1
|
Qneibi M, Bdir S, Bdair M, Aldwaik SA, Heeh M, Sandouka D, Idais T. Exploring the role of AMPA receptor auxiliary proteins in synaptic functions and diseases. FEBS J 2024. [PMID: 39394632 DOI: 10.1111/febs.17287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/21/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) ionotropic glutamate receptors (AMPARs) mediate rapid excitatory synaptic transmission in the mammalian brain, primarily driven by the neurotransmitter glutamate. The modulation of AMPAR activity, particularly calcium-permeable AMPARs (CP-AMPARs), is crucially influenced by various auxiliary subunits. These subunits are integral membrane proteins that bind to the receptor's core and modify its functional properties, including ion channel kinetics and receptor trafficking. This review comprehensively catalogs all known AMPAR auxiliary proteins, providing vital insights into the biochemical mechanisms governing synaptic modulation and the specific impact of CP-AMPARs compared to their calcium-impermeable AMPA receptor (CI-AMPARs). Understanding the complex interplay between AMPARs and their auxiliary subunits in different brain regions is essential for elucidating their roles in cognitive functions such as learning and memory. Importantly, alterations in these auxiliary proteins' expression, function or interactions have been implicated in various neurological disorders. Aberrant signaling through CP-AMPARs, in particular, is associated with severe synaptic dysfunctions across neurodevelopmental, neurodegenerative and psychiatric conditions. Targeting the distinct properties of AMPAR-auxiliary subunit complexes, especially those involving CP-AMPARs, could disclose new therapeutic strategies, potentially allowing for more precise interventions in treating complex neuronal disorders.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Samia Ammar Aldwaik
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | - Dana Sandouka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Tala Idais
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
2
|
Xu F, Chen A, Pan S, Wu Y, He H, Han Z, Lu L, Orgil B, Chi X, Yang C, Jia S, Yu C, Mi J. Systems genetics analysis reveals the common genetic basis for pain sensitivity and cognitive function. CNS Neurosci Ther 2024; 30:e14557. [PMID: 38421132 PMCID: PMC10850811 DOI: 10.1111/cns.14557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/31/2023] [Accepted: 11/25/2023] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND There is growing evidence of a strong correlation between pain sensitivity and cognitive function under both physiological and pathological conditions. However, the detailed mechanisms remain largely unknown. In the current study, we sought to explore candidate genes and common molecular mechanisms underlying pain sensitivity and cognitive function with a transcriptome-wide association study using recombinant inbred mice from the BXD family. METHODS The pain sensitivity determined by Hargreaves' paw withdrawal test and cognition-related phenotypes were systematically analyzed in 60 strains of BXD mice and correlated with hippocampus transcriptomes, followed by quantitative trait locus (QTL) mapping and systems genetics analysis. RESULTS The pain sensitivity showed significant variability across the BXD strains and co-varies with cognitive traits. Pain sensitivity correlated hippocampual genes showed a significant involvement in cognition-related pathways, including glutamatergic synapse, and PI3K-Akt signaling pathway. Moreover, QTL mapping identified a genomic region on chromosome 4, potentially regulating the variation of pain sensitivity. Integrative analysis of expression QTL mapping, correlation analysis, and Bayesian network modeling identified Ring finger protein 20 (Rnf20) as the best candidate. Further pathway analysis indicated that Rnf20 may regulate the expression of pain sensitivity and cognitive function through the PI3K-Akt signaling pathway, particularly through interactions with genes Ppp2r2b, Ppp2r5c, Col9a3, Met, Rps6, Tnc, and Kras. CONCLUSIONS Our study demonstrated that pain sensitivity is associated with genetic background and Rnf20-mediated PI3K-Akt signaling may involve in the regulation of pain sensitivity and cognitive functions.
