1
|
Miceli G, Basso MG, Pennacchio AR, Cocciola E, Pintus C, Cuffaro M, Profita M, Rizzo G, Sferruzza M, Tuttolomondo A. The Potential Impact of SGLT2-I in Diabetic Foot Prevention: Promising Pathophysiologic Implications, State of the Art, and Future Perspectives-A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1796. [PMID: 39596981 PMCID: PMC11596194 DOI: 10.3390/medicina60111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
The impact of diabetic foot (DF) on the healthcare system represents a major public health problem, leading to a considerable clinical and economic burden. The factors contributing to DF's development and progression are strongly interconnected, including metabolic causes, neuropathy, arteriopathy, and inflammatory changes. Sodium-glucose cotransporter 2 inhibitors (SGLT2-i), novel oral hypoglycemic drugs used as an adjunct to standard treatment, have recently changed the pharmacological management of diabetes. Nevertheless, data about the risk of limb amputation, discordant and limited to canagliflozin, which is currently avoided in the case of peripheral artery disease, have potentially discouraged the design of specific studies targeting DF. There is good evidence for the single immunomodulatory, neuroprotective, and beneficial vascular effects of SGLT2-i. Still, there is no clinical evidence about the early use of SGLT2-i in diabetic foot due to the lack of longitudinal and prospective studies proving the effect of these drugs without confounders. This narrative review aims to discuss the main evidence about the impact of SGLT2-i on the three complications of diabetes implicated in the development of DF, the state of the art, and the potential future implications.
Collapse
Affiliation(s)
- Giuseppe Miceli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Maria Grazia Basso
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Andrea Roberta Pennacchio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Elena Cocciola
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Chiara Pintus
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Mariagiovanna Cuffaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Martina Profita
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Giuliana Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Mariachiara Sferruzza
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| |
Collapse
|
2
|
Qu Y, Cai R, Li Q, Wang H, Lu L. Neuroinflammation signatures in dorsal root ganglia following chronic constriction injury. Heliyon 2024; 10:e31481. [PMID: 38813203 PMCID: PMC11133895 DOI: 10.1016/j.heliyon.2024.e31481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/17/2023] [Accepted: 05/16/2024] [Indexed: 05/31/2024] Open
Abstract
Neuropathic pain (NP) is a common debilitating chronic pain condition with limited effective therapeutics. Further investigating mechanisms underlying NP is therefore of great importance for discovering more promising therapeutic targets. In the current study, we employed high-throughput RNA sequencing to explore transcriptome profiles of mRNAs and microRNAs in the dorsal root ganglia (DRG) following chronic constriction injury (CCI) and also integrated published datasets for comprehensive analysis. First, we established CCI rat model confirmed by behavioral testings, and excavated 467 differentially expressed mRNAs (DEGs) and 16 differentially expressed microRNAs (DEmiRNAs) in the ipsilateral lumbar 4-6 DRG of CCI rats 11 days after surgery. Functional enrichment analysis of 337 upregulated DEGs showed that most of the DEGs were enriched in inflammation- and immune-associated biological processes and signaling pathways. The protein-protein interaction networks were constructed and hub DEGs were screened. Besides hub DEGs, we also identified 113 overlapped DEGs by intersecting our dataset with dataset GSE100122. Subsequently, we predicted potential miRNA-mRNA regulatory pairs using DEmiRNAs and a given set of key DEGs (including hub and overlapped DEGs). By integrative analysis, we found commonly differentially expressed mRNAs and miRNAs following CCI of different time points and different nerve injury types. Highlighted mRNAs include Atf3, Vip, Gal, Npy, Adcyap1, Reg3b, Jun, Cd74, Gadd45a, Tgm1, Csrp3, Sprr1a, Serpina3n, Gap43, Serpinb2 and Vtcn1, while miRNAs include miR-21-5p, miR-34a-5p, miR-200a-3p, miR-130a-5p, miR-216b-5p, miR-217-5p, and miR-541-5p. Additionally, 15 DEGs, including macrophages-specific (Cx3cr1, Arg1, Cd68, Csf1r) and the ones related to macrophages' involvement in NP (Ccl2, Fcgr3a, Bdnf, Ctss, Tyrobp) were verified by qRT-PCR. By functional experiments in future studies, promising therapeutic targets for NP treatment may be identified among these mRNAs and miRNAs.
Collapse
Affiliation(s)
- Yao Qu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin, China
- Department of Pain Medicine, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Ruirui Cai
- School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, No.2555 Jingyue Street, Changchun, 130117, Jilin, China
| | - Qiao Li
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Han Wang
- School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, No.2555 Jingyue Street, Changchun, 130117, Jilin, China
| | - Laijin Lu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin, China
| |
Collapse
|
3
|
Deng D, Zhang T, Ma L, Zhao W, Huang S, Wang K, Shu S, Chen X. PD-L1/PD-1 pathway: a potential neuroimmune target for pain relief. Cell Biosci 2024; 14:51. [PMID: 38643205 PMCID: PMC11031890 DOI: 10.1186/s13578-024-01227-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/01/2024] [Indexed: 04/22/2024] Open
Abstract
Pain is a common symptom of many diseases with a high incidence rate. Clinically, drug treatment, as the main method to relieve pain at present, is often accompanied by different degrees of adverse reactions. Therefore, it is urgent to gain a profound understanding of the pain mechanisms in order to develop advantageous analgesic targets. The PD-L1/PD-1 pathway, an important inhibitory molecule in the immune system, has taken part in regulating neuroinflammation and immune response. Accumulating evidence indicates that the PD-L1/PD-1 pathway is aberrantly activated in various pain models. And blocking PD-L1/PD-1 pathway will aggravate pain behaviors. This review aims to summarize the emerging evidence on the role of the PD-L1/PD-1 pathway in alleviating pain and provide an overview of the mechanisms involved in pain resolution, including the regulation of macrophages, microglia, T cells, as well as nociceptor neurons. However, its underlying mechanism still needs to be further elucidated in the future. In conclusion, despite more deep researches are needed, these pioneering studies indicate that PD-L1/PD-1 may be a potential neuroimmune target for pain relief.
