in AD.
Collapse
Affiliation(s)
- Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pooria Asili
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Babaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Mirahmad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
24
|
Zhou X, Du J. CircRNAs: novel therapeutic targets in multiple myeloma. Mol Biol Rep 2022; 49:10667-10676. [PMID: 35729478 DOI: 10.1007/s11033-022-07668-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/31/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Circular RNA (circRNA) is a type of non-coding RNA that has recently attracted the attention of researchers. Multiple myeloma (MM) is a hematological malignancy with a dismal prognosis that indicates a pressing need for better treatment alternatives, particularly in terms of biological indicators. According to recent research findings, the presence of circRNA is also closely related to the incidence and progression of malignant hemopathy. There have been, however, only a few investigations of circRNA in MM. MATERIAL AND METHODS This review will be on the biological properties and functions of circRNA in MM and a discussion of the clinical utility of circRNA in the diagnosis, prognosis, and treatment of MM. CONCLUSIONS CircRNA is involved in gene transcription, translation, and epigenetic modification as well as the regulation of cancer cell proliferation, invasion, and metastasis, and hence, promotes or inhibits the occurrence and progression of MM. Therefore, circRNA holds promise as a potential future MM biomarker.
Collapse
Affiliation(s)
- Xinyi Zhou
- Department of Hematology, Myeloma and Lymphoma Center, Shanghai Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Huangpu Area, Shanghai, 200003, China
| | - Juan Du
- Department of Hematology, Myeloma and Lymphoma Center, Shanghai Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Huangpu Area, Shanghai, 200003, China.
| |
Collapse
|
25
|
Gao XY, Yang T, Gu Y, Sun XH. Mitochondrial Dysfunction in Parkinson’s Disease: From Mechanistic Insights to Therapy. Front Aging Neurosci 2022; 14:885500. [PMID: 35795234 PMCID: PMC9250984 DOI: 10.3389/fnagi.2022.885500] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative movement disorders worldwide. There are currently no cures or preventative treatments for PD. Emerging evidence indicates that mitochondrial dysfunction is closely associated with pathogenesis of sporadic and familial PD. Because dopaminergic neurons have high energy demand, cells affected by PD exhibit mitochondrial dysfunction that promotes the disease-defining the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The mitochondrion has a particularly important role as the cellular “powerhouse” of dopaminergic neurons. Therefore, mitochondria have become a promising therapeutic target for PD treatments. This review aims to describe mitochondrial dysfunction in the pathology of PD, outline the genes associated with familial PD and the factors related to sporadic PD, summarize current knowledge on mitochondrial quality control in PD, and give an overview of therapeutic strategies for targeting mitochondria in neuroprotective interventions in PD.
Collapse
Affiliation(s)
- Xiao-Yan Gao
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Science Experiment Center, China Medical University, Shenyang, China
| | - Tuo Yang
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Ying Gu
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao-Hong Sun
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Science Experiment Center, China Medical University, Shenyang, China
- *Correspondence: Xiao-Hong Sun,
| |
Collapse
|
26
|
Dorostgou Z, Yadegar N, Dorostgou Z, Khorvash F, Vakili O. Novel insights into the role of circular RNAs in Parkinson disease: An emerging renaissance in the management of neurodegenerative diseases. J Neurosci Res 2022; 100:1775-1790. [PMID: 35642104 DOI: 10.1002/jnr.25094] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 05/11/2022] [Accepted: 05/15/2022] [Indexed: 11/06/2022]
Abstract
Parkinson's disease (PD), as a debilitating neurodegenerative disease, particularly affects the elderly population, and is clinically identified by resting tremor, rigidity, and bradykinesia. Pathophysiologically, PD is characterized by an early loss of dopaminergic neurons in the Substantia nigra pars compacta, accompanied by the extensive aggregation of alpha-synuclein (α-Syn) in the form of Lewy bodies. The onset of PD has been reported to be influenced by multiple biological molecules. In this context, circular RNAs (circRNAs), as tissue-specific noncoding RNAs with closed structures, have been recently demonstrated to involve in a set of PD's pathogenic processes. These RNA molecules can either up- or downregulate the expression of α-Syn, as well as moderating its accumulation through different regulatory mechanisms, in which targeting microRNAs (miRNAs) is considered the most common pathway. Since circRNAs have prominent structural and biological characteristics, they could also be considered as promising candidates for PD diagnosis and treatment. Unfortunately, PD has become a global health concern, and a large number of its pathogenic processes are still unclear; thus, it is crucial to elucidate the ambiguous aspects of PD pathophysiology to improve the efficiency of diagnostic and therapeutic strategies. In line with this fact, the current review aims to highlight the interplay between circRNAs and PD pathogenesis, and then discusses the diagnostic and therapeutic potential of circRNAs in PD progression. This study will thus be the first of its kind reviewing the relationship between circRNAs and PD.
Collapse
Affiliation(s)
- Zahra Dorostgou
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Negar Yadegar
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zeynab Dorostgou
- Department of Biology, Kavian Institute of Higher Education, Mashhad, Iran
| | - Fariborz Khorvash
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Isfahan Neurosciences Research Center, Al-zahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
27
|
Wang Y, Guo Z, Zi C, Wu P, Lv X, Chen L, Chen F, Zhang G, Wang J. CircRNA expression in chicken granulosa cells illuminated with red light. Poult Sci 2022; 101:101734. [PMID: 35202895 PMCID: PMC8866055 DOI: 10.1016/j.psj.2022.101734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 11/19/2022] Open
Abstract
Red light (RL) can improve egg production in Jinghai Yellow hens. Circular RNAs (circRNAs) are novel, non-coding RNAs, but the molecular mechanism underlying circRNA function during follicular development in hens under monochromatic light has not been established. Herein, we compared expression profiles of granulosa cells (GCs) from small yellow follicles (SYFs) from hens under RL and white light (WL). A total of 2,468 circRNAs were identified, of which 22 were differentially expressed (DE) in the RL and WL groups. DE circRNA host genes were enriched in ovarian steroidogenesis, and MAPK and PI3K-Akt signaling pathways. Furthermore, DE circRNA_0320 and circRNA_0185 interacted with miR-143-3p, which targets the follicle-stimulating hormone receptor and is essential for GC differentiation and follicle development. These findings will facilitate further analysis of the molecular mechanism leading to GC development in hens raised under monochromatic light, which could lead to increased egg production.
Collapse
Affiliation(s)
- Ying Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Zhenyu Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Chen Zi
- Department of Pathology, Linyi People's Hospital, Linyi 276000, Shandong Province, China
| | - Pengfei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Xiaoyang Lv
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Lan Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Fuxiang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China.
| |
Collapse
|
28
|
Yang YP, Chang YL, Lai YH, Tsai PH, Hsiao YJ, Nguyen LH, Lim XZ, Weng CC, Ko YL, Yang CH, Hwang DK, Chen SJ, Chiou SH, Chiou GY, Wang AG, Chien Y. Retinal Circular RNA hsa_circ_0087207 Expression Promotes Apoptotic Cell Death in Induced Pluripotent Stem Cell-Derived Leber’s Hereditary Optic Neuropathy-like Models. Biomedicines 2022; 10:biomedicines10040788. [PMID: 35453537 PMCID: PMC9027941 DOI: 10.3390/biomedicines10040788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Backgrounds: Leber’s hereditary optic neuropathy (LHON) is known as an inherited retinal disorder characterized by the bilateral central vision loss and degeneration of retinal ganglion cells (RGCs). Unaffected LHON carriers are generally asymptomatic, suggesting that certain factors may contribute to the disease manifestations between carriers and patients who carry the same mutated genotypes. Methods: We first aimed to establish the iPSC-differentiated RGCs from the normal healthy subject, the carrier, and the LHON patient and then compared the differential expression profile of circular RNAs (CircRNAs) among RGCs from these donors in vitro. We further overexpressed or knocked down the most upregulated circRNA to examine whether this circRNA contributes to the distinct phenotypic manifestations between the carrier- and patient-derived RGCs. Results: iPSCs were generated from the peripheral blood cells from the healthy subject, the carrier, and the LHON patient and successfully differentiated into RGCs. These RGCs carried equivalent intracellular reactive oxygen species, but only LHON-patient iPSC-derived RGCs exhibited remarkable apoptosis. Next-generation sequencing and quantitative real-time PCR revealed the circRNA hsa_circ_0087207 as the most upregulated circRNA in LHON-patient iPSC-derived RGCs. Overexpression of hsa_circ_0087207 increased the apoptosis in carrier iPSC-derived RGCs, while knockdown of hsa_circ_0087207 attenuated the apoptosis in LHON-patient iPSC-derived RGCs. Predicted by bioinformatics approaches, hsa_circ_0087207 acts as the sponge of miR-665 to induce the expression of a variety of apoptosis-related genes in LHON patient iPSC-derived RGCs. Conclusions: Our data indicated that hsa_circ_0087207 upregulation distinguishes the disease phenotype manifestations between iPSC-derived RGCs generated from the LHON patient and carrier. Targeting the hsa_circ_0087207/miR-665 axis might hold therapeutic promises for the treatment of LHON.
