1
|
do Nascimento AM, Marques RB, Roldão AP, Rodrigues AM, Eslava RM, Dale CS, Reis EM, Schechtman D. Exploring protein-protein interactions for the development of new analgesics. Sci Signal 2024; 17:eadn4694. [PMID: 39378285 DOI: 10.1126/scisignal.adn4694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Abstract
The development of new analgesics has been challenging. Candidate drugs often have limited clinical utility due to side effects that arise because many drug targets are involved in signaling pathways other than pain transduction. Here, we explored the potential of targeting protein-protein interactions (PPIs) that mediate pain signaling as an approach to developing drugs to treat chronic pain. We reviewed the approaches used to identify small molecules and peptide modulators of PPIs and their ability to decrease pain-like behaviors in rodent animal models. We analyzed data from rodent and human sensory nerve tissues to build associated signaling networks and assessed both validated and potential interactions and the structures of the interacting domains that could inform the design of synthetic peptides and small molecules. This resource identifies PPIs that could be explored for the development of new analgesics, particularly between scaffolding proteins and receptors for various growth factors and neurotransmitters, as well as ion channels and other enzymes. Targeting the adaptor function of CBL by blocking interactions between its proline-rich carboxyl-terminal domain and its SH3-domain-containing protein partners, such as GRB2, could disrupt endosomal signaling induced by pain-associated growth factors. This approach would leave intact its E3-ligase functions, which are mediated by other domains and are critical for other cellular functions. This potential of PPI modulators to be more selective may mitigate side effects and improve the clinical management of pain.
Collapse
Affiliation(s)
- Alexandre Martins do Nascimento
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
- Laboratory of Neuromodulation of Experimental Pain (LaNed), Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, SP 05508-000, Brazil
| | - Rauni Borges Marques
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
- Interunit Graduate Program in Bioinformatics, University of São Paulo, SP 05508-000, Brazil
| | - Allan Pradelli Roldão
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Ana Maria Rodrigues
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Rodrigo Mendes Eslava
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Camila Squarzoni Dale
- Laboratory of Neuromodulation of Experimental Pain (LaNed), Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, SP 05508-000, Brazil
| | - Eduardo Moraes Reis
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Deborah Schechtman
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| |
Collapse
|
2
|
Abstract
Elevated N-methyl-D-aspartate receptor (NMDAR) activity is linked to central sensitization and chronic pain. However, NMDAR antagonists display limited therapeutic potential because of their adverse side effects. Novel approaches targeting the NR2B-PSD95-nNOS complex to disrupt signaling pathways downstream of NMDARs show efficacy in preclinical pain models. Here, we evaluated the involvement of interactions between neuronal nitric oxide synthase (nNOS) and the nitric oxide synthase 1 adaptor protein (NOS1AP) in pronociceptive signaling and neuropathic pain. TAT-GESV, a peptide inhibitor of the nNOS-NOS1AP complex, disrupted the in vitro binding between nNOS and its downstream protein partner NOS1AP but not its upstream protein partner postsynaptic density 95 kDa (PSD95). Putative inactive peptides (TAT-cp4GESV and TAT-GESVΔ1) failed to do so. Only the active peptide protected primary cortical neurons from glutamate/glycine-induced excitotoxicity. TAT-GESV, administered intrathecally (i.t.), suppressed mechanical and cold allodynia induced by either the chemotherapeutic agent paclitaxel or a traumatic nerve injury induced by partial sciatic nerve ligation. TAT-GESV also blocked the paclitaxel-induced phosphorylation at Ser15 of p53, a substrate of p38 MAPK. Finally, TAT-GESV (i.t.) did not induce NMDAR-mediated motor ataxia in the rotarod test and did not alter basal nociceptive thresholds in the radiant heat tail-flick test. These observations support the hypothesis that antiallodynic efficacy of an nNOS-NOS1AP disruptor may result, at least in part, from blockade of p38 MAPK-mediated downstream effects. Our studies demonstrate, for the first time, that disrupting nNOS-NOS1AP protein-protein interactions attenuates mechanistically distinct forms of neuropathic pain without unwanted motor ataxic effects of NMDAR antagonists.