Collapse
Affiliation(s)
- Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Lulin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Wenjing Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Kaixing Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Shaofang Shu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
4
|
Reinhold AK, Hartmannsberger B, Burek M, Rittner HL. Stabilizing the neural barrier - A novel approach in pain therapy. Pharmacol Ther 2023; 249:108484. [PMID: 37390969 DOI: 10.1016/j.pharmthera.2023.108484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Chronic and neuropathic pain are a widespread burden. Incomplete understanding of underlying pathomechanisms is one crucial factor for insufficient treatment. Recently, impairment of the blood nerve barrier (BNB) has emerged as one key aspect of pain initiation and maintenance. In this narrative review, we discuss several mechanisms and putative targets for novel treatment strategies. Cells such as pericytes, local mediators like netrin-1 and specialized proresolving mediators (SPMs), will be covered as well as circulating factors including the hormones cortisol and oestrogen and microRNAs. They are crucial in either the BNB or similar barriers and associated with pain. While clinical studies are still scarce, these findings might provide valuable insight into mechanisms and nurture development of therapeutic approaches.
Collapse
Affiliation(s)
- Ann-Kristin Reinhold
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Beate Hartmannsberger
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Malgorzata Burek
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Heike L Rittner
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany.
| |
Collapse
|
5
|
Song XJ, Yang CL, Chen D, Yang Y, Mao Y, Cao P, Jiang A, Wang W, Zhang Z, Tao W. Up-regulation of LCN2 in the anterior cingulate cortex contributes to neural injury-induced chronic pain. Front Cell Neurosci 2023; 17:1140769. [PMID: 37362002 PMCID: PMC10285483 DOI: 10.3389/fncel.2023.1140769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/02/2023] [Indexed: 06/28/2023] Open
Abstract
Chronic pain caused by disease or injury affects more than 30% of the general population. The molecular and cellular mechanisms underpinning the development of chronic pain remain unclear, resulting in scant effective treatments. Here, we combined electrophysiological recording, in vivo two-photon (2P) calcium imaging, fiber photometry, Western blotting, and chemogenetic methods to define a role for the secreted pro-inflammatory factor, Lipocalin-2 (LCN2), in chronic pain development in mice with spared nerve injury (SNI). We found that LCN2 expression was upregulated in the anterior cingulate cortex (ACC) at 14 days after SNI, resulting in hyperactivity of ACC glutamatergic neurons (ACCGlu) and pain sensitization. By contrast, suppressing LCN2 protein levels in the ACC with viral constructs or exogenous application of neutralizing antibodies leads to significant attenuation of chronic pain by preventing ACCGlu neuronal hyperactivity in SNI 2W mice. In addition, administering purified recombinant LCN2 protein in the ACC could induce pain sensitization by inducing ACCGlu neuronal hyperactivity in naïve mice. This study provides a mechanism by which LCN2-mediated hyperactivity of ACCGlu neurons contributes to pain sensitization, and reveals a new potential target for treating chronic pain.