Collapse
Affiliation(s)
- Yi-Ping Yang
- Department of Medical Research, Taipei Veteran General Hospital, Taipei 11217, Taiwan; (Y.-P.Y.); (Y.-H.L.); (P.-H.T.); (Y.-J.H.); (L.H.N.); (X.-Z.L.); (Y.-L.K.); (S.-H.C.)
- Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan; (D.-K.H.); (S.-J.C.); (A.-G.W.)
| | - Yuh-Lih Chang
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Yun-Hsien Lai
- Department of Medical Research, Taipei Veteran General Hospital, Taipei 11217, Taiwan; (Y.-P.Y.); (Y.-H.L.); (P.-H.T.); (Y.-J.H.); (L.H.N.); (X.-Z.L.); (Y.-L.K.); (S.-H.C.)
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Ping-Hsing Tsai
- Department of Medical Research, Taipei Veteran General Hospital, Taipei 11217, Taiwan; (Y.-P.Y.); (Y.-H.L.); (P.-H.T.); (Y.-J.H.); (L.H.N.); (X.-Z.L.); (Y.-L.K.); (S.-H.C.)
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- Department of Medical Research, Taipei Veteran General Hospital, Taipei 11217, Taiwan; (Y.-P.Y.); (Y.-H.L.); (P.-H.T.); (Y.-J.H.); (L.H.N.); (X.-Z.L.); (Y.-L.K.); (S.-H.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan; (D.-K.H.); (S.-J.C.); (A.-G.W.)
| | - Long Hoang Nguyen
- Department of Medical Research, Taipei Veteran General Hospital, Taipei 11217, Taiwan; (Y.-P.Y.); (Y.-H.L.); (P.-H.T.); (Y.-J.H.); (L.H.N.); (X.-Z.L.); (Y.-L.K.); (S.-H.C.)
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
- Department of Basic Medical Sciences, Hanoi University of Pharmacy, Hanoi 100000, Vietnam
| | - Xue-Zhen Lim
- Department of Medical Research, Taipei Veteran General Hospital, Taipei 11217, Taiwan; (Y.-P.Y.); (Y.-H.L.); (P.-H.T.); (Y.-J.H.); (L.H.N.); (X.-Z.L.); (Y.-L.K.); (S.-H.C.)
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Chang-Chi Weng
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Yu-Ling Ko
- Department of Medical Research, Taipei Veteran General Hospital, Taipei 11217, Taiwan; (Y.-P.Y.); (Y.-H.L.); (P.-H.T.); (Y.-J.H.); (L.H.N.); (X.-Z.L.); (Y.-L.K.); (S.-H.C.)
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 10002, Taiwan;
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei 11217, Taiwan
| | - De-Kuang Hwang
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan; (D.-K.H.); (S.-J.C.); (A.-G.W.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Shih-Jen Chen
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan; (D.-K.H.); (S.-J.C.); (A.-G.W.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veteran General Hospital, Taipei 11217, Taiwan; (Y.-P.Y.); (Y.-H.L.); (P.-H.T.); (Y.-J.H.); (L.H.N.); (X.-Z.L.); (Y.-L.K.); (S.-H.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan; (D.-K.H.); (S.-J.C.); (A.-G.W.)
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Genomic Research Center, Academia Sinica, Taipei 11217, Taiwan
| | - Guang-Yuh Chiou
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Correspondence: (G.-Y.C.); (Y.C.)
| | - An-Guor Wang
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan; (D.-K.H.); (S.-J.C.); (A.-G.W.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Yueh Chien
- Department of Medical Research, Taipei Veteran General Hospital, Taipei 11217, Taiwan; (Y.-P.Y.); (Y.-H.L.); (P.-H.T.); (Y.-J.H.); (L.H.N.); (X.-Z.L.); (Y.-L.K.); (S.-H.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan; (D.-K.H.); (S.-J.C.); (A.-G.W.)
- Correspondence: (G.-Y.C.); (Y.C.)
| |
Collapse
|
29
|
Liu J, Zhang H, Di K, Hou L, Yu S. Circular noncoding RNA circ_0007865, serves as a competing endogenous RNA, targeting the miR-214-3p/FKBP5 axis to regulate oxygen-glucose deprivation-induced injury in brain microvascular endothelial cells. Neuroreport 2022; 33:163-172. [PMID: 35143446 DOI: 10.1097/wnr.0000000000001751] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Ischemic stroke (IS) is a major cause of permanent morbidity and lifelong disability worldwide. Circular RNA (circRNA) circ_0007865 has been reported to be upregulated in acute ischemic stroke (AIS) patients. Also, AIS patients exhibited increased death of human brain microvascular endothelial cells (HBMECs). This study is designed to explore the role and mechanism of circ_0007865 in the oxygen-glucose deprivation (OGD)-induced cell damage in AIS. METHODS Circ_0007865, microRNA-214-3p (miR-214-3p), and FK506-binding protein 5 (FKBP5) levels were detected by real-time quantitative PCR. Cell proliferative angiogenesis, migration, and apoptosis were assessed by Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine, colony formation, tube formation, wound healing, transwell, and flow cytometry assays. B-cell lymphoma-2 (Bcl-2), Bcl-2-related X protein (Bax), cleaved caspase-3, and FKBP5 protein levels were determined by western blot assay. The binding relationship between miR-214-3p and circ_0007865 or FKBP5 was predicted by StarBase, and verified by a dual-luciferase reporter, RNA pull-down assay. RESULTS Circ_0007865 and FKBP5 were increased, and miR-214-3p was decreased in OGD-treated HBMECs. Furthermore, the silencing of circ_0007865 could promote cell proliferative angiogenesis, migration, and inhibit apoptosis in OGD-triggered HBMECs in vitro. Mechanically, circ_0007865 acted as a sponge of miR-214-3p to regulate FKBP5. CONCLUSION According to these results, circ_0007865 deficiency could attenuate OGD-induced HBMEC damage by modulating the miR-214-3p/FKBP5 axis, hinting at a promising therapeutic target for future acute IS therapy.
Collapse
Affiliation(s)
- Jinghua Liu
- Department of Neurology, The Second People's Hospital of Dongying, Dongying
| | - Hong Zhang
- School of Medicine, Tianjin Tianshi College, Tianjin
| | - Kuiyi Di
- Department of Neurology, The Second People's Hospital of Dongying, Dongying
| | | | - Shanshan Yu
- Department of Pharmacy, The Second People's Hospital of Dongying, Dongying, China
| |
Collapse
|
30
|
Wang Y, Wu Y, Xie S. CircPTK2 inhibits cell cisplatin (CDDP) resistance by targeting miR-942/TRIM16 axis in non-small cell lung cancer (NSCLC). Bioengineered 2022; 13:3651-3664. [PMID: 35230201 PMCID: PMC8973636 DOI: 10.1080/21655979.2021.2024321] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In recent years, the problem of cancer resistance has become more and more prominent, seriously affecting treatment efficiency. Circular RNAs (circRNAs) play an important role in cell progression and cancer mechanisms. However, there is a lack of systematic studies on its function in non-small cell lung cancer (NSCLC) resistance. CircPTK2, microRNA-942 (miR-942), and Tripartite motif 16 (TRIM16) levels were detected by Real-time quantitative reverse transcriptase PCR (qRT-PCR). Extracellular acidification rate (ECAR), glucose consumption, and lactate production were assessed using the Seahorse XF96 Glycolysis Analyzer, glucose, and lactate assay kits, respectively. The protein expression was measured with the western bolt Transwell assay was used to determine migration and invasion of transfected cells. (4-5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and flow cytometry were applied to carry out cell proliferation and apoptosis, respectively. The relationship among circPTK2, miR-942, and TRIM16 were determined by using the dual-luciferase reporter assay and RIP assay. circPTK2 (hsa_circ_0008305) and TRIM16 were low expressed, while miR-942 was significantly highly expressed in NSCLC tissues and cell lines. Moreover, overexpression of circPTK2 remarkably inhibited cell growth, metastasis, and glycolysis in A549/CDDP and H1299/CDDP cells. Promotion of miR-942 or inhibition of TRIM16 could reverse the effects of high circPTK2 expression on cell growth, metastasis, and glycolysis in A549/CDDP and H1299/CDDP cells. CircPTK2 overexpression inhibited the growth of A549/CDDP cells in vivo. Furthermore, circPTK2 weakened CDDP resistance of NSCLC through modulating miR-942/TRIM16 axis, providing a novel sight for the treatment of NSCLC and improving the understanding of the CDDP resistance mechanism of NSCLC.