Collapse
Affiliation(s)
- Fuyi Xu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| | - Anran Chen
- The Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiChina
| | - Shuijing Pan
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| | - Yingying Wu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| | - Hongjie He
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| | - Zhe Han
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| | - Lu Lu
- University of Tennessee Health Science CenterMemphisTennesseeUSA
| | | | - XiaoDong Chi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| | - Cunhua Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| | - Shushan Jia
- Department of AnesthesiologyYanTai Affiliated Hospital of BinZhou Medical UniversityYantaiChina
| | - Cuicui Yu
- The Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiChina
| | - Jia Mi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| |
Collapse
|
3
|
Wang R, Liu C, Guo W, Wang L, Chen S, Zhao J, Qin X, Bai W, Yang Z, Kong D, Jia Z, Liu S, Zhang W. Movement disorder caused by FRRS1L deficiency may be associated with morphological and functional disorders in Purkinje cells. Brain Res Bull 2022; 191:93-106. [DOI: 10.1016/j.brainresbull.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/06/2022] [Accepted: 10/25/2022] [Indexed: 11/30/2022]
|
4
|
Matthews PM, Pinggera A, Kampjut D, Greger IH. Biology of AMPA receptor interacting proteins - From biogenesis to synaptic plasticity. Neuropharmacology 2021; 197:108709. [PMID: 34271020 DOI: 10.1016/j.neuropharm.2021.108709] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/19/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022]
Abstract
AMPA-type glutamate receptors mediate the majority of excitatory synaptic transmission in the central nervous system. Their signaling properties and abundance at synapses are both crucial determinants of synapse efficacy and plasticity, and are therefore under sophisticated control. Unique to this ionotropic glutamate receptor (iGluR) is the abundance of interacting proteins that contribute to its complex regulation. These include transient interactions with the receptor cytoplasmic tail as well as the N-terminal domain locating to the synaptic cleft, both of which are involved in AMPAR trafficking and receptor stabilization at the synapse. Moreover, an array of transmembrane proteins operate as auxiliary subunits that in addition to receptor trafficking and stabilization also substantially impact AMPAR gating and pharmacology. Here, we provide an overview of the catalogue of AMPAR interacting proteins, and how they contribute to the complex biology of this central glutamate receptor.
Collapse
Affiliation(s)
- Peter M Matthews
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Alexandra Pinggera
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Domen Kampjut
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Ingo H Greger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
5
|
Transcriptomic expression of AMPA receptor subunits and their auxiliary proteins in the human brain. Neurosci Lett 2021; 755:135938. [PMID: 33915226 DOI: 10.1016/j.neulet.2021.135938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/21/2022]
Abstract
Receptors to glutamate of the AMPA type (AMPARs) serve as the major gates of excitation in the human brain, where they participate in fundamental processes underlying perception, cognition and movement. Due to their central role in brain function, dysregulation of these receptors has been implicated in neuropathological states associated with a large variety of diseases that manifest with abnormal behaviors. The participation of functional abnormalities of AMPARs in brain disorders is strongly supported by genomic, transcriptomic and proteomic studies. Most of these studies have focused on the expression and function of the subunits that make up the channel and define AMPARs (GRIA1-GRIA4), as well of some accessory proteins. However, it is increasingly evident that native AMPARs are composed of a complex array of accessory proteins that regulate their trafficking, localization, kinetics and pharmacology, and a better understanding of the diversity and regional expression of these accessory proteins is largely needed. In this review we will provide an update on the state of current knowledge of AMPA receptors subunits in the context of their accessory proteins at the transcriptome level. We also summarize the regional expression in the human brain and its correlation with the channel forming subunits. Finally, we discuss some of the current limitations of transcriptomic analysis and propose potential ways to overcome them.
Collapse
|
6
|
Auxiliary subunits of the AMPA receptor: The Shisa family of proteins. Curr Opin Pharmacol 2021; 58:52-61. [PMID: 33892364 DOI: 10.1016/j.coph.2021.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 11/15/2022]
Abstract
AMPA receptors mediate fast synaptic transmission in the CNS and can assemble with several types of auxiliary proteins in a spatio-temporal manner, from newly synthesized AMPA receptor tetramers to mature AMPA receptors in the cell membrane. As such, the interaction of auxiliary subunits with the AMPA receptor plays a major role in the regulation of AMPA receptor biogenesis, trafficking, and biophysical properties. Throughout the years, various 'families' of proteins have been identified and today the approximate full complement of AMPAR auxiliary proteins is known. This review presents the current knowledge on the most prominent AMPA-receptor-interacting auxiliary proteins, highlights recent results regarding the Shisa protein family, and provides a discussion on future research that might contribute to the discovery of novel pharmacological targets of auxiliary subunits.