Collapse
Affiliation(s)
- Xiang-Jie Song
- Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chen-Ling Yang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Danyang Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yumeng Yang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yu Mao
- Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Peng Cao
- Department of Neurology, Stroke Center, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Aijun Jiang
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhi Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenjuan Tao
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Liu YP, Tian MY, Yang YD, Li H, Zhao TT, Zhu J, Mou FF, Cui GH, Guo HD, Shao SJ. Schwann cells-derived exosomal miR-21 participates in high glucose regulation of neurite outgrowth. iScience 2022; 25:105141. [PMID: 36204278 PMCID: PMC9529988 DOI: 10.1016/j.isci.2022.105141] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/06/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
As a common complication of diabetes, the pathogenesis of diabetic peripheral neuropathy (DPN) is closely related to high glucose but has not been clarified. Exosomes can mediate crosstalk between Schwann cells (SC) and neurons in the peripheral nerve. Herein, we found that miR-21 in serum exosomes from DPN rats was decreased. SC proliferation was inhibited, cell apoptosis was increased, and the expression of miR-21 in cells and exosomes was downregulated when cultured in high glucose. Increasing miR-21 expression reversed these changes, while knockdown of miR-21 led to the opposite results. When co-cultured with exosomes derived from SC exposed to high glucose, neurite outgrowth was inhibited. On the contrary, neurite outgrowth was accelerated when incubated with exosomes rich in miR-21. We further demonstrated that the SC-derived exosomal miR-21 participates in neurite outgrowth probably through the AKT signaling pathway. Thus, SC-derived exosomal miR-21 contributes to high glucose regulation of neurite outgrowth. The miR-21 was decreased in serum exosomes and sciatic nerve of DPN rats High glucose inhibited SC viability and downregulated the expression of miR-21 Exosomes derived from SC cultured in high glucose inhibited the neurite outgrowth SC-derived exosomes rich in miR-21 accelerated the neurite outgrowth of neuron
Collapse
Affiliation(s)
- Yu-pu Liu
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Ming-yue Tian
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-duo Yang
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Han Li
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tian-tian Zhao
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Zhu
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fang-fang Mou
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guo-hong Cui
- Department of Neurology, Shanghai No. 9 People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
- Corresponding author
| | - Hai-dong Guo
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Corresponding author
| | - Shui-jin Shao
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Corresponding author
| |
Collapse
|
7
|
Empagliflozin mitigates type 2 diabetes-associated peripheral neuropathy: a glucose-independent effect through AMPK signaling. Arch Pharm Res 2022; 45:475-493. [PMID: 35767208 PMCID: PMC9325846 DOI: 10.1007/s12272-022-01391-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 06/07/2022] [Indexed: 12/30/2022]
Abstract
Diabetic peripheral neuropathy (DPN) represents a severe microvascular condition that dramatically affects diabetic patients despite adequate glycemic control, resulting in high morbidity. Thus, recently, anti-diabetic drugs that possess glucose-independent mechanisms attracted attention. This work aims to explore the potentiality of the selective sodium-glucose cotransporter-2 inhibitor, empagliflozin (EMPA), to ameliorate streptozotocin-induced DPN in rats with insight into its precise signaling mechanism. Rats were allocated into four groups, where control animals received vehicle daily for 2 weeks. In the remaining groups, DPN was elicited by single intraperitoneal injections of freshly prepared streptozotocin and nicotinamide (52.5 and 50 mg/kg, respectively). Then EMPA (3 mg/kg/p.o.) was given to two groups either alone or accompanied with the AMPK inhibitor dorsomorphin (0.2 mg/kg/i.p.). Despite the non-significant anti-hyperglycemic effect, EMPA improved sciatic nerve histopathological alterations, scoring, myelination, nerve fibers’ count, and nerve conduction velocity. Moreover, EMPA alleviated responses to different nociceptive stimuli along with improved motor coordination. EMPA modulated ATP/AMP ratio, upregulated p-AMPK while reducing p-p38 MAPK expression, p-ERK1/2 and consequently p-NF-κB p65 as well as its downstream mediators (TNF-α and IL-1β), besides enhancing SOD activity and lowering MDA content. Moreover, EMPA downregulated mTOR and stimulated ULK1 as well as beclin-1. Likewise, EMPA reduced miR-21 that enhanced RECK, reducing MMP-2 and -9 contents. EMPA’s beneficial effects were almost abolished by dorsomorphin administration. In conclusion, EMPA displayed a protective effect against DPN independently from its anti-hyperglycemic effect, probably via modulating the AMPK pathway to modulate oxidative and inflammatory burden, extracellular matrix remodeling, and autophagy.
Collapse
|
8
|
Abdelkader NF, Elbaset MA, Moustafa PE, Ibrahim SM. Empagliflozin mitigates type 2 diabetes-associated peripheral neuropathy: a glucose-independent effect through AMPK signaling. Arch Pharm Res 2022. [PMID: 35767208 DOI: 10.1007/s12272-022-01391-5/figures/1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Diabetic peripheral neuropathy (DPN) represents a severe microvascular condition that dramatically affects diabetic patients despite adequate glycemic control, resulting in high morbidity. Thus, recently, anti-diabetic drugs that possess glucose-independent mechanisms attracted attention. This work aims to explore the potentiality of the selective sodium-glucose cotransporter-2 inhibitor, empagliflozin (EMPA), to ameliorate streptozotocin-induced DPN in rats with insight into its precise signaling mechanism. Rats were allocated into four groups, where control animals received vehicle daily for 2 weeks. In the remaining groups, DPN was elicited by single intraperitoneal injections of freshly prepared streptozotocin and nicotinamide (52.5 and 50 mg/kg, respectively). Then EMPA (3 mg/kg/p.o.) was given to two groups either alone or accompanied with the AMPK inhibitor dorsomorphin (0.2 mg/kg/i.p.). Despite the non-significant anti-hyperglycemic effect, EMPA improved sciatic nerve histopathological alterations, scoring, myelination, nerve fibers' count, and nerve conduction velocity. Moreover, EMPA alleviated responses to different nociceptive stimuli along with improved motor coordination. EMPA modulated ATP/AMP ratio, upregulated p-AMPK while reducing p-p38 MAPK expression, p-ERK1/2 and consequently p-NF-κB p65 as well as its downstream mediators (TNF-α and IL-1β), besides enhancing SOD activity and lowering MDA content. Moreover, EMPA downregulated mTOR and stimulated ULK1 as well as beclin-1. Likewise, EMPA reduced miR-21 that enhanced RECK, reducing MMP-2 and -9 contents. EMPA's beneficial effects were almost abolished by dorsomorphin administration. In conclusion, EMPA displayed a protective effect against DPN independently from its anti-hyperglycemic effect, probably via modulating the AMPK pathway to modulate oxidative and inflammatory burden, extracellular matrix remodeling, and autophagy.