Collapse
Affiliation(s)
- Yongfu Wang
- Department of Cardiothoracic Surgery, The Second People's Hospital of Yibin, Yibin, Sichuna, China
| | - Yuanlin Wu
- Department of Cardiothoracic Surgery, The Second People's Hospital of Yibin, Yibin, Sichuna, China
| | - Shaoqiang Xie
- Department of Cardiothoracic Surgery, The Second People's Hospital of Yibin, Yibin, Sichuna, China
| |
Collapse
|
31
|
Du X, Chen S, Cui H, Huang Y, Wang J, Liu H, Li Z, Liang C, Zheng Z, Wang H. Circular RNA hsa_circ_0083756 promotes intervertebral disc degeneration by sponging miR-558 and regulating TREM1 expression. Cell Prolif 2022; 55:e13205. [PMID: 35187741 PMCID: PMC9055908 DOI: 10.1111/cpr.13205] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/09/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Objectives Intervertebral disc degeneration (IVDD) is a leading cause of low back pain. Circular RNAs (circRNAs) have been demonstrated to exert vital functions in IVDD. However, the role and mechanism of hsa_circ_0083756 in the development of IVDD remain unclear. Materials and methods RT‐qPCR was performed to detect expressions of hsa_circ_0083756, miR‐558 and TREM1 in nucleus pulposus (NP) tissues and cells. CCK8 assay, flow cytometry, TUNEL assay, RT‐qPCR and WB were used to clarify the roles of hsa_circ_0083756 in NP cells proliferation and extracellular matrix (ECM) formation. Bioinformatics analyses, dual‐luciferase reporter gene experiment, RNA immunoprecipitation (RIP) assay and FISH assay were performed to predict and verify the targeting relationship between hsa_circ_0083756 and miR‐558, as well as that between miR‐558 and TREM1. Ultimately, the effect of hsa_circ_0083756 on IVDD was tested through anterior disc‐puncture IVDD animal model in rats. Results hsa_circ_0083756 was upregulated in degenerative NP tissues and cells. In vitro loss‐of‐function and gain‐of‐function studies suggested that hsa_circ_0083756 knockdown promoted, whereas hsa_circ_0083756 overexpression inhibited NP cells proliferation and ECM formation. Mechanistically, hsa_circ_0083756 acted as a sponge of miR‐558 and subsequently promoted the expression of TREM1. Furthermore, in vivo study indicated that silencing of hsa_circ_0083756 could alleviate IVDD in rats. Conclusions hsa_circ_0083756 promoted IVDD via targeting the miR‐558/TREM1 axis, and hsa_circ_0083756 may serve as a potential therapeutic target for the treatment of IVDD.
Collapse
Affiliation(s)
- Xianfa Du
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shunlun Chen
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haitao Cui
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuming Huang
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianru Wang
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hui Liu
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zemin Li
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunxiang Liang
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhaomin Zheng
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Pain Research Center, Sun Yat-sen University, Guangzhou, China
| | - Hua Wang
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
CircNEIL3 mediates pyroptosis to influence lung adenocarcinoma radiotherapy by upregulating PIF1 through miR-1184 inhibition. Cell Death Dis 2022; 13:167. [PMID: 35190532 PMCID: PMC8861163 DOI: 10.1038/s41419-022-04561-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/01/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022]
Abstract
Circular RNAs (circRNAs) belong to an abundant category of non-coding RNAs that are stable and specific, and thus have great potential in cancer treatment. However, little is known about the role of circRNAs during radiotherapy in lung adenocarcinoma (LUAD). Here, we established the expression profiles of 1,875 dysregulated circRNAs in non-irradiated and irradiated A549 cells and identified circNEIL3 as a significantly downregulated circRNA in A549 cells treated with 0, 2, or 4 Gy of radiation, respectively. Functional assays demonstrated that circNEIL3 knockdown promoted radiation-induced cell pyroptosis, whereas circNEIL3 overexpression had the opposite effects. Importantly, the effects of circNEIL3 overexpression on inhibiting pyroptosis were reversed by PIF1 knockdown. Mechanistically, circNEIL3-mediated pyroptosis was achieved through directly binding to miR-1184 as a sponge, thereby releasing the inhibition of miR-1184 on PIF1, which ultimately induces DNA damage and triggers AIM2 inflammasome activation. In vivo, circNEIL3 knockdown significantly enhanced the efficacy of radiotherapy as evidenced by decreases in tumor volume and weight. Collectively, the circNEIL3/miR-1184/PIF1 axis that mediate pyroptosis induction may be a novel, promising therapeutic strategy for the clinical treatment of lung cancer.
Collapse
|
33
|
Wang D, Tian L, Wang Y, Gao X, Tang H, Ge J. Circ_0001206 regulates miR-665/CRKL axis to alleviate hypoxia/reoxygenation-induced cardiomyocyte injury in myocardial infarction. ESC Heart Fail 2022; 9:998-1007. [PMID: 35023295 PMCID: PMC8934946 DOI: 10.1002/ehf2.13725] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 10/20/2021] [Accepted: 11/10/2021] [Indexed: 01/06/2023] Open
Abstract
Aims Myocardial infarction (MI) is a type of cardiovascular disease caused by myocardial necrosis. Growing evidences have suggested that circular RNAs (circRNAs) play crucial roles in cardiac hypoxia/reoxygenation (H/R)‐induced injury of MI. Methods and results Hypoxia/reoxygenation model of H9C2 cells was established and circ_0001206 expression was detected via quantitative real‐time polymerase chain reaction. Ribonuclease R (RNase R) and Actinomycin D (Act D) assays verified the stability. Cell counting kit‐8 (CCK‐8), western blot, TUNEL, and flow cytometry assays evaluated cell viability and cell apoptosis. RNA pull‐down, RNA binding protein immunoprecipitation (RIP), and luciferase reporter assays explored the mechanisms underlying MI. All experimental data were presented with mean ± standard deviation (SD) and P < 0.05 indicated statistical significance. Circ_0001206 was low‐expressed in H9C2 cells under H/R treatment. Circ_0001206 was formed by cyclization of CRK like proto‐oncogene, adaptor protein (CRKL). Circ_0001206 overexpression promoted cell viability and inhibited cardiomyocyte apoptosis. It was confirmed that circ_0001206 regulated CRKL expression via acting as a competing endogenous RNA (ceRNA) of microRNA‐665 (miR‐665). CRKL played a protective role in MI. Conclusions Circ_0001206 regulates miR‐665/CRKL axis to alleviate H/R‐induced cardiomyocyte injury in MI. Our findings suggest that circ_0001206 might be a potential target for MI treatment.
