1
|
Wang H, Wang X, Wang H, Shao S, Zhu J. Chronic Corticosterone Administration-Induced Mood Disorders in Laboratory Rodents: Features, Mechanisms, and Research Perspectives. Int J Mol Sci 2024; 25:11245. [PMID: 39457027 PMCID: PMC11508944 DOI: 10.3390/ijms252011245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Mood disorders mainly affect the patient's daily life, lead to suffering and disability, increase the incidence rate of many medical illnesses, and even cause a trend of suicide. The glucocorticoid (GC)-mediated hypothalamus-pituitary-adrenal (HPA) negative feedback regulation plays a key role in neuropsychiatric disorders. The balance of the mineralocorticoid receptor (MR)/glucocorticoid receptor (GR) level contributes to maintaining the homeostasis of the neuroendocrine system. Consistently, a chronic excess of GC can also lead to HPA axis dysfunction, triggering anxiety, depression, memory loss, and cognitive impairment. The animal model induced by chronic corticosterone (CORT) administration has been widely adopted because of its simple replication and strong stability. This review summarizes the behavioral changes and underlying mechanisms of chronic CORT administration-induced animal models, including neuroinflammatory response, pyroptosis, oxidative stress, neuroplasticity, and apoptosis. Notably, CORT administration at different doses and cycles can destroy the balance of the MR/GR ratio to make dose-dependent effects of CORT on the central nervous system (CNS). This work aims to offer an overview of the topic and recommendations for future cognitive function research.
Collapse
Affiliation(s)
- Hao Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (H.W.); (X.W.); (H.W.); (S.S.)
| | - Xingxing Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (H.W.); (X.W.); (H.W.); (S.S.)
| | - Huan Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (H.W.); (X.W.); (H.W.); (S.S.)
| | - Shuijin Shao
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (H.W.); (X.W.); (H.W.); (S.S.)
| | - Jing Zhu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (H.W.); (X.W.); (H.W.); (S.S.)
- Shanghai Institute of Traditional Chinese Medicine for Mental Health, Shanghai 201108, China
| |
Collapse
|
2
|
Zeng J, Xie Z, Chen L, Peng X, Luan F, Hu J, Xie H, Liu R, Zeng N. Rosmarinic acid alleviate CORT-induced depressive-like behavior by promoting neurogenesis and regulating BDNF/TrkB/PI3K signaling axis. Biomed Pharmacother 2024; 170:115994. [PMID: 38070249 DOI: 10.1016/j.biopha.2023.115994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Rosmarinic acid (RA), a natural phenolic acid compound with a variety of bioactive properties. However, the antidepressant activity and mechanism of RA remain unclear. The aim of this study is to investigate the effects and potential mechanisms of RA on chronic CORT injection induced depression-like behavior in mice. Male C57BL/6 J mice were intraperitoneally injected with CORT (10 mg/kg) and were orally given RA daily (10 or 20 mg/kg) for 21 consecutive days. In vitro, the HT22 cells were exposed to CORT (200 μM) with RA (12.5, 25 or 50 μM) and LY294002 (a PI3K inhibitor) or ANA-12 (a TrkB inhibitor) treatment. The depression-like behavior and various neurobiological changes in the mice and cell injury and levels of target proteins in vitro were subsequently assessed. Here, RA treatment decreased the expression of p-GR/GR, HSP90, FKBP51, SGK-1 in mice hippocampi. Besides, RA increased the average optical density of Nissl bodies and number of dendritic spines in CA3 region, and enhanced Brdu and DCX expression and synaptic transduction in DG region, as well as up-regulated both the BDNF/TrkB/CREB and PI3K/Akt/mTOR signaling. Moreover, RA reduced structural damage and apoptosis in HT22 cells, increased the differentiation and maturation of them. More importantly, LY294002, but not ANA-12, reversed the effect of RA on GR nuclear translocation. Taken together, RA exerted antidepressant activities by modulating the hippocampal glucocorticoid signaling and hippocampal neurogenesis, which related to the BDNF/TrkB/PI3K signaling axis regulating GR nuclear translocation, provide evidence for the application of RA as a candidate for depression.
Collapse
Affiliation(s)
- Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhiqiang Xie
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Xi Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fei Luan
- School of Pharmacy, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, China
| | - Jingwen Hu
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongxiao Xie
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rong Liu
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
3
|
Hernandez M, Ghislin S, Lalonde R, Strazielle C. Corticosterone effects on postnatal cerebellar development in mice. Neurochem Int 2023; 171:105611. [PMID: 37704081 DOI: 10.1016/j.neuint.2023.105611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Glucocorticoids administered early in infancy can affect the architectonic organization of brain structures, particularly those with a postnatal development and resulting in long-term deficits of neuromotor function and cognition. The present study was undertaken to study the effects of daily corticosterone (CORT) injections at a pharmacological dose from postnatal days 8-15 on cerebellar and hippocampal development in mouse pups. Gene expression status for trophic factors involved in synaptic development and function as well as measures of layer thickness associated with cytochrome oxidase labelling were analyzed in the hippocampus, hypothalamus, and specific cerebellar lobules involved in motor control. Repeated CORT injections dysregulated the HPA axis with increased Crh and Nr3c1 mRNA levels in the hypothalamus and a resulting higher serum corticosterone level. The CORT treatment altered the morphology of the hippocampus and down-regulated gene transcription for corticotropin-releasing hormone (Crh) and its type-1 receptor (Crhr1), glucocorticoid receptor (Nr3c1), and brain-derived neurotrophic factor Bdnf and its receptor Ntrk2 (neurotrophic receptor tyrosine kinase 2). Similar mRNA expression decreases were found in the cerebellum for Crhr1, Crhr2, Nr3c1, and Grid2 (glutamatergic δ2 receptor). Morphological alterations and metabolic activity variations were observed in specific cerebellar lobules involved in motor control. The paramedian lobule, normally characterized by mitotic activity in the external germinative layer during the second postnatal week, was atrophic but metabolically hyperactive in its granule cell and molecular layers. On the contrary, lobules with an earlier cell proliferation displayed neurogenesis but a hypoactivated granule cell layer, suggesting a developmental delay in synaptogenesis. The results indicate that glucocorticoid, administered daily during the second postnatal week modulated the developmental programming of the hippocampus and cerebellum. These growth and metabolic alterations may lead possibly to morphological and functional changes later in life.