Collapse
|
7
|
Abdelmoumen I, Jimenez S, Valencia I, Melvin J, Legido A, Diaz-Diaz MM, Griffith C, Massingham LJ, Yelton M, Rodríguez-Hernández J, Schnur RE, Walsh LE, Cristancho AG, Bergqvist CA, McWalter K, Mathieson I, Belbin GM, Kenny EE, Ortiz-Gonzalez XR, Schneider MC. Boricua Founder Variant in FRRS1L Causes Epileptic Encephalopathy With Hyperkinetic Movements. J Child Neurol 2021; 36:93-98. [PMID: 32928027 PMCID: PMC8496110 DOI: 10.1177/0883073820953001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To describe a founder mutation effect and the clinical phenotype of homozygous FRRS1L c.737_739delGAG (p.Gly246del) variant in 15 children of Puerto Rican (Boricua) ancestry presenting with early infantile epileptic encephalopathy (EIEE-37) with prominent movement disorder. BACKGROUND EIEE-37 is caused by biallelic loss of function variants in the FRRS1L gene, which is critical for AMPA-receptor function, resulting in intractable epilepsy and dyskinesia. METHODS A retrospective, multicenter chart review of patients sharing the same homozygous FRRS1L (p.Gly246del) pathogenic variant identified by clinical genetic testing. Clinical information was collected regarding neurodevelopmental outcomes, neuroimaging, electrographic features and clinical response to antiseizure medications. RESULTS Fifteen patients from 12 different families of Puerto Rican ancestry were homozygous for the FRRS1L (p.Gly246del) pathogenic variant, with ages ranging from 1 to 25 years. The onset of seizures was from 6 to 24 months. All had hypotonia, severe global developmental delay, and most had hyperkinetic involuntary movements. Developmental regression during the first year of life was common (86%). Electroencephalogram showed hypsarrhythmia in 66% (10/15), with many older children evolving into Lennox-Gastaut syndrome. Six patients demonstrated progressive volume loss and/or cerebellar atrophy on brain magnetic resonance imaging (MRI). CONCLUSIONS We describe the largest cohort to date of patients with epileptic encephalopathy. We estimate that 0.76% of unaffected individuals of Puerto Rican ancestry carry this pathogenic variant due to a founder effect. Children homozygous for the FRRS1L (p.Gly246del) Boricua variant exhibit a very homogenous phenotype of early developmental regression and epilepsy, starting with infantile spasms and evolving into Lennox-Gastaut syndrome with hyperkinetic movement disorder.
Collapse
Affiliation(s)
- Imane Abdelmoumen
- Section of Neurology, Department of Pediatrics, St. Christopher’s Hospital for Children Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sandra Jimenez
- Section of Neurology, Department of Pediatrics, St. Christopher’s Hospital for Children Drexel University College of Medicine, Philadelphia, PA, USA
| | - Ignacio Valencia
- Section of Neurology, Department of Pediatrics, St. Christopher’s Hospital for Children Drexel University College of Medicine, Philadelphia, PA, USA
| | - Joseph Melvin
- Section of Neurology, Department of Pediatrics, St. Christopher’s Hospital for Children Drexel University College of Medicine, Philadelphia, PA, USA
| | - Agustin Legido
- Section of Neurology, Department of Pediatrics, St. Christopher’s Hospital for Children Drexel University College of Medicine, Philadelphia, PA, USA
| | | | | | | | - Melissa Yelton
- Penn State Health Children’s Hospital, Clinical Genetics, Hershey, PA, USA
| | | | - Rhonda E. Schnur
- Division of Genetics, Cooper Medical School of Rowan University, Copper University Health Care, Camden, NJ, USA
| | - Laurence E. Walsh
- Indiana University School of Medicine, Neurology and Genetics, Indianapolis, IN, USA
| | - Ana G. Cristancho
- Department of Pediatrics, Division of Neurology, Epilepsy Neurogenetics Initiative, Children’s Hospital of Philadelphia, Philadelphia, PA, USA,Department of Neurology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA
| | - Christina A. Bergqvist
- Department of Pediatrics, Division of Neurology, Epilepsy Neurogenetics Initiative, Children’s Hospital of Philadelphia, Philadelphia, PA, USA,Department of Neurology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA
| | | | - Iain Mathieson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gillian M. Belbin
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eimear E. Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xilma R. Ortiz-Gonzalez
- Department of Pediatrics, Division of Neurology, Epilepsy Neurogenetics Initiative, Children’s Hospital of Philadelphia, Philadelphia, PA, USA,Department of Neurology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA
| | - Michael C. Schneider
- Section of Neurology, Department of Pediatrics, St. Christopher’s Hospital for Children Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
8
|
Han W, Shepard RD, Lu W. Regulation of GABA ARs by Transmembrane Accessory Proteins. Trends Neurosci 2021; 44:152-165. [PMID: 33234346 PMCID: PMC7855156 DOI: 10.1016/j.tins.2020.10.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/08/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
The vast majority of fast inhibitory transmission in the brain is mediated by GABA acting on GABAA receptors (GABAARs), which provides inhibitory balance to excitatory drive and controls neuronal output. GABAARs are also effectively targeted by clinically important drugs for treatment in a number of neurological disorders. It has long been hypothesized that function and pharmacology of GABAARs are determined by the channel pore-forming subunits. However, recent studies have provided new dimensions in studying GABAARs due to several transmembrane proteins that interact with GABAARs and modulate their trafficking and function. In this review, we summarize recent findings on these novel GABAAR transmembrane regulators and highlight a potential avenue to develop new GABAAR psychopharmacology by targeting these receptor-associated membrane proteins.