Collapse
Affiliation(s)
- Dongmei Wang
- Department of Cardiology, Zhang Ye People's Hospital Affiliated to Hexi University, Zhangye, China
| | - Limei Tian
- Medical College of Hexi University, Zhangye, China
| | - Yan Wang
- Department of Cardiology, Zhang Ye People's Hospital Affiliated to Hexi University, Zhangye, China
| | - Xiaoli Gao
- Department of Cardiology, Zhang Ye People's Hospital Affiliated to Hexi University, Zhangye, China
| | - Hanbo Tang
- Department of Cardiac Surgery, Gansu Provincial Maternity and Child-care Hospital, No.143 North Qilihe Street, Lanzhou, Gansu, 730050, China
| | - Junbo Ge
- Department of Cardiac Surgery, Gansu Provincial Maternity and Child-care Hospital, No.143 North Qilihe Street, Lanzhou, Gansu, 730050, China.,Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Disease, Building 16, No.1609 Xietu Road, Shanghai, 200032, China
| |
Collapse
|
34
|
Iparraguirre L, Alberro A, Hansen TB, Castillo-Triviño T, Muñoz-Culla M, Otaegui D. Profiling of Plasma Extracellular Vesicle Transcriptome Reveals That circRNAs Are Prevalent and Differ between Multiple Sclerosis Patients and Healthy Controls. Biomedicines 2021; 9:biomedicines9121850. [PMID: 34944665 PMCID: PMC8698468 DOI: 10.3390/biomedicines9121850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023] Open
Abstract
(1) Background: Extracellular vesicles (EVs) are released by most cell types and are implicated in several biological and pathological processes, including multiple sclerosis (MS). Differences in the number and cargo of plasma-derived EVs have been described in MS. In this work, we have characterised the EV RNA cargo of MS patients, with particular attention to circular RNAs (circRNAs), which have attracted increasing attention for their roles in physiology and disease and their biomarker potential. (2) Methods: Plasma-derived EVs were isolated by differential centrifugation (20 patients, 8 controls), and RNA-Sequencing was used to identify differentially expressed linear and circRNAs. (3) Results: We found differences in the RNA type distribution, circRNAs being enriched in EVs vs. leucocytes. We found a number of (corrected p-value < 0.05) circRNA significantly DE between the groups. Nevertheless, highly structured circRNAs are preferentially retained in leukocytes. Differential expression analysis reports significant differences in circRNA and linear RNA expression between MS patients and controls, as well as between different MS types. (4) Conclusions: Plasma derived EV RNA cargo is not a representation of leukocytes’ cytoplasm but a message worth studying. Moreover, our results reveal the interest of circRNAs as part of this message, highlighting the importance of further understanding RNA regulation in MS.
Collapse
Affiliation(s)
- Leire Iparraguirre
- Multiple Sclerosis Unit, Biodonostia Health Research Institute, 20014 San Sebastián, Spain; (L.I.); (A.A.); (T.C.-T.)
| | - Ainhoa Alberro
- Multiple Sclerosis Unit, Biodonostia Health Research Institute, 20014 San Sebastián, Spain; (L.I.); (A.A.); (T.C.-T.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Thomas B. Hansen
- Molecular Biology and Genetics Department, Aarhus University, 8000 Aarhus C, Denmark;
| | - Tamara Castillo-Triviño
- Multiple Sclerosis Unit, Biodonostia Health Research Institute, 20014 San Sebastián, Spain; (L.I.); (A.A.); (T.C.-T.)
- Spanish Network of Multiple Sclerosis, 08028 Barcelona, Spain
- Neurology Department, Donostia University Hospital, 20014 San Sebastián, Spain
| | - Maider Muñoz-Culla
- Multiple Sclerosis Unit, Biodonostia Health Research Institute, 20014 San Sebastián, Spain; (L.I.); (A.A.); (T.C.-T.)
- Spanish Network of Multiple Sclerosis, 08028 Barcelona, Spain
- Department of Basic Psychological Processes and Their Development, University of the Basque Country, 20018 San Sebastián, Spain
- Correspondence: (M.M.-C.); (D.O.); Tel.: +34-943-01-52-18 (M.M.-C.); +34-943-00-62-93 (D.O.)
| | - David Otaegui
- Multiple Sclerosis Unit, Biodonostia Health Research Institute, 20014 San Sebastián, Spain; (L.I.); (A.A.); (T.C.-T.)
- Spanish Network of Multiple Sclerosis, 08028 Barcelona, Spain
- Correspondence: (M.M.-C.); (D.O.); Tel.: +34-943-01-52-18 (M.M.-C.); +34-943-00-62-93 (D.O.)
| |
Collapse
|
35
|
Shi Y, Liu C. Circular RNA hsa_circ_0043278 inhibits breast cancer progression via the miR-455-3p/EI24 signalling pathway. BMC Cancer 2021; 21:1249. [PMID: 34800978 PMCID: PMC8605514 DOI: 10.1186/s12885-021-08989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 11/10/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is one of the major malignancies worldwide. Circular ribonucleic acids (circRNAs) are a class of conserved ribonucleic acid (RNA) molecules that play important roles in various diseases. Recently, circRNAs have been suggested to have diagnostic value and may function as potential diagnostic biomarkers for BC. Previously, hsa_circ_0043278 was found to be downregulated in human BC. However, its role in human BC has not yet been identified. METHODS The levels of hsa_circ_0043278 in BC cell lines were verified by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The overexpression vector and short hairpin RNA (shRNA) of hsa_circ_0043278 were transfected into MDA-MB-231 and MCF-7 cells, respectively. The effects of hsa_circ_0043278 on tumour cell growth, migration and invasion were measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), colony formation, wound healing and Transwell assays in vitro. A xenograft experiment was conducted to validate the inhibitory effect of hsa_circ_0043278 on tumour growth. The interaction between hsa_circ_0043278 and miR-455-3p was confirmed by a dual-luciferase reporter assay. Mimics and inhibitors of miR-455-3p were designed to confirm the influence of hsa_circ_0043278 on the hsa_circ_0043278/miR-455-3p/etoposide-induced gene 24 (EI24) axis. RESULTS Hsa_circ_0043278 was downregulated in BC cell lines. Furthermore, overexpression of hsa_circ_0043278 notably decreased BC cell viability and inhibited BC cell migration and invasion in vitro and suppressed tumour growth in vivo. Downregulation of hsa_circ_0043278 led to the opposite results. Hsa_circ_0043278 expression was negatively correlated with that of miR-455-3p. In addition, mechanistic investigation proved that hsa_circ_0043278 directly bound to miR-455-3p and regulated EI24 and NF-κB expression in BC cells. CONCLUSION Hsa_circ_0043278 acts as a tumour suppressor gene in BC through the hsa_circ_0043278/miR-455-3p/EI24 axis and may be regarded as a new prognostic predictor or potential therapeutic target in BC.
Collapse
Affiliation(s)
- Yue Shi
- Department of Geriatric Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Chong Liu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
36
|
Lu X, Gao H, Zhu B, Lin G. Circular RNA circ_RANBP9 exacerbates polycystic ovary syndrome via microRNA-136-5p/ XIAP axis. Bioengineered 2021; 12:6748-6758. [PMID: 34546853 PMCID: PMC8806864 DOI: 10.1080/21655979.2021.1964157] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disease that affects the health of many women. Circular RNAs (circRNAs) are associated with the occurrence and progression of PCOS. This study aimed to explore the function of circ_RANBP9 in PCOS. First, the circ_RANBP9 level was found to be increased in the plasma of patients with PCOS and ovarian granulosa cells (GCs) using Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR). In GCs, loss of circ_RANBP9 decelerated proliferation and accelerated apoptosis of KGN and COV434 cells, as determined by MTT assay, colony formation assay, and flow cytometry. Furthermore, bioinformatics analysis showed that circ_RANBP9 and XIAP can be targeted by the microRNA, miR-136-5p. Luciferase reporter assay and RNA pull-down assay further verified the interaction between miR-136-5p and circ_RANBP9 or XIAP. Importantly, knockdown of circ_RANBP9 suppressed proliferation and promoted apoptosis of KGN and COV434 cells, whereas inhibition of miR-136-5p reversed these effects. Additionally, XIAP abolished the repression of proliferation and acceleration of apoptosis induced by miR-136-5p. The promotion of apoptosis was accompanied by upregulation of caspase-3 and Bax, and downregulation of Bcl-2, as estimated by western blotting. In conclusion, silencing of circ_RANBP9 inhibited GC proliferation and facilitated apoptosis by mediating the miR-136-5p/XIAP pathway. These findings provide a new theoretical basis for screening and treatment of PCOS.