Collapse
Affiliation(s)
- M Hernandez
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France; CHRU Nancy, Vandœuvre-les-Nancy, France
| | - S Ghislin
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France
| | - R Lalonde
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France
| | - C Strazielle
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France; CHRU Nancy, Vandœuvre-les-Nancy, France.
| |
Collapse
|
4
|
Borsini A, Giacobbe J, Mandal G, Boldrini M. Acute and long-term effects of adolescence stress exposure on rodent adult hippocampal neurogenesis, cognition, and behaviour. Mol Psychiatry 2023; 28:4124-4137. [PMID: 37612364 PMCID: PMC10827658 DOI: 10.1038/s41380-023-02229-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Adolescence represents a critical period for brain and behavioural health and characterised by the onset of mood, psychotic and anxiety disorders. In rodents, neurogenesis is very active during adolescence, when is particularly vulnerable to stress. Whether stress-related neurogenesis changes influence adolescence onset of psychiatric symptoms remains largely unknown. A systematic review was conducted on studies investigating changes in hippocampal neurogenesis and neuroplasticity, hippocampal-dependent cognitive functions, and behaviour, occurring after adolescence stress exposure in mice both acutely (at post-natal days 21-65) and in adulthood. A total of 37 studies were identified in the literature. Seven studies showed reduced hippocampal cell proliferation, and out of those two reported increased depressive-like behaviours, in adolescent rodents exposed to stress. Three studies reported a reduction in the number of new-born neurons, which however were not associated with changes in cognition or behaviour. Sixteen studies showed acutely reduced hippocampal neuroplasticity, including pre- and post-synaptic plasticity markers, dendritic spine length and density, and long-term potentiation after stress exposure. Cognitive impairments and depressive-like behaviours were reported by 11 of the 16 studies. Among studies who looked at adolescence stress exposure effects into adulthood, seven showed that the negative effects of stress observed during adolescence on either cell proliferation or hippocampal neuroplasticity, cognitive deficits and depressive-like behaviour, had variable impact in adulthood. Treating adolescent mice with antidepressants, glutamate receptor inhibitors, glucocorticoid antagonists, or healthy diet enriched in omega-3 fatty acids and vitamin A, prevented or reversed those detrimental changes. Future research should investigate the translational value of these preclinical findings. Developing novel tools for measuring hippocampal neurogenesis in live humans, would allow assessing neurogenic changes following stress exposure, investigating relationships with psychiatric symptom onset, and identifying effects of therapeutic interventions.
Collapse
Affiliation(s)
- Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK.
| | - Juliette Giacobbe
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK
| | - Gargi Mandal
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK
| | - Maura Boldrini
- Department of Psychiatry, Columbia University, Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
5
|
Soteros BM, Tillmon H, Wollet M, General J, Chin H, Lee JB, Carreno FR, Morilak DA, Kim JH, Sia GM. Heterogeneous complement and microglia activation mediates stress-induced synapse loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546889. [PMID: 37425856 PMCID: PMC10327081 DOI: 10.1101/2023.06.28.546889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Spatially heterogeneous synapse loss is a characteristic of many psychiatric and neurological disorders, but the underlying mechanisms are unclear. Here, we show that spatially-restricted complement activation mediates stress-induced heterogeneous microglia activation and synapse loss localized to the upper layers of the mouse medial prefrontal cortex (mPFC). Single cell RNA sequencing also reveals a stress-associated microglia state marked by high expression of the apolipoprotein E gene (ApoE high ) localized to the upper layers of the mPFC. Mice lacking complement component C3 are protected from stress-induced layer-specific synapse loss, and the ApoE high microglia population is markedly reduced in the mPFC of these mice. Furthermore, C3 knockout mice are also resilient to stress-induced anhedonia and working memory behavioral deficits. Our findings suggest that region-specific complement and microglia activation can contribute to the disease-specific spatially restricted patterns of synapse loss and clinical symptoms found in many brain diseases.