Collapse
Affiliation(s)
- Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan D Shepard
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Yang JO, Choi MH, Yoon JY, Lee JJ, Nam SO, Jun SY, Kwon HH, Yun S, Jeon SJ, Byeon I, Halder D, Kong J, Lee B, Lee J, Kang JW, Kim NS. Characteristics of Genetic Variations Associated With Lennox-Gastaut Syndrome in Korean Families. Front Genet 2021; 11:590924. [PMID: 33584793 PMCID: PMC7874053 DOI: 10.3389/fgene.2020.590924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/31/2020] [Indexed: 12/21/2022] Open
Abstract
Lennox-Gastaut syndrome (LGS) is a severe type of childhood-onset epilepsy characterized by multiple types of seizures, specific discharges on electroencephalography, and intellectual disability. Most patients with LGS do not respond well to drug treatment and show poor long-term prognosis. Approximately 30% of patients without brain abnormalities have unidentifiable causes. Therefore, accurate diagnosis and treatment of LGS remain challenging. To identify causative mutations of LGS, we analyzed the whole-exome sequencing data of 17 unrelated Korean families, including patients with LGS and LGS-like epilepsy without brain abnormalities, using the Genome Analysis Toolkit. We identified 14 mutations in 14 genes as causes of LGS or LGS-like epilepsy. 64 percent of the identified genes were reported as LGS or epilepsy-related genes. Many of these variations were novel and considered as pathogenic or likely pathogenic. Network analysis was performed to classify the identified genes into two network clusters: neuronal signal transmission or neuronal development. Additionally, knockdown of two candidate genes with insufficient evidence of neuronal functions, SLC25A39 and TBC1D8, decreased neurite outgrowth and the expression level of MAP2, a neuronal marker. These results expand the spectrum of genetic variations and may aid the diagnosis and management of individuals with LGS.
Collapse
Affiliation(s)
- Jin Ok Yang
- Korea BioInformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Min-Hyuk Choi
- Rare-Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, South Korea
| | - Ji-Yong Yoon
- Rare-Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jeong-Ju Lee
- Rare-Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Sang Ook Nam
- Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, Yangsan, South Korea
| | - Soo Young Jun
- Rare-Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Hyeok Hee Kwon
- Department of Medical Science and Anatomy, Chungnam National University, Daejeon, South Korea
| | - Sohyun Yun
- Rare-Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Su-Jin Jeon
- Rare-Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, South Korea
| | - Iksu Byeon
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Debasish Halder
- Rare-Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Juhyun Kong
- Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, Yangsan, South Korea
| | - Byungwook Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jeehun Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Joon-Won Kang
- Department of Pediatrics and Medical Science, Chungnam National University Hospital, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Nam-Soon Kim
- Rare-Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
10
|
Han W, Li J, Pelkey KA, Pandey S, Chen X, Wang YX, Wu K, Ge L, Li T, Castellano D, Liu C, Wu LG, Petralia RS, Lynch JW, McBain CJ, Lu W. Shisa7 is a GABA A receptor auxiliary subunit controlling benzodiazepine actions. Science 2020; 366:246-250. [PMID: 31601770 DOI: 10.1126/science.aax5719] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022]
Abstract
The function and pharmacology of γ-aminobutyric acid type A receptors (GABAARs) are of great physiological and clinical importance and have long been thought to be determined by the channel pore-forming subunits. We discovered that Shisa7, a single-passing transmembrane protein, localizes at GABAergic inhibitory synapses and interacts with GABAARs. Shisa7 controls receptor abundance at synapses and speeds up the channel deactivation kinetics. Shisa7 also potently enhances the action of diazepam, a classic benzodiazepine, on GABAARs. Genetic deletion of Shisa7 selectively impairs GABAergic transmission and diminishes the effects of diazepam in mice. Our data indicate that Shisa7 regulates GABAAR trafficking, function, and pharmacology and reveal a previously unknown molecular interaction that modulates benzodiazepine action in the brain.