Collapse
Affiliation(s)
- Xiaohui Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory of Genetic Testing, Xiamen, Fujian, China
| | - Haijie Gao
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University
| | - Bo Zhu
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory of Genetic Testing, Xiamen, Fujian, China
| | - Guilan Lin
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory of Genetic Testing, Xiamen, Fujian, China
| |
Collapse
|
37
|
Chen Z, Rasheed M, Deng Y. The epigenetic mechanisms involved in mitochondrial dysfunction: Implication for Parkinson's disease. Brain Pathol 2021; 32:e13012. [PMID: 34414627 PMCID: PMC9048811 DOI: 10.1111/bpa.13012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/21/2021] [Accepted: 07/27/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunction is one of the crucial factors involved in PD’s pathogenicity, which emerges from a combination of genetic and environmental factors. These factors cause differential molecular expression in neurons, such as varied transcriptional regulation of genes, elevated oxidative stress, α‐synuclein aggregation and endogenous neurotoxins release, which induces epigenetic modifications and triggers energy crisis by damaging mitochondria of the dopaminergic neurons (DN). So far, these events establish a complicated relationship with underlying mechanisms of mitochondrial anomalies in PD, which has remained unclear for years and made PD diagnosis and treatment extremely difficult. Therefore, in this review, we endeavored to discuss the complex association of epigenetic modifications and other associated vital factors in mitochondrial dysfunction. We propose a hypothesis that describes a vicious cycle in which mitochondrial dysfunction and oxidative stress act as a hub for regulating DA neuron's fate in PD. Oxidative stress triggers the release of endogenous neurotoxins (CTIQs) that lead to mitochondrial dysfunction along with abnormal α‐synuclein aggregation and epigenetic modifications. These disturbances further intensify oxidative stress and mitochondrial damage, amplifying the synthesis of CTIQs and works vice versa. This vicious cycle may result in the degeneration of DN to hallmark Parkinsonism. Furthermore, we have also highlighted various endogenous compounds and epigenetic marks (neurotoxic and neuroprotective), which may help for devising future diagnostic biomarkers and target specific drugs using novel PD management strategies.
Collapse
Affiliation(s)
- Zixuan Chen
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Madiha Rasheed
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
38
|
Circular RNAs: Novel Players in the Oxidative Stress-Mediated Pathologies, Biomarkers, and Therapeutic Targets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6634601. [PMID: 34257814 PMCID: PMC8245247 DOI: 10.1155/2021/6634601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/24/2021] [Indexed: 12/29/2022]
Abstract
Oxidative stress (OxS) is a wildly described cause of damage to macromolecules, resulting in abnormal physiological conditions. In recent years, a few studies have shown that oxidation/antioxidation imbalance plays a significant role in developing diseases involving different systems and organs. However, the research on the circular RNA (circRNA) roles in OxS is still in its very infancy. Therefore, we hope to provide a comprehensive overview of the recent research that explored the function of circRNAs associated with OxS and its role in the pathogenesis of different diseases that affect different body systems like the nervous system, cardiovascular system, kidneys, and lungs. It provides the possibilities of using these circRNAs as superior diagnostic and therapeutic options for OxS associated with these disease conditions.
Collapse
|
39
|
Emerging functions of circular RNA in aging. Trends Genet 2021; 37:819-829. [PMID: 34016449 DOI: 10.1016/j.tig.2021.04.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/05/2021] [Accepted: 04/22/2021] [Indexed: 01/22/2023]
Abstract
Circular RNA (circRNA) is a closed, single-stranded transcript widely detected in eukaryotes. Recent studies indicate that the levels of circRNAs change with age in various tissues in multiple species, ranging from nematodes to mammals. Here we discuss the functional roles of circRNAs in animal aging and longevity. We review studies regarding the differential expression of circRNAs that contributes to cellular senescence and the pathogenesis of aging-associated diseases. We explore the features of aging-associated circRNAs by discussing their potential as biomarkers of aging, tissue specificity, physiological roles, action mechanisms, and evolutionarily conserved characteristics. Our review provides insights into current progress in circRNA research and their significant functions in the aging process.
Collapse
|
40
|
Chen P, Li C, Huang H, Liang L, Zhang J, Li Q, Wang Q, Zhang S, Zeng K, Zhang X, Liang J. Circular RNA profiles and the potential involvement of down-expression of hsa_circ_0001360 in cutaneous squamous cell carcinogenesis. FEBS Open Bio 2021; 11:1209-1222. [PMID: 33569895 PMCID: PMC8016141 DOI: 10.1002/2211-5463.13114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/27/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs (circRNAs) act as sponges of noncoding RNAs and have been implicated in many pathophysiological processes, including tumor development and progression. However, their roles in cutaneous squamous cell carcinoma (cSCC) are not yet well understood. This study aimed to identify differentially expressed circRNAs and their potential functions in cutaneous squamous cell carcinogenesis. The expression profiles of circRNAs in three paired cSCC and adjacent nontumorous tissues were detected with RNA sequencing and bioinformatics analysis. The candidate circRNAs were validated by PCR, Sanger sequencing and quantitative RT‐PCR in another five matched samples. The biological functions of circRNAs in SCL‐1 cells were assessed using circRNA silencing and overexpression, 3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)‐2‐(4‐sulfophenyl)‐2H‐tetrazolium inner salt (MTS), flow cytometry, transwell and colony formation assays. In addition, the circRNA–miRNA–mRNA interaction networks were predicted by bioinformatics. In summary, 1115 circRNAs, including 457 up‐regulated and 658 down‐regulated circRNAs (fold change ≥ 2 and P < 0.05), were differentially expressed in cSCC compared with adjacent nontumorous tissues. Of four selected circRNAs, two circRNAs (hsa_circ_0000932 and hsa_circ_0001360) were confirmed to be significantly decreased in cSCC using PCR, Sanger sequencing and quantitative RT‐PCR. Furthermore, hsa_circ_0001360 silencing was found to result in a significant increase of the proliferation, migration and invasion but a significant decrease of apoptosis in SCL‐1 cells in vitro, whereas hsa_circ_0001360 overexpression showed the opposite regulatory effects. hsa_circ_0001360 was predicted to interact with five miRNAs and their corresponding genes. In conclusion, circRNA dysregulation may play a critical role in carcinogenesis of cSCC, and hsa_circ_0001360 may have potential as a biomarker for cSCC.
Collapse
Affiliation(s)
- Pingjiao Chen
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Changxing Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | - Liuping Liang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Zhang
- Institute of Dermatology, Guangzhou Medical University, China.,Department of Dermatology, Guangzhou Institute of Dermatology, China
| | - Qian Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qi Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sanquan Zhang
- Institute of Dermatology, Guangzhou Medical University, China.,Department of Dermatology, Guangzhou Institute of Dermatology, China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xibao Zhang
- Institute of Dermatology, Guangzhou Medical University, China.,Department of Dermatology, Guangzhou Institute of Dermatology, China
| | - Jingyao Liang
- Institute of Dermatology, Guangzhou Medical University, China.,Department of Dermatology, Guangzhou Institute of Dermatology, China
| |
Collapse
|
41
|
Jiang Q, Liu C, Li CP, Xu SS, Yao MD, Ge HM, Sun YN, Li XM, Zhang SJ, Shan K, Liu BH, Yao J, Zhao C, Yan B. Circular RNA-ZNF532 regulates diabetes-induced retinal pericyte degeneration and vascular dysfunction. J Clin Invest 2021; 130:3833-3847. [PMID: 32343678 DOI: 10.1172/jci123353] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 04/22/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of blindness in working-age adults. Vascular pericyte degeneration is the predominant clinical manifestation of DR, yet the mechanism governing pericyte degeneration is poorly understood. Circular RNAs (circRNAs) play important roles in multiple biological processes and disease progression. Here, we investigated the role of circRNA in pericyte biology and diabetes-induced retinal vascular dysfunction. cZNF532 expression was upregulated in pericytes under diabetic stress, in the retinal vessels of a diabetic murine model, and in the vitreous humor of diabetic patients. cZNF532 silencing reduced the viability, proliferation, and differentiation of pericytes and suppressed the recruitment of pericytes toward endothelial cells in vitro. cZNF532 regulated pericyte biology by acting as a miR-29a-3p sponge and inducing increased expression of NG2, LOXL2, and CDK2. Knockdown of cZNF532 or overexpression of miR-29a-3p aggravated streptozotocin-induced retinal pericyte degeneration and vascular dysfunction. By contrast, overexpression of cZNF532 or inhibition of miR-29a-3p ameliorated human diabetic vitreous-induced retinal pericyte degeneration and vascular dysfunction. Collectively, these data identify a circRNA-mediated mechanism that coordinates pericyte biology and vascular homeostasis in DR. Induction of cZNF532 or antagonism of miR-29a-3p is an exploitable therapeutic approach for the treatment of DR.