Collapse
|
6
|
Campos-Cardoso R, Novaes LS, Godoy LD, Dos Santos NB, Perfetto JG, Lazarini-Lopes W, Garcia-Cairasco N, Padovan CM, Munhoz CD. The resilience of adolescent male rats to acute stress-induced delayed anxiety is age-related and glucocorticoid release-dependent. Neuropharmacology 2023; 226:109385. [PMID: 36603798 DOI: 10.1016/j.neuropharm.2022.109385] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/07/2022] [Accepted: 12/17/2022] [Indexed: 01/03/2023]
Abstract
Studies investigated how stressful experiences modulate physiological and behavioral responses and the consequences of stress-induced corticosterone release in anxiety-like behavior. Adolescence is crucial to brain maturation, and several neurobiological changes in this period lead individuals to increased susceptibility or resilience to aversive situations. Despite the effects of stress in adults, information about adolescents' responses to acute stress is lacking. We aimed to understand how adolescence affects acute stress responses. Male adolescent rats (30 days old) were 2 h restrained, and anxiety-like behaviors were measured immediately or 10 days after stress in the elevated plus-maze (EPM) and the light-dark box (LDB) tests. To verify the importance of CORT modulation in stress-induced anxiety, another group of rats was treated, 30 min before restraint, with metyrapone to blunt the stress-induced CORT peak and tested immediately after stress. To show that stress effects on behavior were age-dependent, another set of rats was tested in two different periods - early adolescence (30 days old) and mid-adolescence (40 days old) and were treated or not with metyrapone before the stress session and tested immediately or ten days later in the LDB test. Only early adolescent male rats were resilient to delayed anxiety-like behavior in EPM and LDB tests. Metyrapone treatment increased the rats' exploration immediately and ten days after stress. These data suggest a specific age at which adolescent rats are resilient to the delayed effects of acute restraint stress and that the metyrapone treatment has long-term behavioral consequences.
Collapse
Affiliation(s)
- Rodrigo Campos-Cardoso
- Department of Pharmacology, Universidade de São Paulo, Instituto de Ciências Biomédicas, Brazil; Department of Neurosciences and Behavioral Sciences, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Leonardo Santana Novaes
- Department of Pharmacology, Universidade de São Paulo, Instituto de Ciências Biomédicas, Brazil
| | - Lívea Dornela Godoy
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Juliano Genaro Perfetto
- Department of Pharmacology, Universidade de São Paulo, Instituto de Ciências Biomédicas, Brazil
| | - Willian Lazarini-Lopes
- Department of Neurosciences and Behavioral Sciences, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Cláudia Maria Padovan
- Department of Neurosciences and Behavioral Sciences, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Department of Psychology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Carolina Demarchi Munhoz
- Department of Pharmacology, Universidade de São Paulo, Instituto de Ciências Biomédicas, Brazil.
| |
Collapse
|
7
|
Espina JEC, Bagamasbad PD. Synergistic gene regulation by thyroid hormone and glucocorticoid in the hippocampus. VITAMINS AND HORMONES 2021; 118:35-81. [PMID: 35180933 DOI: 10.1016/bs.vh.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The hippocampus is considered the center for learning and memory in the brain, and its development and function is greatly affected by the thyroid and stress axes. Thyroid hormone (TH) and glucocorticoids (GC) are known to have a synergistic effect on developmental programs across several vertebrate species, and their effects on hippocampal structure and function are well-documented. However, there are few studies that focus on the processes and genes that are cooperatively regulated by the two hormone axes. Cross-regulation of the thyroid and stress axes in the hippocampus occurs on multiple levels such that TH can regulate the expression of the GC receptor (GR) while GC can modulate tissue sensitivity to TH by controlling the expression of TH receptor (TR) and enzymes involved in TH biosynthesis. Thyroid hormone and GC are also known to synergistically regulate the transcription of genes associated with neuronal function and development. Synergistic gene regulation by TH and GC may occur through the direct, cooperative action of TR and GR on common target genes, or by indirect mechanisms involving gene regulatory cascades activated by TR and GR. In this chapter, we describe the known physiological effects and underlying molecular mechanisms of TH and GC synergistic gene regulation in the hippocampus.
Collapse
Affiliation(s)
- Jose Ezekiel C Espina
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Pia D Bagamasbad
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines.
| |
Collapse
|
8
|
Sex-Specific Social Effects on Depression-Related Behavioral Phenotypes in Mice. Life (Basel) 2021; 11:life11121327. [PMID: 34947858 PMCID: PMC8705323 DOI: 10.3390/life11121327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Social interaction and empathy play critical roles in determining the emotional well-being of humans. Stress-related depression and anxiety can be exacerbated or mitigated depending on specific social conditions. Although rodents are well known to exhibit emotional contagion and consolation behavior, the effects of group housing on stress-induced phenotypes in both males and females are not well established. Here, we investigated how the presence of stressed or unstressed conspecifics within a cage impact depression-related phenotypes. We housed male and female C57BL/6J mice in same-sex groups and subjected them to either gentle handling (GH) or the daily administration of corticosterone (CORT) for 10 days. The GH and CORT treatment groups were divided into cages of unmixed (GH or CORT) and mixed (GH and CORT) treatments. Depression-related phenotypes were measured using the forced swim test (FST) and sucrose preference test (SPT). We found that mixed housing alters FST behavior in a sex-specific manner. Male mice given chronic corticosterone (CORT) that were housed in the same cage as gently handled animals (GH) exhibited increased immobility, whereas GH females housed with CORT females demonstrated the opposite effect. This study underscores the importance of social housing conditions when evaluating stress-induced behavioral phenotypes and suggests that mixed cages of GH and CORT animals yield the greatest difference between treatment groups. The latter finding has important implications for identifying therapeutics capable of rescuing stress-induced behavioral deficits in the FST.