Collapse
Affiliation(s)
- Noha F Abdelkader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt.
| | - Marawan A Elbaset
- Medical Research and Clinical Studies Institute, Pharmacology, National Research Centre, Giza, Egypt
| | - Passant E Moustafa
- Medical Research and Clinical Studies Institute, Pharmacology, National Research Centre, Giza, Egypt
| | - Sherehan M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| |
Collapse
|
9
|
Expression of Selected microRNAs in Migraine: A New Class of Possible Biomarkers of Disease? Processes (Basel) 2021. [DOI: 10.3390/pr9122199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Preliminary but convergent findings suggest a role for microRNAs (miRNAs) in the generation and maintenance of chronic pain and migraine. Initial observations showed that serum levels of miR-382-5p and miR-34a-5p expression were increased in serum during the migraine attack, with miR-382-5p increasing in the interictal phase as well. By contrast, miR-30a-5p levels were lower in migraine patients compared to healthy controls. Of note, antimigraine treatments proved to be capable of influencing the expression of these miRNAs. Altogether, these observations suggest that miRNAs may represent migraine biomarkers, but several points are yet to be elucidated. A major concern is that these miRNAs are altered in a broad spectrum of painful and non-painful conditions, and thus it is not possible to consider them as truly “migraine-specific” biomarkers. We feel that these miRNAs may represent useful tools to uncover and define different phenotypes across the migraine spectrum with different treatment susceptibilities and clinical features, although further studies are needed to confirm our hypothesis. In this narrative review we provide an update and a critical analysis of available data on miRNAs and migraines in order to propose possible interpretations. Our main objective is to stimulate research in an area that holds promise when it comes to providing reliable biomarkers for theoretical and practical scientific advances.
Collapse
|
10
|
Karl-Schöller F, Kunz M, Kreß L, Held M, Egenolf N, Wiesner A, Dandekar T, Sommer C, Üçeyler N. A translational study: Involvement of miR-21-5p in development and maintenance of neuropathic pain via immune-related targets CCL5 and YWHAE. Exp Neurol 2021; 347:113915. [PMID: 34758342 DOI: 10.1016/j.expneurol.2021.113915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 02/08/2023]
Abstract
Neuropathic pain occurs in more than half of the patients suffering from peripheral neuropathies. We investigated the role of microRNA (miR)-21 in neuropathic pain using a murine-human translational approach. We applied the spared nerve injury (SNI) model at the sciatic nerve of mice and assessed the potential analgesic effect of perineurial miR-21-5p inhibitor application. Immune-related targets of miR-21-5p were determined by a qRT-PCR based cytokine and chemokine array. Bioinformatical analysis identified potential miR-21-5p targets interacting with CC-chemokine ligand (CCL)5. We validated CCL5 and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein (YWHAE), an interaction partner of miR-21-5p and CCL5, by qRT-PCR in murine common peroneal and tibial nerves. Validated candidates were then investigated in white blood cell and sural nerve biopsy samples of patients with focal to generalized pain syndromes, i.e. small fiber neuropathy (SFN), polyneuropathy (PNP), and nerve lesion (NL). We showed that perineurial miR-21-5p inhibition reverses SNI-induced mechanical and heat hypersensitivity in mice and found a reduction of the SNI-induced increase of the pro-inflammatory mediators CCL5 (p < 0.01), CCL17 (p < 0.05), and IL-12ß (p < 0.05) in miR-21-5p inhibitor-treated mice. In silico analysis revealed several predicted and validated targets for miR-21-5p with CCL5 interaction. Among these, we found lower YWHAE gene expression in mice after SNI and perineurial injections of a scrambled oligonucleotide compared to naïve mice (p < 0.05), but this was not changed by miR-21-5p inhibition. Furthermore, miR-21-5p inhibition led to a further increase of the SNI-induced increase in TGFß (p < 0.01). Patient biomaterial revealed different systemic expression patterns of miR-21-5p, with higher expression in SFN and lower expression in NL. Further, we showed higher systemic expression of pro-inflammatory mediators in white blood cells of SFN patients compared to healthy controls. We have conducted a translational study comparing results from animal models to human patients with three different neuropathic pain syndromes. We identified CCL5 as a miR-21 dependent common player in the mouse SNI model and the human painful disease SFN.
Collapse
Affiliation(s)
- Franziska Karl-Schöller
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany.