Collapse
Affiliation(s)
- Wenyan Han
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jun Li
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenneth A Pelkey
- Cellular and Synaptic Neuroscience Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Saurabh Pandey
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiumin Chen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kunwei Wu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lihao Ge
- Synaptic Transmission Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tianming Li
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Castellano
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chengyu Liu
- Transgenetic Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ling-Gang Wu
- Synaptic Transmission Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph W Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chris J McBain
- Cellular and Synaptic Neuroscience Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Willems J, de Jong APH, Scheefhals N, Mertens E, Catsburg LAE, Poorthuis RB, de Winter F, Verhaagen J, Meye FJ, MacGillavry HD. ORANGE: A CRISPR/Cas9-based genome editing toolbox for epitope tagging of endogenous proteins in neurons. PLoS Biol 2020; 18:e3000665. [PMID: 32275651 PMCID: PMC7176289 DOI: 10.1371/journal.pbio.3000665] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 04/22/2020] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
The correct subcellular distribution of proteins establishes the complex morphology and function of neurons. Fluorescence microscopy techniques are invaluable to investigate subcellular protein distribution, but they suffer from the limited ability to efficiently and reliably label endogenous proteins with fluorescent probes. We developed ORANGE: Open Resource for the Application of Neuronal Genome Editing, which mediates targeted genomic integration of epitope tags in rodent dissociated neuronal culture, in organotypic slices, and in vivo. ORANGE includes a knock-in library for in-depth investigation of endogenous protein distribution, viral vectors, and a detailed two-step cloning protocol to develop knock-ins for novel targets. Using ORANGE with (live-cell) superresolution microscopy, we revealed the dynamic nanoscale organization of endogenous neurotransmitter receptors and synaptic scaffolding proteins, as well as previously uncharacterized proteins. Finally, we developed a mechanism to create multiple knock-ins in neurons, mediating multiplex imaging of endogenous proteins. Thus, ORANGE enables quantification of expression, distribution, and dynamics for virtually any protein in neurons at nanoscale resolution. This study describes the development of a genome editing toolbox (ORANGE) for endogenous tagging of proteins in neurons. This open resource allows the investigation of protein localization and dynamics in neurons using live-cell and super-resolution imaging techniques.
Collapse
Affiliation(s)
- Jelmer Willems
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Arthur P. H. de Jong
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Nicky Scheefhals
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Eline Mertens
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Lisa A. E. Catsburg
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Rogier B. Poorthuis
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Fred de Winter
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Frank J. Meye
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Harold D. MacGillavry
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
12
|
An ER Assembly Line of AMPA-Receptors Controls Excitatory Neurotransmission and Its Plasticity. Neuron 2019; 104:680-692.e9. [DOI: 10.1016/j.neuron.2019.08.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/28/2019] [Accepted: 08/20/2019] [Indexed: 11/15/2022]
|
13
|
Bissen D, Foss F, Acker-Palmer A. AMPA receptors and their minions: auxiliary proteins in AMPA receptor trafficking. Cell Mol Life Sci 2019; 76:2133-2169. [PMID: 30937469 PMCID: PMC6502786 DOI: 10.1007/s00018-019-03068-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/12/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
To correctly transfer information, neuronal networks need to continuously adjust their synaptic strength to extrinsic stimuli. This ability, termed synaptic plasticity, is at the heart of their function and is, thus, tightly regulated. In glutamatergic neurons, synaptic strength is controlled by the number and function of AMPA receptors at the postsynapse, which mediate most of the fast excitatory transmission in the central nervous system. Their trafficking to, at, and from the synapse, is, therefore, a key mechanism underlying synaptic plasticity. Intensive research over the last 20 years has revealed the increasing importance of interacting proteins, which accompany AMPA receptors throughout their lifetime and help to refine the temporal and spatial modulation of their trafficking and function. In this review, we discuss the current knowledge about the roles of key partners in regulating AMPA receptor trafficking and focus especially on the movement between the intracellular, extrasynaptic, and synaptic pools. We examine their involvement not only in basal synaptic function, but also in Hebbian and homeostatic plasticity. Included in our review are well-established AMPA receptor interactants such as GRIP1 and PICK1, the classical auxiliary subunits TARP and CNIH, and the newest additions to AMPA receptor native complexes.