Collapse
|
9
|
A review of sex differences in the mechanisms and drivers of overeating. Front Neuroendocrinol 2021; 63:100941. [PMID: 34454955 DOI: 10.1016/j.yfrne.2021.100941] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/23/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
Disordered eating is often associated with marked psychological and emotional distress, and severe adverse impact on quality of life. Several factors can influence eating behavior and drive food consumption in excess of energy requirements for homeostasis. It is well established that stress and negative affect contribute to the aetiology of eating disorders and weight gain, and there is substantial evidence suggesting sex differences in sub-clinical and clinical types of overeating. This review will examine how negative affect and stress shape eating behaviors, and how the relationship between the physiological, endocrine, and neural responses to stress and eating behaviors differs between men and women. We will examine several drivers of overeating and explore possible mechanisms underlying sex differences in eating behavior.
Collapse
|
10
|
Differential expression of glutamatergic receptor subunits in the hippocampus in carioca high- and low-conditioned freezing rats. Mol Cell Neurosci 2021; 116:103666. [PMID: 34464708 DOI: 10.1016/j.mcn.2021.103666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/23/2022] Open
Abstract
Anxiety is an emotional state that affects the quality of human life. Several neurotransmitters are involved in the regulation of anxiety, including glutamate. The major actions of glutamate are mediated by N-methyl-d-aspartate receptors (NMDARs) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). The present study performed a behavioral and neurochemical analysis of Carioca High-conditioned Freezing (CHF) and Carioca Low-conditioned Freezing (CLF) rats compared with control rats. We evaluated thermal nociception, anxiety-like behavior, depressive-like behavior, spatial memory, habituation memory, and the content and localization of different glutamatergic receptor subunits and postsynaptic density-95 (PSD-95), a postsynaptic protein. The CHF group exhibited an anxious-like phenotype, impairments in habituation and spatial memory, and a depressive-like phenotype compared with the control group. In the ventral hippocampus, an increase in the PSD-95, GluN1 and GluA1 subunits and a decrease in the GluN2A subunit of glutamatergic receptors. The CLF group exhibited a less anxious-like phenotype, hyperlocomotion and habituation impairments. Also, CLF animals, presented, in the ventral hippocampus, an increase in the PSD-95, GluN1 and GluA2 subunits and a decrease in the GluN2B subunit. These results suggest that the differential composition of NMDAR and AMPAR subunits may be related to the modulation of different phenotypes in CHF and CLF rats, which may help identify new targets for therapeutic interventions for anxiety disorders and other comorbidities.
Collapse
|
11
|
Creutzberg KC, Sanson A, Viola TW, Marchisella F, Begni V, Grassi-Oliveira R, Riva MA. Long-lasting effects of prenatal stress on HPA axis and inflammation: A systematic review and multilevel meta-analysis in rodent studies. Neurosci Biobehav Rev 2021; 127:270-283. [PMID: 33951412 DOI: 10.1016/j.neubiorev.2021.04.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/25/2021] [Accepted: 04/27/2021] [Indexed: 12/22/2022]
Abstract
Exposure to prenatal stress (PNS) can lead to long-lasting neurobiological and behavioral consequences for the offspring, which may enhance the susceptibility for mental disorders. The hypothalamus-pituitary-adrenal (HPA) axis and the immune system are two major factors involved in the stress response. Here, we performed a systematic review and meta-analysis of rodent studies that investigated the effects of PNS exposure on the HPA axis and inflammatory cytokines in adult offspring. Our analysis shows that animals exposed to PNS display a consistent increase in peripheral corticosterone (CORT) levels and central corticotrophin-releasing hormone (CRH), while decreased levels of its receptor 2 (CRHR2). Meta-regression revealed that sex and duration of PNS protocol are covariates that moderate these results. There was no significant effect of PNS in glucocorticoid receptor (GR), CRH receptor 1 (CRHR1), pro- and anti-inflammatory cytokines. Our findings suggest that PNS exposure elicits long-lasting effects on the HPA axis function, providing an important tool to investigate in preclinical settings key pathological aspects related to early-life stress exposure. Furthermore, researchers should be aware of the mixed outcomes of PNS on inflammatory markers in the adult brain.
Collapse
Affiliation(s)
- Kerstin Camile Creutzberg
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.
| | - Alice Sanson
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.
| | - Thiago Wendt Viola
- School of Medicine, Developmental Cognitive Neuroscience Lab, Pontifical Catholic University of Rio Grande do Sul, Avenida Ipiranga 6681, Building 12A, 90619-900, Porto Alegre, RS, Brazil.
| | - Francesca Marchisella
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.
| | - Rodrigo Grassi-Oliveira
- School of Medicine, Developmental Cognitive Neuroscience Lab, Pontifical Catholic University of Rio Grande do Sul, Avenida Ipiranga 6681, Building 12A, 90619-900, Porto Alegre, RS, Brazil.