| | - Meik Kunz
- Department of Bioinformatics, Biocenter University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Luisa Kreß
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Melissa Held
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Nadine Egenolf
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Anna Wiesner
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Nurcan Üçeyler
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| |
Collapse
|
11
|
Gaudet AD, Fonken LK, Ayala MT, Maier SF, Watkins LR. Aging and miR-155 in mice influence survival and neuropathic pain after spinal cord injury. Brain Behav Immun 2021; 97:365-370. [PMID: 34284114 PMCID: PMC8453092 DOI: 10.1016/j.bbi.2021.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/18/2021] [Accepted: 07/03/2021] [Indexed: 12/24/2022] Open
Abstract
Spinal cord injury (SCI) elicits chronic pain in 65% of individuals. In addition, SCI afflicts an increasing number of aged individuals, and those with SCI are predisposed to shorter lifespan. Our group previously identified that deletion of the microRNA miR-155 reduced neuroinflammation and locomotor deficits after SCI. Here, we hypothesized that aged mice would be more susceptible to pain symptoms and death soon after SCI, and that miR-155 deletion would reduce pain symptoms in adult and aged mice and improve survival. Adult (2 month-old) and aged (20 month-old) female wildtype (WT) and miR-155 knockout (KO) mice received T9 contusion SCI. Aged WT mice displayed reduced survival and increased autotomy - a symptom of spontaneous pain. In contrast, aged miR-155 KO mice after SCI were less susceptible to death or spontaneous pain. Evoked pain symptoms were tested using heat (Hargreaves test) and mechanical (von Frey) stimuli. At baseline, aged mice showed heightened heat sensitivity. After SCI, adult and aged WT and miR-155 KO mice all exhibited heat and mechanical hypersensitivity at all timepoints. miR-155 deletion in adult (but not aged) mice reduced mechanical hypersensitivity at 7 and 14 d post-SCI. Therefore, aging predisposes mice to SCI-elicited spontaneous pain and expedited mortality. miR-155 deletion in adult mice reduces evoked pain symptoms, and miR-155 deletion in aged mice reduces spontaneous pain and expedited mortality post-SCI. This study highlights the importance of studying geriatric models of SCI, and that inflammatory mediators such as miR-155 are promising targets after SCI for improving pain relief and longevity.
Collapse
Affiliation(s)
- Andrew D Gaudet
- Department of Psychology, College of Liberal Arts, University of Texas at Austin, Austin, TX 78712, USA; Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA; Center for Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA.
| | - Laura K Fonken
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX 78712, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA; Center for Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA.
| | - Monica T Ayala
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA; Center for Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA.
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA; Center for Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA.
| | - Linda R Watkins
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA; Center for Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA.
| |
Collapse
|
12
|
Zhang Y, Liu J, Wang X, Zhang J, Xie C. Extracellular vesicle-encapsulated microRNA-23a from dorsal root ganglia neurons binds to A20 and promotes inflammatory macrophage polarization following peripheral nerve injury. Aging (Albany NY) 2021; 13:6752-6764. [PMID: 33621204 PMCID: PMC7993670 DOI: 10.18632/aging.202532] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are capable of transferring microRNAs (miRNAs or miRs) between two different types of cells and also serve as vehicles for delivery of therapeutic molecules. After peripheral nerve injury, abnormal expression patterns of miRNAs have been observed in dorsal root ganglia (DRG) sensory neurons. We hypothesized that sensory neurons secrete miRs-containing EVs to communicate with macrophages. We demonstrated that miR-23a was upregulated in DRG neurons in spared nerve injury (SNI) mouse models. We also found that miR-23a was enriched in EVs released by cultured DRG neurons following capsaicin treatment. miR-23a-containing EVs were taken up into macrophages in which increased intracellular miR-23a promoted pro-inflammatory phenotype. A20 was verified as a target gene of miR-23a. Moreover, intrathecal delivery of EVs-miR-23a antagomir attenuated neuropathic hypersensitivity and reduced the number of M1 macrophages in injured DRGs by targeting A20. In conclusion, these results demonstrate that sensory neurons transfer EVs-encapsulated miR-23a to activate M1 macrophages and enhance neuropathic pain following the peripheral nerve injury. The study highlighted a new therapeutic approach to alleviate chronic neuropathic pain after nerve trauma by targeting detrimental miRNA in sensory neurons.
Collapse
Affiliation(s)
- Yamei Zhang
- Sichuan Medicine Key Laboratory of Clinical Genetics/Central Laboratory, Affiliated Hospital of Chengdu University, Chengdu 610081, P.R. China
| | - Junying Liu
- Sichuan Medicine Key Laboratory of Clinical Genetics/Central Laboratory, Affiliated Hospital of Chengdu University, Chengdu 610081, P.R. China
| | - Xin Wang
- Sichuan Medicine Key Laboratory of Clinical Genetics/Central Laboratory, Affiliated Hospital of Chengdu University, Chengdu 610081, P.R. China
| | - Jinfeng Zhang
- Department of Pediatrics, Affiliated Hospital of Chengdu University, Chengdu 610081, P.R. China
| | - Chenchen Xie
- Department of Neurology, Affiliated Hospital of Chengdu University, Chengdu 610081, P.R. China
| |
Collapse
|
13
|
Laliberte AM, Karadimas SK, Vidal PM, Satkunendrarajah K, Fehlings MG. Mir21 modulates inflammation and sensorimotor deficits in cervical myelopathy: data from humans and animal models. Brain Commun 2021; 3:fcaa234. [PMID: 33604572 PMCID: PMC7878254 DOI: 10.1093/braincomms/fcaa234] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Degenerative cervical myelopathy is a common condition resulting from chronic compression of the spinal cord by degenerating structures of the spine. Degenerative cervical myelopathy present a wide range of outcomes, and the biological factors underlying this variability are poorly understood. Previous studies have found elevated MIR21-5p in the sub-acute and chronic neuroinflammatory environment after spinal cord injury. As chronic spinal cord neuroinflammation is a major feature of degenerative cervical myelopathy, we hypothesized that MIR21-5p may be particularly relevant to disease pathobiology, and could serve as a potential biomarker. A prospective cohort study of 69 human degenerative cervical myelopathy patients (36 male:33 female) between the ages of 30 and 78 years was performed to identify the relationship between