Collapse
Affiliation(s)
- Qin Jiang
- Affiliated Eye Hospital and.,Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chang Liu
- Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chao-Peng Li
- Department of Ophthalmology, Huai'an First People's Hospital, Huai An, China
| | - Shan-Shan Xu
- Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Mu-Di Yao
- Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Hui-Min Ge
- Affiliated Eye Hospital and.,Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Ya-Nan Sun
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | | | - Shu-Jie Zhang
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kun Shan
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bai-Hui Liu
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin Yao
- Affiliated Eye Hospital and.,Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chen Zhao
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Biao Yan
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Rophina M, Sharma D, Poojary M, Scaria V. Circad: a comprehensive manually curated resource of circular RNA associated with diseases. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2020:5812714. [PMID: 32219412 PMCID: PMC7100626 DOI: 10.1093/database/baaa019] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/22/2020] [Accepted: 02/17/2020] [Indexed: 01/17/2023]
Abstract
Circular RNAs (circRNAs) are unique transcript isoforms characterized by back splicing of exon ends to form a covalently closed loop or circular conformation. These transcript isoforms are now known to be expressed in a variety of organisms across the kingdoms of life. Recent studies have shown the role of circRNAs in a number of diseases and increasing evidence points to their potential application as biomarkers in these diseases. We have created a comprehensive manually curated database of circular RNAs associated with diseases. This database is available at URL http://clingen.igib.res.in/circad/. The Database lists more than 1300 circRNAs associated with 150 diseases and mapping to 113 International Statistical Classification of Diseases (ICD) codes with evidence of association linked to published literature. The database is unique in many ways. Firstly, it provides ready-to-use primers to work with, in order to use circRNAs as biomarkers or to perform functional studies. It additionally lists the assay and PCR primer details including experimentally validated ones as a ready reference to researchers along with fold change and statistical significance. It also provides standard disease nomenclature as per the ICD codes. To the best of our knowledge, circad is the most comprehensive and updated database of disease associated circular RNAs. Availability: http://clingen.igib.res.in/circad/
Collapse
Affiliation(s)
- Mercy Rophina
- Genome Informatics Department, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, District-South Delhi, New Delhi-110025, India
| | - Disha Sharma
- Genome Informatics Department, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, District-South Delhi, New Delhi-110025, India.,Academy of Scientific and Innovative Research (AcSIR), AcSIR headquarters, CSIR-HRDC campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh -201002, India
| | - Mukta Poojary
- Genome Informatics Department, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, District-South Delhi, New Delhi-110025, India.,Academy of Scientific and Innovative Research (AcSIR), AcSIR headquarters, CSIR-HRDC campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh -201002, India
| | - Vinod Scaria
- Genome Informatics Department, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, District-South Delhi, New Delhi-110025, India.,Academy of Scientific and Innovative Research (AcSIR), AcSIR headquarters, CSIR-HRDC campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh -201002, India
| |
Collapse
|
43
|
Cao H, Chen J, Lai X, Liu T, Qiu P, Que S, Huang Y. Circular RNA expression profile in human primary multiple intracranial aneurysm. Exp Ther Med 2021; 21:239. [PMID: 33603847 PMCID: PMC7851595 DOI: 10.3892/etm.2021.9670] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
Primary multiple intracranial aneurysm (MIA) is a vascular disease that frequently leads to fatal vascular rupture and subarachnoid hemorrhage. However, the epigenetic regulation associated with MIA has remained largely elusive. Circular RNAs (circRNAs) serve important roles in cardiovascular diseases; however, their association with MIA has remained to be investigated. The present study initially aimed to explore novel mechanisms of MIA through examining circRNA expression profiles. Comprehensive circRNA expression profiles were detected by RNA sequencing (RNA-Seq) in human peripheral blood mononuclear cells. The RNA-Seq results were validated by reverse transcription-quantitative PCR. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggested the functions of these circRNAs. A competing endogenous RNA network was constructed to reveal the circRNA-microRNA-mRNA relationship. Among the 3,328 differentially expressed circRNAs between the MIA and matched control groups, 60 exhibited significant expression changes (|log2 fold change|≥2; P<0.05). Among these 60 circRNAs, 20 were upregulated, while the other 40 were downregulated. A number of downregulated circRNAs were involved in inflammation. The most significant KEGG pathway was ‘leukocyte transendothelial migration’. The circRNAs Homo sapiens (hsa)_circ_0135895, hsa_circ_0000682 and hsa_circ_0000690, which were also associated with the above-mentioned pathway, were indicated to be able to regulate protein tyrosine kinase 2, protein kinase Cβ and integrin subunit αL, respectively. To the best of our knowledge, the present study was the first to perform a circRNA sequencing analysis of MIA. The results specifically predicted the regulatory role of circRNAs in the pathogenesis of MIA. ‘Leukocyte transendothelial migration’ may be critical for the pathogenesis of MIA.
Collapse
Affiliation(s)
- Huimin Cao
- Central Laboratory, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian 364000, P.R. China
| | - Jia Chen
- Central Laboratory, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian 364000, P.R. China
| | - Xiaoyan Lai
- Department of Neurosurgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian 364000, P.R. China
| | - Tianqin Liu
- Department of Neurosurgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian 364000, P.R. China
| | - Ping Qiu
- Department of Neurosurgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian 364000, P.R. China
| | - Shuanglin Que
- Department of Neurosurgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian 364000, P.R. China
| | - Yanming Huang
- Department of Neurosurgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian 364000, P.R. China
| |
Collapse
|
44
|
Wang Q, Yu G, He H, Zheng Z, Li X, Lin R, Xu D. Differential expression of circular RNAs in bone marrow-derived exosomes from essential thrombocythemia patients. Cell Biol Int 2020; 45:869-881. [PMID: 33325145 DOI: 10.1002/cbin.11534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/19/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022]
Abstract
Circular RNAs (circRNA) are closely associated with the pathogenesis of various hematological diseases. However, little is known about the potential functions of circRNAs in essential thrombocythemia (ET) development. The circRNA profile alterations in the bone marrow of ET patients were mainly investigated in this study. The sizes of exosomes derived from human bone marrow tissues were validated by the nanoparticle tracking analysis (NTA) method. CD63 and TSG101 expressions in exosomes were analyzed by western blot analysis. The profiles and differential expression of circRNAs in bone-derived exosomes were characterized by high-throughput sequencing. Herein, circular structures and expression of circRNAs were verified by Sanger sequencing and real-time polymerase chain reaction, respectively. The circRNA-miRNA-mRNA networks were predicted using the Cytoscape software. And we detected the effect of circ_0014614 on the transformation of K562 cells into megakaryocytes. Exosomes derived from the bone marrow of ET patients and healthy volunteers showed a diameter between 70 and 140 nm and expressed high CD63 and TSG101. Meanwhile, the circRNA profiles were significantly altered in bone marrow-derived exosomes from ET patients, among which circDAP3, circASXL1, and circRUNX1 were significantly downregulated in ET patients, thus conferring a new insight into the role of circRNAs in the pathogenesis of ET. Besides this, circRNA-encoding genes and miRNA-mRNA networks targeted by this three circRNA were involved in various biological processes and signaling pathways. And circ_0014614 could inhibit K562 cells' differentiation into megakaryocytes. The predictions of the potential function of these three differentially expressed circRNAs along with their interaction with specific miRNAs could provide a basis for circRNA-based ET diagnosis and treatment.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guopan Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Han He
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhongxin Zheng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ren Lin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dan Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
45
|
Competing Endogenous RNA Networks as Biomarkers in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21249582. [PMID: 33339180 PMCID: PMC7765627 DOI: 10.3390/ijms21249582] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022] Open
Abstract
Protein aggregation is classically considered the main cause of neuronal death in neurodegenerative diseases (NDDs). However, increasing evidence suggests that alteration of RNA metabolism is a key factor in the etiopathogenesis of these complex disorders. Non-coding RNAs are the major contributor to the human transcriptome and are particularly abundant in the central nervous system, where they have been proposed to be involved in the onset and development of NDDs. Interestingly, some ncRNAs (such as lncRNAs, circRNAs and pseudogenes) share a common functionality in their ability to regulate gene expression by modulating miRNAs in a phenomenon known as the competing endogenous RNA mechanism. Moreover, ncRNAs are found in body fluids where their presence and concentration could serve as potential non-invasive biomarkers of NDDs. In this review, we summarize the ceRNA networks described in Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis and spinocerebellar ataxia type 7, and discuss their potential as biomarkers of these NDDs. Although numerous studies have been carried out, further research is needed to validate these complex interactions between RNAs and the alterations in RNA editing that could provide specific ceRNET profiles for neurodegenerative disorders, paving the way to a better understanding of these diseases.