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy; Biological Psychiatry Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
12
|
Targeting the dysfunction of glutamate receptors for the development of novel antidepressants. Pharmacol Ther 2021; 226:107875. [PMID: 33901503 DOI: 10.1016/j.pharmthera.2021.107875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 12/19/2022]
Abstract
Increasing evidence indicates that dysfunction of glutamate receptors is involved in the pathophysiology of major depressive disorder (MDD). Although accumulating efforts have been made to elucidate the applications and mechanisms underlying antidepressant-like effects of ketamine, a non-selective antagonist of N-methyl-d-aspartate receptor (NMDAR), the role of specific glutamate receptor subunit in regulating depression is not completely clear. The current review aims to discuss the relationships between glutamate receptor subunits and depressive-like behaviors. Research literatures were searched from inception to July 2020. We summarized the alterations of glutamate receptor subunits in patients with MDD and animal models of depression. Animal behaviors in response to dysfunction of glutamate receptor subunits were also surveyed. To fully understand mechanisms underlying antidepressant-like effects of modulators targeting glutamate receptors, we discussed effects of each glutamate receptor subunit on serotonin system, synaptic plasticity, neurogenesis and neuroinflammation. Finally, we collected most recent clinical applications of glutamate receptor modulators and pointed out the limitations of these candidates in the treatment of MDD.
Collapse
|
13
|
Brymer KJ, Kulhaway EY, Howland JG, Caruncho HJ, Kalynchuk LE. Altered acoustic startle, prepulse facilitation, and object recognition memory produced by corticosterone withdrawal in male rats. Behav Brain Res 2021; 408:113291. [PMID: 33836169 DOI: 10.1016/j.bbr.2021.113291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/19/2021] [Accepted: 04/04/2021] [Indexed: 12/30/2022]
Abstract
The symptoms of human depression often include cognitive deficits. However, cognition is not frequently included in the behavioral assessments conducted in preclinical models of depression. For example, it is well known that repeated corticosterone (CORT) injections in rodents produce depression-like behavior as measured by the forced swim test, sucrose preference test, and tail suspension test, but the cognitive impairments produced by repeated CORT have not been thoroughly examined. The purpose of this experiment was to assess the effect of repeated CORT injections on several versions of object recognition memory and modulation of the acoustic startle response by relatively low intensity prepulses, along with the more traditional assessment of depression-like behavior using the forced swim test. Rats received 21 days of CORT (40 mg/kg) or vehicle injections followed by a battery of behavioral tests. Importantly, during behavioral testing CORT treatment did not occur (CORT withdrawal). Corticosterone decreased body weight, increased immobility in the forced swim test, lowered startle amplitudes, and facilitated responding to trials with a short interval (30 ms) between the prepulse and pulse. Corticosterone also impaired both object location and object-in-place recognition memory, while sparing performance on object recognition memory. Collectively, our data suggest that CORT produces selective disruptions in prepulse facilitation, object location, and object-in-place recognition memory, and that these impairments should be considered as part of the phenotype produced by repeated CORT, and perhaps chronic stress.
Collapse
Affiliation(s)
- Kyle J Brymer
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada.
| | - Erin Y Kulhaway
- Research Excellence and Innovation, University of Saskatchewan, Saskatoon, SK, S7N 5A5, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5A5, Canada
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Lisa E Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| |
Collapse
|
14
|
Jeon SC, Kim HJ, Ko EA, Jung SC. Prenatal Exposure to High Cortisol Induces ADHD-like Behaviors with Delay in Spatial Cognitive Functions during the Post-weaning Period in Rats. Exp Neurobiol 2021; 30:87-100. [PMID: 33632985 PMCID: PMC7926048 DOI: 10.5607/en20057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/28/2021] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
High levels of cortisol in blood are frequently observed in patients with major depressive disorders and increased cortisol level induces depressivelike symptoms in animal models. However, it is still unclear whether maternal cortisol level during pregnancy is a critical factor resulting in neuropsychiatric disorders in offspring. In this study, we increased cortisol level in rats by repetitively injecting corticosterone subcutaneously (Corti. Mom, 20 mg/kg/day) during pregnancy and evaluated the behavioral patterns of their pups (Corti.Pups) via forced swimming (FS), open field (OF), elevated plus maze (EPM) and Morris water maze (MWM) tests during the immediate post-weaning period (postnatal day 21 to 25). In results, corticosterone significantly increased plasma cortisol levels in both Corti.Moms and Corti.Pups. Unlike depressive animal models, Corti.Pups showed higher hyperactive behaviors in the FS and OF tests than normal pups (Nor.Pups) born from rats (Nor.Moms) treated with saline. Furthermore, Corti.Pups spent more time and traveled longer distance in the open arms of EPM test, exhibiting higher extremity. These patterns were consistent with behavioral symptoms observed in animal models of attention deficit hyperactivity disorder (ADHD), which is characterized by hyperactivity, impulsivity, and inattention. Additionally, Corti.Pups swam longer and farther to escape in MWM test, showing cognitive declines associated with attention deficit. Our findings provide evidence that maternal cortisol level during pregnancy may affect the neuroendocrine regulation and the brain development of offspring, resulting in heterogeneous developmental brain disorders such as ADHD.