MIR21-5p expression, symptom severity and treatment outcomes. Results from this study identified a positive correlation between elevated plasma MIR21-5p expression, initial symptom severity and poor treatment outcomes. Subsequent validation of these relationships using a mouse model of degenerative cervical myelopathy identified a similar elevation of MIR21-5p expression at 6 and 12 weeks after onset, corresponding to moderate to severe neurological deficits. To further determine how MIR21-5p affects cervical myelopathy pathobiology, this mouse model was applied to a Mir21 knockout mouse line. Deletion of the Mir21 gene preserved locomotor function on rotarod and forced swim tests, but also resulted in increased nociception based on tail flick, Von Frey filament and electrophysiological testing. Critically, Mir21 knockout mice also had reduced spinal cord inflammation, demonstrated by the reduction of Iba1+ microglia by ∼50% relative to wild-type controls. In vitro experiments using primary microglial cultures confirmed that MIR21-5p expression was greatly increased after exposure to lipopolysaccharide (pro-inflammatory), Il4 (anti-inflammatory) and hypoxia. Mir21 knockout did not appear to alter the ability of microglia to respond to these stimuli, as expression of key pro- and anti-inflammatory response genes was not significantly altered. However, target prediction algorithms identified the IL6/STAT3 pathway as a potential downstream target of MIR21-5p, and subsequent in vitro testing found that expression of components of the IL6 receptor complex, Il6ra and Il6st, were significantly higher in Mir21 knockout microglia. In aggregate, these data show that Mir21 plays a role in the progression of motor deficits and neuroinflammatory modulation in degenerative cervical myelopathy. Given this role in neuroinflammation, and its association with poor patient outcomes, MIR21-5p represents a potential therapeutic target and a new marker for prognostication.
Collapse
Affiliation(s)
- Alex M Laliberte
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T2S8, Canada
| | - Spyridon K Karadimas
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T2S8, Canada
| | - Pia M Vidal
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T2S8, Canada
| | - Kajana Satkunendrarajah
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T2S8, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T2S8, Canada
| |
Collapse
|
14
|
Roy D, Modi A, Khokhar M, Sankanagoudar S, Yadav D, Sharma S, Purohit P, Sharma P. MicroRNA 21 Emerging Role in Diabetic Complications: A Critical Update. Curr Diabetes Rev 2021; 17:122-135. [PMID: 32359340 DOI: 10.2174/1573399816666200503035035] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/13/2020] [Accepted: 04/13/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetes Mellitus is a multifactorial disease encompassing various pathogenic pathways. To avoid morbidity and mortality related to diabetic complications, early detection of disease complications as well as targeted therapeutic strategies are essential. INTRODUCTION MicroRNAs (miRs) are short non-coding RNA molecules that regulate eukaryotic posttranscriptional gene expression. MicroRNA-21 has diverse gene regulatory functions and plays a significant role in various complications of Type 2 diabetes mellitus (T2DM). METHODS The study included electronic database searches on Pubmed, Embase, and Web of Science with the search items MicroRNA21 and each of the diabetic complications. The search was carried out up to November, 2019. RESULTS MicroRNA-21 modulates diabetic cardiomyopathy by affecting vascular smooth muscle cell proliferation and apoptosis, cardiac cell growth and death, and cardiac fibroblast functions. At the renal tubules, miR-21 can regulate the mesangial expansion, interstitial fibrosis, macrophage infiltration, podocyte loss, albuminuria and fibrotic and inflammatory gene expression related to diabetic nephropathy. Overexpression of miR-21 has been seen to play a pivotal role in the pathogenesis of diabetic retinopathy by contributing to diabetes-induced endothelial dysfunction as well as low-grade inflammation. CONCLUSION Considering the raised levels of miR-21 in various diabetic complications, it may prove to be a candidate biomarker for diabetic complications. Further, miR-21 antagonists have shown great potential in the treatment of diabetic cardiomyopathy, diabetic nephropathy, diabetic retinopathy, and diabetic neuropathy related complications in the future. The current review is the first of its kind encompassing the roles miR-21 plays in various diabetic complications, with a critical discussion of its future potential role as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Dipayan Roy
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Anupama Modi
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | | | - Dharamveer Yadav
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Shailja Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| |
Collapse
|
15
|
Chronic pain impact on rodents’ behavioral repertoire. Neurosci Biobehav Rev 2020; 119:101-127. [DOI: 10.1016/j.neubiorev.2020.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
|
16
|
Chang LL, Wang HC, Tseng KY, Su MP, Wang JY, Chuang YT, Wang YH, Cheng KI. Upregulation of miR-133a-3p in the Sciatic Nerve Contributes to Neuropathic Pain Development. Mol Neurobiol 2020; 57:3931-3942. [PMID: 32632603 DOI: 10.1007/s12035-020-01999-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Abstract
The micro (mi)RNAs expressed in the sciatic nerve of streptozotocin (STZ)-induced diabetic rats were evaluated in terms of their therapeutic potential in patients with diabetic neuropathic pain (DNP). Relative miRNA expression in sciatic nerve with DNP was analyzed using next-generation sequencing and quantitative PCR. Potential downstream targets of miRNAs were predicted using Ingenuity Pathway Analysis and the TargetScan database. In vitro experiments were performed using miR-133a-3p-transfected RSC96 Schwann cells. We performed micro-Western and Western blotting and immunofluorescence analyses to verify the role of miR-133a-3p. In vivo, the association between miR-133a-3p with DNP was analyzed via AAV-miR-133a-3p intraneural (intra-epineural but extrafascicular) injection into the sciatic nerve of normal rats or injection of an miR-133a-3p antagomir into the sciatic nerve of diabetes mellitus (DM) rats. miR-133a-3p mimics transfected into RSC96 Schwann cells increased VEGFR-2, p38α MAPK, TRAF-6, and PIAS3 expression and reduced NFκB p50 and MKP3 expression. In normal rats, AAV-miR-133a-3p delivery via intraneural injection into the sciatic nerve induced mechanical allodynia and p-p38 MAPK activation. In DM rats, miR-133a-3p antagomir administration alleviated DNP and downregulated p-p38 phosphorylation. Overexpression of miR-133a-3p in the sciatic nerve induced such pain. We suggest that miR-133a-3p is a potential therapeutic target for DNP.