Collapse
|
46
|
Liu C, Han T, Shi Y. The decreased expression of hsa_circ_0043278 and its relationship with clinicopathological features of breast cancer. Gland Surg 2020; 9:2044-2053. [PMID: 33447555 DOI: 10.21037/gs-20-825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Breast cancer is one of the most significant causes of death in women around the world. Circular RNAs (circRNAs), which are a novel class of conserved RNA molecules, are involved in the occurrence and development of various diseases, especially malignancies; however, researchers rarely report their roles in human breast cancer. Methods In the present study, the differentially expressed levels of circRNAs in human breast cancer tissues and paired noncancerous tissues were screened by circRNA microarray. Hsa_circ_0043278 was downregulated 43-fold in breast cancer and was selected for further analysis. The expression of hsa_circ_0043278 was verified in breast cancer specimens and paired noncancerous tissues by quantitative reverse transcription polymerized chain reaction (qRT-PCR) technique. The relationship between the expression of hsa_circ_0043278 and the clinicopathological features was analyzed. Results Among the 520 differentially expressed circRNAs, 292 significantly upregulated circRNAs and 228 downregulated circRNAs in the breast cancer tissues compared with the paired noncancerous tissues. The area under the receiver operating characteristic (ROC) curve of hsa_circ_0043278 was 0.690. The results of the bioinformatics prediction showed five target miRNAs that might be sponged by hsa_circ_0043278. The expression of hsa_circ_0043278 was associated with lymph node metastasis and histological type of the patient. Patients with lymph node metastasis have tumors with significantly downregulated expression of hsa_circ_0043278 (P=0.0201). Conclusions Our results suggest that hsa_circ_0043278 is downregulated and may play a key role in human breast cancer.
Collapse
Affiliation(s)
- Chong Liu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tao Han
- Department of Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yue Shi
- Department of Geriatric Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
47
|
Zeng Z, Xia L, Fan S, Zheng J, Qin J, Fan X, Liu Y, Tao J, Liu Y, Li K, Ling Z, Bu Y, Martin KA, Hwa J, Liu R, Tang WH. Circular RNA CircMAP3K5 Acts as a MicroRNA-22-3p Sponge to Promote Resolution of Intimal Hyperplasia Via TET2-Mediated Smooth Muscle Cell Differentiation. Circulation 2020; 143:354-371. [PMID: 33207953 DOI: 10.1161/circulationaha.120.049715] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Aberrant expression of circular RNA contributes to human diseases. Circular RNAs regulate gene expression by sequestering specific microRNAs. In this study, we investigated whether circMAP3K5 (circular mitogen-activated protein kinase 5) could act as a competing endogenous microRNA-22-3p (miR-22-3p) sponge and regulate neointimal hyperplasia. METHODS Circular RNA profiling from genome-wide RNA sequencing data was compared between human coronary artery smooth muscle cells (SMCs) treated with or without platelet-derived growth factor. Expression levels of circMAP3K5 were assessed in human coronary arteries from autopsies on patients with dilated cardiomyopathy or coronary heart disease. The role of circMAP3K5 in intimal hyperplasia was further investigated in mice with adeno-associated virus 9-mediated circMAP3K5 transfection. SMC-specific Tet2 (ten-eleven translocation-2) knockout mice and global miR-22-3p knockout mice were used to delineate the mechanism by which circMAP3K5 attenuated neointimal hyperplasia using the femoral arterial wire injury model. RESULTS RNA sequencing demonstrated that treatment with platelet-derived growth factor-BB significantly reduced expression of circMAP3K5 in human coronary artery SMCs. Wire-injured mouse femoral arteries and diseased arteries from patients with coronary heart disease (where platelet-derived growth factor-BB is increased) confirmed in vivo downregulation of circMAP3K5 associated with injury and disease. Lentivirus-mediated overexpression of circMAP3K5 inhibited the proliferation of human coronary artery SMCs. In vivo adeno-associated virus 9-mediated transfection of circMap3k5 (mouse circular Map3k5) specifically inhibited SMC proliferation in the wire-injured mouse arteries, resulting in reduced neointima formation. Using a luciferase reporter assay and RNA pull-down, circMAP3K5 (human circular MAP3K5) was found to sequester miR-22-3p, which, in turn, inhibited the expression of TET2. Both in vitro and in vivo results demonstrate that the loss of miR-22-3p recapitulated the antiproliferative effect of circMap3k5 on vascular SMCs. In SMC-specific Tet2 knockout mice, loss of Tet2 abolished the circMap3k5-mediated antiproliferative effect on vascular SMCs. CONCLUSIONS We identify circMAP3K5 as a master regulator of TET2-mediated vascular SMC differentiation. Targeting the circMAP3K5/miR-22-3p/TET2 axis may provide a potential therapeutic strategy for diseases associated with intimal hyperplasia, including restenosis and atherosclerosis.
Collapse
Affiliation(s)
- Zhi Zeng
- From the Institute of Pediatrics (Z.Z., L.X., J.Q., X.F., Y.L., K.L., Z.L., Y.B., W.H.T.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangdong, China
| | - Luoxing Xia
- From the Institute of Pediatrics (Z.Z., L.X., J.Q., X.F., Y.L., K.L., Z.L., Y.B., W.H.T.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangdong, China
| | - Shunyang Fan
- Heart Center, The Third Affiliated Hospital of Zhengzhou University, China (S.F.)
| | - Junmeng Zheng
- Department of Cardiovascular Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangdong, China (J.Z., J.T.)
| | - Jinhong Qin
- From the Institute of Pediatrics (Z.Z., L.X., J.Q., X.F., Y.L., K.L., Z.L., Y.B., W.H.T.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangdong, China
| | - Xuejiao Fan
- From the Institute of Pediatrics (Z.Z., L.X., J.Q., X.F., Y.L., K.L., Z.L., Y.B., W.H.T.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangdong, China
| | - Yunfeng Liu
- From the Institute of Pediatrics (Z.Z., L.X., J.Q., X.F., Y.L., K.L., Z.L., Y.B., W.H.T.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangdong, China.,Clinical Laboratory (Y.L.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangdong, China
| | - Jun Tao
- Department of Cardiovascular Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangdong, China (J.Z., J.T.)
| | - Yingying Liu
- From the Institute of Pediatrics (Z.Z., L.X., J.Q., X.F., Y.L., K.L., Z.L., Y.B., W.H.T.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangdong, China.,Clinical Laboratory (Y.L.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangdong, China
| | - Kang Li
- From the Institute of Pediatrics (Z.Z., L.X., J.Q., X.F., Y.L., K.L., Z.L., Y.B., W.H.T.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangdong, China
| | - Zhenwei Ling
- From the Institute of Pediatrics (Z.Z., L.X., J.Q., X.F., Y.L., K.L., Z.L., Y.B., W.H.T.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangdong, China
| | - Yun Bu
- From the Institute of Pediatrics (Z.Z., L.X., J.Q., X.F., Y.L., K.L., Z.L., Y.B., W.H.T.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangdong, China
| | - Kathleen A Martin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (K.A.M., J.H.)