Collapse
Affiliation(s)
- Sang-Chan Jeon
- Department of Physiology, School of Medicine, Jeju National University, Jeju 63243, Korea
| | - Hye-Ji Kim
- Department of Physiology, School of Medicine, Jeju National University, Jeju 63243, Korea
| | - Eun-A Ko
- Department of Physiology, School of Medicine, Jeju National University, Jeju 63243, Korea
| | - Sung-Cherl Jung
- Department of Physiology, School of Medicine, Jeju National University, Jeju 63243, Korea.,Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea.,Institute of Medical Science, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
15
|
Liu Y, Zou GJ, Tu BX, Hu ZL, Luo C, Cui YH, Xu Y, Li F, Dai RP, Bi FF, Li CQ. Corticosterone Induced the Increase of proBDNF in Primary Hippocampal Neurons Via Endoplasmic Reticulum Stress. Neurotox Res 2020; 38:370-384. [PMID: 32378057 DOI: 10.1007/s12640-020-00201-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022]
Abstract
Major depression disorder is one of the most common psychiatric disorders that greatly threaten the mental health of a large population worldwide. Previous studies have shown that endoplasmic reticulum (ER) stress plays an important role in the pathophysiology of depression, and current research suggests that brain-derived neurotrophic factor precursor (proBDNF) is involved in the development of depression. However, the relationship between ER and proBDNF in the pathophysiology of depression is not well elucidated. Here, we treated primary hippocampal neurons of mice with corticosterone (CORT) and evaluated the relationship between proBDNF and ERS. Our results showed that CORT induced ERS and upregulated the expression of proBDNF and its receptor, Follistatin-like protein 4 (FSTL4), which contributed to significantly decreased neuronal viability and expression of synaptic-related proteins including NR2A, PSD95, and SYN. Anti-proBDNF neutralization and ISRIB (an inhibitor of the ERS) treatment, respective ly, protected neuronal viabilities and increased the expression of synaptic-related proteins in corticosterone-exposed neurons. ISRIB treatment reduced the expression of proBDNF and FSTL4, whereas anti-proBDNF treatment did not affect ERS markers (Grp78, p-PERK, ATF4) expression. Our study presented evidence that CORT-induced ERS negatively regulated the neuronal viability and the level of synaptic-related protein of primary neurons via the proBDNF/FSTL4 pathway.
Collapse
Affiliation(s)
- Yu Liu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, 410013, Hunan, China
| | - Guang-Jing Zou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, 410013, Hunan, China
| | - Bo-Xuan Tu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, 410013, Hunan, China
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Cong Luo
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yan-Hui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, 410013, Hunan, China
| | - Yang Xu
- Institute of Neuroscience, Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, 410013, Hunan, China
| | - Ru-Ping Dai
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Fang-Fang Bi
- Department of Neurology, Xiang Ya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, 410013, Hunan, China.
| |
Collapse
|
16
|
Subhadeep D, Srikumar BN, Shankaranarayana Rao BS, Kutty BM. Short photoperiod restores ventral subicular lesion‐induced deficits in affective and socio‐cognitive behavior in male Wistar rats. J Neurosci Res 2020; 98:1114-1136. [DOI: 10.1002/jnr.24601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Duttagupta Subhadeep
- Department of Neurophysiology National Institute of Mental Health and Neuro Sciences (NIMHANS) Bengaluru India
| | - Bettadapura N. Srikumar
- Department of Neurophysiology National Institute of Mental Health and Neuro Sciences (NIMHANS) Bengaluru India
| | | | - Bindu M. Kutty
- Department of Neurophysiology National Institute of Mental Health and Neuro Sciences (NIMHANS) Bengaluru India
| |
Collapse
|
17
|
Adolescent stress increases depression-like behaviors and alters the excitatory-inhibitory balance in aged mice. Chin Med J (Engl) 2020; 132:1689-1699. [PMID: 31268909 PMCID: PMC6759106 DOI: 10.1097/cm9.0000000000000313] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Background: Depression affects approximately 5% of elderly people and its etiology might be related to chronic stress exposure during neurodevelopmental periods. In this study, we examined the effects of adolescent chronic social stress in aged mice on depressive behaviors and the excitatory-inhibitory (E/I) balance in stress-sensitive regions of the brain. Methods: Sixty-four adolescent, male C57BL/6 mice were randomly assigned to either the 7-week (from post-natal days 29 to 77) social instability stress (stress group, n = 32) or normal housing conditions (control group, n = 32). At 15 months of age, 16 mice were randomly selected from each group for a series of behavioral tests, including two depression-related tasks (the sucrose preference test and the tail suspension test). Three days following the last behavioral test, eight mice were randomly selected from each group for immunohistochemical analyses to measure the cell density of parvalbumin (PV+)- and calretinin (CR+)-positive gamma-aminobutyric-acid (GABA)ergic inhibitory inter-neurons, and the expression levels of vesicular transporters of glutamate-1 (VGluT1) and vesicular GABA transporter (VGAT) in three stress-sensitive regions of the brain (the medial pre-frontal cortex [mPFC], hippocampus, and amygdala). Results: Behaviorally, compared with the control group, adolescent chronic stress increased depression-like behaviors as shown in decreased sucrose preference (54.96 ± 1.97% vs. 43.11 ± 2.85%, t(22) = 3.417, P = 0.003) and reduced latency to immobility in the tail suspension test (92.77 ± 25.08 s vs. 33.14 ± 5.95 s, t(25) = 2.394, P = 0.025), but did not affect anxiety-like behaviors and pre-pulse inhibition. At the neurobiologic level, adolescent stress down-regulated PV+, not CR+, inter-neuron density in the mPFC (F(1, 39) = 19.30, P < 0.001), and hippocampus (F(1, 42) = 5.823, P = 0.020) and altered the CR+, not PV+, inter-neuron density in the amygdala (F(1, 28) = 23.16, P < 0.001). The VGluT1/VGAT ratio was decreased in all three regions (all F > 10.09, all P < 0.004), which suggests stress-induced hypoexcitability in these regions. Conclusions: Chronic stress during adolescence increased depression-like behaviors in aged mice, which may be associated with the E/I imbalance in stress-sensitive brain regions.