Collapse
Affiliation(s)
- Lin-Li Chang
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hung-Chen Wang
- Department of Neurosurgery, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuang-Yi Tseng
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Miao-Pei Su
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ta Chuang
- Physical Education Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hsuan Wang
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kuang-I Cheng
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
17
|
Guida F, De Gregorio D, Palazzo E, Ricciardi F, Boccella S, Belardo C, Iannotta M, Infantino R, Formato F, Marabese I, Luongo L, de Novellis V, Maione S. Behavioral, Biochemical and Electrophysiological Changes in Spared Nerve Injury Model of Neuropathic Pain. Int J Mol Sci 2020; 21:ijms21093396. [PMID: 32403385 PMCID: PMC7246983 DOI: 10.3390/ijms21093396] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 01/05/2023] Open
Abstract
Neuropathic pain is a pathological condition induced by a lesion or disease affecting the somatosensory system, with symptoms like allodynia and hyperalgesia. It has a multifaceted pathogenesis as it implicates several molecular signaling pathways involving peripheral and central nervous systems. Affective and cognitive dysfunctions have been reported as comorbidities of neuropathic pain states, supporting the notion that pain and mood disorders share some common pathogenetic mechanisms. The understanding of these pathophysiological mechanisms requires the development of animal models mimicking, as far as possible, clinical neuropathic pain symptoms. Among them, the Spared Nerve Injury (SNI) model has been largely characterized in terms of behavioral and functional alterations. This model is associated with changes in neuronal firing activity at spinal and supraspinal levels, and induces late neuropsychiatric disorders (such as anxious-like and depressive-like behaviors, and cognitive impairments) comparable to an advanced phase of neuropathy. The goal of this review is to summarize current findings in preclinical research, employing the SNI model as a tool for identifying pathophysiological mechanisms of neuropathic pain and testing pharmacological agent.
Collapse
Affiliation(s)
- Francesca Guida
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
- Correspondence: (F.G.); (S.M.)
| | - Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montréal, QC H3A1A1, Canada;
| | - Enza Palazzo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
| | - Flavia Ricciardi
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
| | - Serena Boccella
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
| | - Carmela Belardo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
| | - Monica Iannotta
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
| | - Rosmara Infantino
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
| | - Federica Formato
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
| | - Ida Marabese
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
| | - Livio Luongo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
| | - Vito de Novellis
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
| | - Sabatino Maione
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
- Correspondence: (F.G.); (S.M.)
| |
Collapse
|
18
|
Kalpachidou T, Kummer KK, Mitrić M, Kress M. Tissue Specific Reference Genes for MicroRNA Expression Analysis in a Mouse Model of Peripheral Nerve Injury. Front Mol Neurosci 2019; 12:283. [PMID: 31824261 PMCID: PMC6883285 DOI: 10.3389/fnmol.2019.00283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as master switch regulators in many biological processes in health and disease, including neuropathy. miRNAs are commonly quantified by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), usually estimated as relative expression through reference genes normalization. Different non-coding RNAs (ncRNAs) are used for miRNA normalization; however, there is no study identifying the optimal reference genes in animal models for peripheral nerve injury. We evaluated the stability of eleven ncRNAs, commonly used for miRNA normalization, in dorsal root ganglia (DRG), dorsal horn of the spinal cord (dhSC), and medial prefrontal cortex (mPFC) in the mouse spared nerve injury (SNI) model. After RT-qPCR, the stability of each ncRNA was determined by using four different methods: BestKeeper, the comparative delta-Cq method, geNorm, and NormFinder. The candidates were rated according to their performance in each method and an overall ranking list was compiled. The most stable ncRNAs were: sno420, sno429, and sno202 in DRG; sno429, sno202, and U6 in dhSC; sno202, sno420, and sno142 in mPFC. We provide the first reference genes' evaluation for miRNA normalization in different neuronal tissues in an animal model of peripheral nerve injury. Our results underline the need for careful selection of reference genes for miRNA normalization in different tissues and experimental conditions. We further anticipate that our findings can be used in a broad range of nerve injury related studies, to ensure validity and promote reproducibility in miRNA quantification.