Collapse
Affiliation(s)
- Diane Bissen
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany
| | - Franziska Foss
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute (CPI), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
14
|
Stewart M, Lau P, Banks G, Bains RS, Castroflorio E, Oliver PL, Dixon CL, Kruer MC, Kullmann DM, Acevedo-Arozena A, Wells SE, Corrochano S, Nolan PM. Loss of Frrs1l disrupts synaptic AMPA receptor function, and results in neurodevelopmental, motor, cognitive and electrographical abnormalities. Dis Model Mech 2019; 12:dmm.036806. [PMID: 30692144 PMCID: PMC6398485 DOI: 10.1242/dmm.036806] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/16/2019] [Indexed: 01/09/2023] Open
Abstract
Loss-of-function mutations in a human AMPA receptor-associated protein, ferric chelate reductase 1-like (FRRS1L), are associated with a devastating neurological condition incorporating choreoathetosis, cognitive deficits and epileptic encephalopathies. Furthermore, evidence from overexpression and ex vivo studies has implicated FRRS1L in AMPA receptor biogenesis, suggesting that changes in glutamatergic signalling might underlie the disorder. Here, we investigated the neurological and neurobehavioural correlates of the disorder using a mouse Frrs1l null mutant. The study revealed several neurological defects that mirrored those seen in human patients. We established that mice lacking Frrs1l suffered from a broad spectrum of early-onset motor deficits with no progressive, age-related deterioration. Moreover, Frrs1l−/− mice were hyperactive, irrespective of test environment, exhibited working memory deficits and displayed significant sleep fragmentation. Longitudinal electroencephalographic (EEG) recordings also revealed abnormal EEG results in Frrs1l−/− mice. Parallel investigations into disease aetiology identified a specific deficiency in AMPA receptor levels in the brain of Frrs1l−/− mice, while the general levels of several other synaptic components remained unchanged, with no obvious alterations in the number of synapses. Furthermore, we established that Frrsl1 deletion results in an increased proportion of immature AMPA receptors, indicated by incomplete glycosylation of GLUA2 (also known as GRIA2) and GLUA4 (also known as GRIA4) AMPA receptor proteins. This incomplete maturation leads to cytoplasmic retention and a reduction of those specific AMPA receptor levels in the postsynaptic membrane. Overall, this study determines, for the first time in vivo, how loss of FRRS1L function can affect glutamatergic signalling, and provides mechanistic insight into the development and progression of a human hyperkinetic disorder. This article has an associated First Person interview with the first author of the paper. Summary: Loss of the epilepsy-related gene Frrs1l in mice causes a dramatic reduction in AMPA receptor levels at the synapse, eliciting severe motor and coordination disabilities, hyperactivity and cognitive defects, with some evidence of behavioural seizures.
Collapse
Affiliation(s)
| | - Petrina Lau
- MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Gareth Banks
- MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | | | | | - Peter L Oliver
- MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Christine L Dixon
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Michael C Kruer
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ 85013, USA
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Abraham Acevedo-Arozena
- Unidad de Investigación Hospital Universitario de Canarias, La Laguna 38320, Spain.,ITB, Universidad de La Laguna, La Laguna 38320, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), La Laguna 38320, Spain
| | - Sara E Wells
- MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | | | - Patrick M Nolan
- MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| |
Collapse
|
15
|
Jacobi E, von Engelhardt J. AMPA receptor complex constituents: Control of receptor assembly, membrane trafficking and subcellular localization. Mol Cell Neurosci 2018; 91:67-75. [DOI: 10.1016/j.mcn.2018.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/15/2018] [Accepted: 05/24/2018] [Indexed: 11/29/2022] Open
|