Collapse
|
18
|
Hodges TE, Eltahir AM, Patel S, Bredewold R, Veenema AH, McCormick CM. Effects of oxytocin receptor antagonism on social function and corticosterone release after adolescent social instability in male rats. Horm Behav 2019; 116:104579. [PMID: 31449812 DOI: 10.1016/j.yhbeh.2019.104579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/23/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022]
Abstract
Oxytocin influences social behaviour and hypothalamic-pituitary-adrenal (HPA) function. We previously found that social instability stress (SS) from postnatal day 30 to 45 increased oxytocin receptor (OTR) densities in the lateral septum and nucleus accumbens of adolescent male rats. Here, we investigated social behaviour and HPA function in adolescent male SS rats compared with age- and sex-matched controls after intraperitoneal treatment with an OTR antagonist L-368,899 (OTR-A). Regardless of OTR antagonism, adolescent SS rats spent more time in social approach (investigation through wire mesh) but less time in social interaction (physical interaction) with unfamiliar same-sex and same-age peers than did controls. However, OTR-A-treatment caused SS rats to be more socially avoidant than OTR-A-treated controls and saline-treated rats of the same condition. Additionally, the predicted rise in plasma corticosterone in response to OTR-A treatment was blunted in SS rats. Fos immunoreactivity (IR) was used as a marker of neural activation in social brain regions and oxytocin-IR was examined in the paraventricular nucleus of the hypothalamus (PVN) in response to interacting with unfamiliar peers in SS and control rats after OTR-A treatment. OTR-A treatment had little effect on Fos-IR and oxytocin-IR in the analyzed brain regions, but SS rats had lower Fos-IR and oxytocin-IR in the PVN and greater Fos-IR in subregions of the prefrontal cortex, and hippocampus, and lateral septum than did controls. Finally, binding density of OTR was measured in the PVN and hippocampus, and greater OTR binding density was found in the PVN of SS rats. Together, these data demonstrate a greater influence of OTR antagonism on social behaviour and a reduced influence of OTR antagonism on HPA responses after adolescent SS in male rats. The results also suggest that differences in neural functioning in the prefrontal cortex, hippocampus and lateral septum of adolescent SS rats may be involved in their altered social behaviour relative to that of controls.
Collapse
Affiliation(s)
- Travis E Hodges
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, BC V6T 1Z3, Canada; Department of Psychology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Akif M Eltahir
- Centre for Neuroscience, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Smit Patel
- Department of Psychology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Remco Bredewold
- Neurobiology of Social Behavior Laboratory, Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Alexa H Veenema
- Neurobiology of Social Behavior Laboratory, Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Cheryl M McCormick
- Department of Psychology, Brock University, St. Catharines, ON L2S 3A1, Canada; Centre for Neuroscience, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
19
|
Maguire J. Neuroactive Steroids and GABAergic Involvement in the Neuroendocrine Dysfunction Associated With Major Depressive Disorder and Postpartum Depression. Front Cell Neurosci 2019; 13:83. [PMID: 30906252 PMCID: PMC6418819 DOI: 10.3389/fncel.2019.00083] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/19/2019] [Indexed: 12/21/2022] Open
Abstract
Stress and previous adverse life events are well-established risk factors for depression. Further, neuroendocrine disruptions are associated with both major depressive disorder (MDD) and postpartum depression (PPD). However, the mechanisms whereby stress contributes to the underlying neurobiology of depression remains poorly understood. The hypothalamic-pituitary-adrenal (HPA) axis, which mediates the body's neuroendocrine response to stress, is tightly controlled by GABAergic signaling and there is accumulating evidence that GABAergic dysfunction contributes to the impact of stress on depression. GABAergic signaling plays a critical role in the neurobiological effects of stress, not only by tightly controlling the activity of the HPA axis, but also mediating stress effects in stress-related brain regions. Deficits in neuroactive steroids and neurosteroids, some of which are positive allosteric modulators of GABAA receptors (GABAARs), such as allopregnanolone and THDOC, have also been implicated in MDD and PPD, further supporting a role for GABAergic signaling in depression. Alterations in neurosteroid levels and GABAergic signaling are implicated as potential contributing factors to neuroendocrine dysfunction and vulnerability to MDD and PPD. Further, potential novel treatment strategies targeting these proposed underlying neurobiological mechanisms are discussed. The evidence summarized in the current review supports the notion that MDD and PPD are stress-related psychiatric disorders involving neurosteroids and GABAergic dysfunction.
Collapse
Affiliation(s)
- Jamie Maguire
- Neuroscience Department, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
20
|
Xu B, Lian S, Li SZ, Guo JR, Wang JF, Wang D, Zhang LP, Yang HM. GABAB receptor mediate hippocampal neuroinflammation in adolescent male and female mice after cold expose. Brain Res Bull 2018; 142:163-175. [PMID: 30031816 DOI: 10.1016/j.brainresbull.2018.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/04/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022]
Abstract
Stress induces many non-specific inflammatory responses in the mouse brain, especially during adolescence. Although the impact of stress on the brain has long been reported, the effects of cold stress on hippocampal neuroinflammation in adolescent mice are not well understood; furthermore, whether these effects are gender specific are also not well established. Adolescent male and female C57BL/6 mice were exposed to 4 °C temperatures for 12 h, after which behavior was assessed using the open field test. Using western blotting and immunohistochemistry we also assessed glial cell numbers and microglial activation, as well as inflammatory cytokine levels and related protein expression levels. We found that in mice subjected to cold stress: 1) There were significant behavioral changes; 2) neuronal nuclei densities were smaller and total cell numbers were significantly decreased; 3) nuclear factor (NF)-κB and phosphorylated AKT were upregulated; 4) pro-inflammatory cytokines such as interleukin-6 and tumor necrosis factor-α were also upregulated; and 5) microglia were activated, while glial fibrillary acid protein and ionized calcium-binding adapter molecule 1 protein expression increased. Taken together, these results indicate that cold stress induces pro-inflammatory cytokine upregulation that leads to neuroinflammation and neuronal apoptosis in the hippocampi of adolescent mice. We believe that these effects are influenced by a GABAB/Rap1B/AKT/NF-κB pathway. Finally, male mice were more sensitive to the effects of cold stress than were female mice.