Collapse
|
19
|
Karl F, Colaço MBN, Schulte A, Sommer C, Üçeyler N. Affective and cognitive behavior is not altered by chronic constriction injury in B7-H1 deficient and wildtype mice. BMC Neurosci 2019; 20:16. [PMID: 30975083 PMCID: PMC6458735 DOI: 10.1186/s12868-019-0498-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/04/2019] [Indexed: 01/14/2023] Open
Abstract
Background Chronic neuropathic pain is often associated with anxiety, depressive symptoms, and cognitive impairment with relevant impact on patients` health related quality of life. To investigate the influence of a pro-inflammatory phenotype on affective and cognitive behavior under neuropathic pain conditions, we assessed mice deficient of the B7 homolog 1 (B7-H1), a major inhibitor of inflammatory response. Results Adult B7-H1 ko mice and wildtype littermates (WT) received a chronic constriction injury (CCI) of the sciatic nerve, and we assessed mechanical and thermal sensitivity at selected time points. Both genotypes developed mechanical (p < 0.001) and heat hypersensitivity (p < 0.01) 7, 14, and 20 days after surgery. We performed three tests for anxiety-like behavior: the light–dark box, the elevated plus maze, and the open field. As supported by the results of these tests for anxiety-like behavior, no relevant differences were found between genotypes after CCI. Depression-like behavior was assessed using the forced swim test. Also, CCI had no effect on depression like behavior. For cognitive behavior, we applied the Morris water maze for spatial learning and memory and the novel object recognition test for object recognition, long-, and short-term memory. Learning and memory did not differ in B7-H1 ko and WT mice after CCI. Conclusions Our study reveals that the impact of B7-H1 on affective-, depression-like- and learning-behavior, and memory performance might play a subordinate role in mice after nerve lesion.
Collapse
Affiliation(s)
- Franziska Karl
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany.
| | - Maria B Nandini Colaço
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Annemarie Schulte
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Nurcan Üçeyler
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| |
Collapse
|
20
|
Yao S, Hu Q, Kerns S, Yan L, Onitilo AA, Misleh J, Young K, Lei L, Bautista J, Mohamed M, Mohile SG, Ambrosone CB, Liu S, Janelsins MC. Impact of chemotherapy for breast cancer on leukocyte DNA methylation landscape and cognitive function: a prospective study. Clin Epigenetics 2019; 11:45. [PMID: 30867049 PMCID: PMC6416954 DOI: 10.1186/s13148-019-0641-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 02/28/2019] [Indexed: 12/12/2022] Open
Abstract
Background Little is known about the effects of chemotherapeutic drugs on DNA methylation status of leukocytes, which may be predictive of treatment benefits and toxicities. Based on a prospective national study, we characterize the changes in leukocyte DNA methylome from pre- to post-chemotherapy (approximately 4 months apart) in 93 patients treated for early stage breast cancer and 48 matched non-cancer controls. We further examined significant methylation changes with perceived cognitive impairment, a clinically significant problem related to cancer and chemotherapy. Results Approximately 4.2% of the CpG sites measured using the Illumina 450K methylation array underwent significant changes after chemotherapy (p < 1e-7), in comparison to a stable DNA methylome in controls. Post-chemotherapy, the estimated relative proportions of B cells and CD4+ T cells were decreased by a median of 100% and 39%, respectively, whereas the proportion of monocytes was increased by a median of 91%. After controlling for leukocyte composition, 568 CpGs from 460 genes were still significantly altered following chemotherapy. With additional adjustment for chemotherapy regimen, cumulative infusions, growth factors, and steroids, changes in four CpGs remained significant, including cg16936953 in VMP1/MIR21, cg01252023 in CORO1B, cg11859398 in SDK1, and cg19956914 in SUMF2. The most significant CpG, cg16936953, was also associated with cognitive decline in breast cancer patients. Conclusions Chemotherapy profoundly alters the composition and DNA methylation landscape of leukocytes in breast cancer patients. Our results shed light on the epigenetic response of circulating immune cell populations to cytotoxic chemotherapeutic drugs and provide possible epigenetic links to the degeneration of cognitive function associated with chemotherapy. Electronic supplementary material The online version of this article (10.1186/s13148-019-0641-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sarah Kerns
- Department of Radiation Oncology, University of Rochester, Rochester, NY, USA
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | | | | | - Lianlian Lei
- Department of Public Health Sciences, University of Rochester, Rochester, NY, USA
| | - Javier Bautista
- Department of Surgery, Cancer Control, University of Rochester, Rochester, NY, USA.,James P Wilmot Cancer Institute, Rochester, NY, USA
| | - Mostafa Mohamed
- Department of Medicine, University of Rochester, Rochester, NY, USA.,James P Wilmot Cancer Institute, Rochester, NY, USA
| | - Supriya G Mohile
- Department of Medicine, University of Rochester, Rochester, NY, USA.,James P Wilmot Cancer Institute, Rochester, NY, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | - Michelle C Janelsins
- Department of Surgery, Cancer Control, University of Rochester, Rochester, NY, USA. .,James P Wilmot Cancer Institute, Rochester, NY, USA.
| |
Collapse
|