Collapse
|
3
|
Lee WH, Carey LM, Li LL, Xu Z, Lai YY, Courtney MJ, Hohmann AG. ZLc002, a putative small-molecule inhibitor of nNOS interaction with NOS1AP, suppresses inflammatory nociception and chemotherapy-induced neuropathic pain and synergizes with paclitaxel to reduce tumor cell viability. Mol Pain 2018; 14:1744806918801224. [PMID: 30157705 PMCID: PMC6144507 DOI: 10.1177/1744806918801224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/16/2018] [Accepted: 08/14/2018] [Indexed: 01/03/2023] Open
Abstract
Elevated N-methyl-D-aspartate receptor activity contributes to central sensitization. Our laboratories and others recently reported that disrupting protein-protein interactions downstream of N-methyl-D-aspartate receptors suppresses pain. Specifically, disrupting binding between the enzyme neuronal nitric oxide synthase and either its upstream (postsynaptic density 95 kDa, PSD95) or downstream (e.g. nitric oxide synthase 1 adaptor protein, NOS1AP) protein partners suppressed inflammatory and/or neuropathic pain. However, the lack of a small-molecule neuronal nitric oxide synthase-NOS1AP inhibitor has hindered efforts to validate the therapeutic utility of disrupting the neuronal nitric oxide synthase-NOS1AP interface as an analgesic strategy. We, therefore, evaluated the ability of a putative small-molecule neuronal nitric oxide synthase-NOS1AP inhibitor ZLc002 to disrupt binding between neuronal nitric oxide synthase and NOS1AP using ex vivo, in vitro, and purified recombinant systems and asked whether ZLc002 would suppress inflammatory and neuropathic pain in vivo. In vitro, ZLc002 reduced co-immunoprecipitation of full-length NOS1AP and neuronal nitric oxide synthase in cultured neurons and in HEK293T cells co-expressing full-length neuronal nitric oxide synthase and NOS1AP. However, using a cell-free biochemical binding assay, ZLc002 failed to disrupt the in vitro binding between His-neuronal nitric oxide synthase1-299 and glutathione S-transferase-NOS1AP400-506, protein sequences containing the required binding domains for this protein-protein interaction, suggesting an indirect mode of action in intact cells. ZLc002 (4-10 mg/kg i.p.) suppressed formalin-evoked inflammatory pain in rats and reduced Fos protein-like immunoreactivity in the lumbar spinal dorsal horn. ZLc002 also suppressed mechanical and cold allodynia in a mouse model of paclitaxel-induced neuropathic pain. Anti-allodynic efficacy was sustained for at least four days of once daily repeated dosing. ZLc002 also synergized with paclitaxel when administered in combination to reduce breast (4T1) or ovarian (HeyA8) tumor cell line viability but did not alter tumor cell viability without paclitaxel. Our results verify that ZLc002 disrupts neuronal nitric oxide synthase-NOS1AP interaction in intact cells and demonstrate, for the first time, that systemic administration of a putative small-molecule inhibitor of neuronal nitric oxide synthase-NOS1AP suppresses inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Wan-Hung Lee
- Biochemistry Interdisciplinary Graduate Program, Molecular and
Cellular Biochemistry Department,
Indiana
University, Bloomington, IN, USA
| | - Lawrence M Carey
- Program in Neuroscience,
Indiana
University, Bloomington, IN, USA
- Department of Psychological and Brain Sciences, Indiana
University, Bloomington, IN, USA
| | - Li-Li Li
- Neuronal Signalling Lab, Turku Centre for Biotechnology,
University of Turku; Åbo Academy University, Turku, Finland
- Turku Centre for Biotechnology and Institute of Biomedicine,
Screening Unit, University of Turku, Turku, Finland
| | - Zhili Xu
- Department of Psychological and Brain Sciences, Indiana
University, Bloomington, IN, USA
| | - Yvonne Y Lai
- Department of Psychological and Brain Sciences, Indiana
University, Bloomington, IN, USA
- Anagin, Inc., Indianapolis, IN, USA
| | - Michael J Courtney
- Neuronal Signalling Lab, Turku Centre for Biotechnology,
University of Turku; Åbo Academy University, Turku, Finland
- Turku Centre for Biotechnology and Institute of Biomedicine,
Screening Unit, University of Turku, Turku, Finland
- Turku Brain and Mind Center, Turku, Finland
| | - Andrea G Hohmann
- Biochemistry Interdisciplinary Graduate Program, Molecular and
Cellular Biochemistry Department,
Indiana
University, Bloomington, IN, USA
- Program in Neuroscience,
Indiana
University, Bloomington, IN, USA
- Department of Psychological and Brain Sciences, Indiana
University, Bloomington, IN, USA
- Gill Center for Biomolecular Science, Bloomington, IN, USA
| |
Collapse
|
4
|
Costas-Insua C, Merino-Gracia J, Aicart-Ramos C, Rodríguez-Crespo I. Subcellular Targeting of Nitric Oxide Synthases Mediated by Their N-Terminal Motifs. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 111:165-195. [PMID: 29459031 DOI: 10.1016/bs.apcsb.2017.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
From a catalytic point of view, the three mammalian nitric oxide synthases (NOSs) function in an almost identical way. The N-terminal oxygenase domain catalyzes the conversion of l-arginine to l-citrulline plus ·NO in two sequential oxidation steps. Once l-arginine binds to the active site positioned above the heme moiety, two consecutive monooxygenation reactions take place. In the first step, l-arginine is hydroxylated to make Nω-hydroxy-l-arginine in a process that requires 1 molecule of NADPH and 1 molecule of O2 per mol of l-arginine reacted. In the second step, Nω-hydroxy-l-arginine, never leaving the active site, is oxidized to ·NO plus l-citrulline and 1 molecule of O2 and 0.5 molecules of NADPH are consumed. Since nitric oxide is an important signaling molecule that participates in a number of biological processes, including neurotransmission, vasodilation, and immune response, synthesis and release of ·NO in vivo must be exquisitely regulated both in time and in space. Hence, NOSs have evolved introducing in their amino acid sequences subcellular targeting motifs, most of them located at their N-termini. Deletion studies performed on recombinant, purified NOSs have revealed that part of the N-terminus of all three NOS can be eliminated with the resulting mutant enzymes still being catalytically active. Likewise, NOS isoforms lacking part of their N-terminus when transfected in cells render mislocalized, active proteins. In this review we will comment on the current knowledge of these subcellular targeting signals present in nNOS, iNOS, and eNOS.
Collapse
|