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (K.A.M., J.H.)
| | - Renjing Liu
- Victor Chang Cardiac Research Institute, Sydney, Australia (R.L.)
| | - Wai Ho Tang
- From the Institute of Pediatrics (Z.Z., L.X., J.Q., X.F., Y.L., K.L., Z.L., Y.B., W.H.T.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangdong, China
| |
Collapse
|
48
|
Guerra BS, Lima J, Araujo B, Torres LB, Santos J, Machado D, Cunha E, Serrato JA, de Souza JS, Martins JV, Scalabrin EE, Herai RH. Biogenesis of circular RNAs and their role in cellular and molecular phenotypes of neurological disorders. Semin Cell Dev Biol 2020; 114:1-10. [PMID: 32893132 DOI: 10.1016/j.semcdb.2020.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/28/2020] [Accepted: 08/05/2020] [Indexed: 01/04/2023]
Abstract
Circular RNA (circRNA) is an unusual class of RNA-like structures composed by exonic and/or intronic sequences that are regulated by the backsplicing mechanism and by the spliceosome-mediated machinery. These circular transcripts tend to accumulate during aging in several human tissues, especially in the mammalian brain, and their expression is correlated with the occurrence of several human pathologies, including a broad spectrum of neurological disorders. Previous findings have also shown that circRNAs are significantly present in the neuronal tissue and are up-regulated during neurogenesis, with a significant number been derived from neural genes, suggesting these circular molecules are involved in the cellular and molecular phenotype of our brain. However, the complete biogenesis, the many types of circRNA molecules, and their involvement with neuronal phenotype and with the occurrence of pathologies are still a challenging avenue for researchers. In this updated review, we discuss the current findings of the biogenesis and the diversity of cirRNAs and their molecular involvement in neurological tissue phenotype. We also discuss how some circRNAs can act as sponge molecules, regulating the activity of microRNA expression over gene translation. Finally, we also show the correlation of altered circRNA expression in neurological disorders.
Collapse
Affiliation(s)
- B S Guerra
- Experimental Multiuser Laboratory, Graduate Program in Health Sciences (PPGCS), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, PR, 80215-901, Brazil
| | - J Lima
- Department of Biotechnology, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, PR, 80215-901, Brazil; Immunology Department, Biomedical Science Institute, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Bhs Araujo
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, SP, Brazil
| | - L B Torres
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Jcc Santos
- Neuroscience laboratory, Department of Neurology and Neurosurgery, Federal University of São Paulo - UNIFESP/EPM, São Paulo, SP, 04039-002, Brazil
| | - Djs Machado
- Department of Biotechnology, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, PR, 80215-901, Brazil
| | - Ebb Cunha
- Experimental Multiuser Laboratory, Graduate Program in Health Sciences (PPGCS), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, PR, 80215-901, Brazil; Division of Genetic Research, AnaclinGENE, Genetics Laboratory, Curitiba, PR, Brazil
| | - J A Serrato
- Department of Biotechnology, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, PR, 80215-901, Brazil
| | - J S de Souza
- Departamento de Medicina, Laboratório de Endocrinologia e Medicina Translacional, Universidade Federal de São Paulo, UNIFESP/EPM, Rua Pedro de Toledo, 669 - 11 andar, São Paulo, SP, 04039-032, Brazil; Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - J V Martins
- Graduate Program in Informatics (PPGia), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, PR, Brazil
| | - E E Scalabrin
- Graduate Program in Informatics (PPGia), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, PR, Brazil
| | - R H Herai
- Experimental Multiuser Laboratory, Graduate Program in Health Sciences (PPGCS), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, PR, 80215-901, Brazil; Scientific Department, Lico Kaesemodel Institute (ILK), Curitiba, PR, Brazil.
| |
Collapse
|
49
|
Mester-Tonczar J, Winkler J, Einzinger P, Hasimbegovic E, Kastner N, Lukovic D, Zlabinger K, Spannbauer A, Traxler D, Batkai S, Thum T, Gyöngyösi M. Association between Circular RNA CDR1as and Post-Infarction Cardiac Function in Pig Ischemic Heart Failure: Influence of the Anti-Fibrotic Natural Compounds Bufalin and Lycorine. Biomolecules 2020; 10:E1180. [PMID: 32823854 PMCID: PMC7463784 DOI: 10.3390/biom10081180] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
Anti-fibrotic therapies are of increasing interest to combat cardiac remodeling and heart failure progression. Recently, anti-fibrotic circular RNAs (circRNAs) have been identified in human and rodent cardiac tissue. In vivo (rodent) experiments proved cardiac anti-fibrotic effects of the natural compounds bufalin and lycorine by downregulating miRNA-671-5p, associated with a theoretic increase in the tissue level of circRNA CDR1as. Accordingly, we hypothesized that both anti-fibrotic drugs may inhibit focal myocardial fibrosis of the remodeled left ventricle (LV) also in a translational large animal model of heart failure (HF). Domestic pigs were repeatedly treated with subcutaneous injections of either bufalin, lycorine, or saline, (n = 5/group) between days 7-21 post acute myocardial infarction (AMI). At the 2-month follow-up, both bufalin and lycorine led to significantly reduced cardiac fibrosis. Bufalin treatment additionally led to smaller end-diastolic volumes, higher LV ejection fraction (EF), and increased expression of CDR1as of the AMI region. Elevated tissue levels of the circRNA CDR1as in the AMI region of the pig heart correlated significantly with LV and right ventricular EF, LV stroke volume, and negatively with infarct size. In conclusion, we successfully identified the circRNA CDR1as in pig hearts and show a significant association with improved LV and RV function by anti-fibrotic therapies in a translational animal model of HF.
Collapse
Affiliation(s)
- Julia Mester-Tonczar
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.-T.); (J.W.); (E.H.); (N.K.); (D.L.); (K.Z.); (A.S.); (D.T.)
| | - Johannes Winkler
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.-T.); (J.W.); (E.H.); (N.K.); (D.L.); (K.Z.); (A.S.); (D.T.)
| | - Patrick Einzinger
- Institute of Information Systems Engineering, Research Unit of Information and Software Engineering, Vienna University of Technology, 1040 Vienna, Austria;
| | - Ena Hasimbegovic
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.-T.); (J.W.); (E.H.); (N.K.); (D.L.); (K.Z.); (A.S.); (D.T.)
| | - Nina Kastner
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.-T.); (J.W.); (E.H.); (N.K.); (D.L.); (K.Z.); (A.S.); (D.T.)
| | - Dominika Lukovic
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.-T.); (J.W.); (E.H.); (N.K.); (D.L.); (K.Z.); (A.S.); (D.T.)
| | - Katrin Zlabinger
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.-T.); (J.W.); (E.H.); (N.K.); (D.L.); (K.Z.); (A.S.); (D.T.)
| | - Andreas Spannbauer
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.-T.); (J.W.); (E.H.); (N.K.); (D.L.); (K.Z.); (A.S.); (D.T.)
| | - Denise Traxler
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.-T.); (J.W.); (E.H.); (N.K.); (D.L.); (K.Z.); (A.S.); (D.T.)
| | - Sandor Batkai
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625 Hannover, Germany; (S.B.); (T.T.)
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625 Hannover, Germany; (S.B.); (T.T.)
- REBIRTH Center of Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Mariann Gyöngyösi
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.-T.); (J.W.); (E.H.); (N.K.); (D.L.); (K.Z.); (A.S.); (D.T.)
| |
Collapse
|
50
|
Non-coding RNAs: emerging players in cardiomyocyte proliferation and cardiac regeneration. Basic Res Cardiol 2020; 115:52. [PMID: 32748089 PMCID: PMC7398957 DOI: 10.1007/s00395-020-0816-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
Soon after birth, the regenerative capacity of the mammalian heart is lost, cardiomyocytes withdraw from the cell cycle and demonstrate a minimal proliferation rate. Despite improved treatment and reperfusion strategies, the uncompensated cardiomyocyte loss during injury and disease results in cardiac remodeling and subsequent heart failure. The promising field of regenerative medicine aims to restore both the structure and function of damaged tissue through modulation of cellular processes and regulatory mechanisms involved in cardiac cell cycle arrest to boost cardiomyocyte proliferation. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) are functional RNA molecules with no protein-coding function that have been reported to engage in cardiac regeneration and repair. In this review, we summarize the current understanding of both the biological functions and molecular mechanisms of ncRNAs involved in cardiomyocyte proliferation. Furthermore, we discuss their impact on the structure and contractile function of the heart in health and disease and their application for therapeutic interventions.
Collapse
|