Collapse
Affiliation(s)
- Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Shi-Ze Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Jing-Ru Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Jian-Fa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Di Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Li-Ping Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China.
| | - Huan-Min Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China.
| |
Collapse
|
21
|
Mumtaz F, Khan MI, Zubair M, Dehpour AR. Neurobiology and consequences of social isolation stress in animal model-A comprehensive review. Biomed Pharmacother 2018; 105:1205-1222. [PMID: 30021357 DOI: 10.1016/j.biopha.2018.05.086] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/10/2018] [Accepted: 05/18/2018] [Indexed: 12/09/2022] Open
Abstract
The brain is a vital organ, susceptible to alterations under genetic influences and environmental experiences. Social isolation (SI) acts as a stressor which results in alterations in reactivity to stress, social behavior, function of neurochemical and neuroendocrine system, physiological, anatomical and behavioral changes in both animal and humans. During early stages of life, acute or chronic SIS has been proposed to show signs and symptoms of psychiatric and neurological disorders such as anxiety, depression, schizophrenia, epilepsy and memory loss. Exposure to social isolation stress induces a variety of endocrinological changes including the activation of hypothalamic-pituitary-adrenal (HPA) axis, culminating in the release of glucocorticoids (GCs), release of catecholamines, activation of the sympatho-adrenomedullary system, release of Oxytocin and vasopressin. In several regions of the central nervous system (CNS), SIS alters the level of neurotransmitter such as dopamine, serotonin, gamma aminobutyric acid (GABA), glutamate, nitrergic system and adrenaline as well as leads to alteration in receptor sensitivity of N-methyl-D-aspartate (NMDA) and opioid system. A change in the function of oxidative and nitrosative stress (O&NS) mediated mitochondrial dysfunction, inflammatory factors, neurotrophins and neurotrophicfactors (NTFs), early growth response transcription factor genes (Egr) and C-Fos expression are also involved as a pathophysiological consequences of SIS which induce neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Faiza Mumtaz
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Muhammad Imran Khan
- Department of Pharmacy, Kohat University of Science and Technology, 26000 Kohat, KPK, Pakistan; Drug Detoxification Health Welfare Research Center, Bannu, KPK, Pakistan
| | - Muhammad Zubair
- Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, PR China
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Murínová J, Hlaváčová N, Chmelová M, Riečanský I. The Evidence for Altered BDNF Expression in the Brain of Rats Reared or Housed in Social Isolation: A Systematic Review. Front Behav Neurosci 2017; 11:101. [PMID: 28620285 PMCID: PMC5449742 DOI: 10.3389/fnbeh.2017.00101] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/12/2017] [Indexed: 12/16/2022] Open
Abstract
There is evidence that development and maintenance of neural connections are disrupted in major mental disorders, which indicates that neurotrophic factors could play a critical role in their pathogenesis. Stress is a well-established risk factor for psychopathology and recent research suggests that disrupted signaling via brain-derived neurotrophic factor (BDNF) may be involved in mediating the negative effects of stress on the brain. Social isolation of rats elicits chronic stress and is widely used as an animal model of mental disorders such as schizophrenia and depression. We carried out a systematic search of published studies to review current evidence for an altered expression of BDNF in the brain of rats reared or housed in social isolation. Across all age groups (post-weaning, adolescent, adult), majority of the identified studies (16/21) reported a decreased expression of BDNF in the hippocampus. There are far less published data on BDNF expression in other brain regions. Data are also scarce to assess the behavioral changes as a function of BDNF expression, but the downregulation of BDNF seems to be associated with increased anxiety-like symptoms. The reviewed data generally support the putative involvement of BDNF in the pathogenesis of stress-related mental illness. However, the mechanisms linking chronic social isolation, BDNF expression and the elicited behavioral alterations are currently unknown.
Collapse
Affiliation(s)
- Jana Murínová
- Laboratory of Cognitive Neuroscience, Institute of Normal and Pathological Physiology, Slovak Academy of SciencesBratislava, Slovakia
| | - Nataša Hlaváčová
- Laboratory of Pharmacological Neuroendocrinology, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of SciencesBratislava, Slovakia
| | - Magdaléna Chmelová
- Laboratory of Pharmacological Neuroendocrinology, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of SciencesBratislava, Slovakia
| | - Igor Riečanský
- Laboratory of Cognitive Neuroscience, Institute of Normal and Pathological Physiology, Slovak Academy of SciencesBratislava, Slovakia
- Social, Cognitive and Affective Neuroscience Unit, Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of ViennaVienna, Austria
| |
Collapse
|