1
|
Zhang M, Zhi N, Feng J, Liu Y, Zhang M, Liu D, Yuan J, Dong Y, Jiang S, Ge J, Wu S, Zhao X. ITPR2 Mediated Calcium Homeostasis in Oligodendrocytes is Essential for Myelination and Involved in Depressive-Like Behavior in Adolescent Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306498. [PMID: 38476116 PMCID: PMC11132048 DOI: 10.1002/advs.202306498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/15/2024] [Indexed: 03/14/2024]
Abstract
Ca2+ signaling is essential for oligodendrocyte (OL) development and myelin formation. Inositol 1,4,5-trisphosphate receptor type 2 (ITPR2) is an endoplasmic reticulum calcium channel and shows stage-dependent high levels in postmitotic oligodendrocyte precursor cells (OPCs). The role and potential mechanism of ITPR2 in OLs remain unclear. In this study, it is revealed that loss of Itpr2 in OLs disturbs Ca2+ homeostasis and inhibits myelination in adolescent mice. Animals with OL-specific deletion of Itpr2 exhibit anxiety/depressive-like behaviors and manifest with interrupted OPC proliferation, leading to fewer mature OLs in the brain. Detailed transcriptome profiling and signal pathway analysis suggest that MAPK/ERK-CDK6/cyclin D1 axis underlies the interfered cell cycle progression in Itpr2 ablated OPCs. Besides, blocking MAPK/ERK pathway significantly improves the delayed OPC differentiation and myelination in Itpr2 mutant. Notably, the resting [Ca2+]i is increased in Itpr2 ablated OPCs, with the elevation of several plasma calcium channels. Antagonists against these plasma calcium channels can normalize the resting [Ca2+]i level and enhance lineage progression in Itpr2-ablated OPCs. Together, the findings reveal novel insights for calcium homeostasis in manipulating developmental transition from OPCs to pre-OLs; additionally, the involvement of OLs-originated ITPR2 in depressive behaviors provides new therapeutic strategies to alleviate myelin-associated psychiatric disorders.
Collapse
Affiliation(s)
- Ming Zhang
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| | - Na Zhi
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
- College of Life SciencesNorthwest UniversityXi'an710127P. R. China
| | - Jiaxiang Feng
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| | - Yingqi Liu
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| | - Meixia Zhang
- School of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Dingxi Liu
- First Affiliated Hospital of Medical CollegeXi'an Jiaotong UniversityXi'an710061P. R. China
| | - Jie Yuan
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
- College of Life SciencesNorthwest UniversityXi'an710127P. R. China
| | - Yuhao Dong
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| | - Sufang Jiang
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| | - Junye Ge
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| | - Shengxi Wu
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| | - Xianghui Zhao
- Department of NeuroscienceAir Force Medical UniversityXi'an710032P. R. China
| |
Collapse
|
2
|
Benarroch E. What Are the Roles of Oligodendrocyte Precursor Cells in Normal and Pathologic Conditions? Neurology 2023; 101:958-965. [PMID: 37985182 PMCID: PMC10663025 DOI: 10.1212/wnl.0000000000208000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 11/22/2023] Open
|
3
|
Oprea L, Desjardins N, Jiang X, Sareen K, Zheng JQ, Khadra A. Characterizing spontaneous Ca 2+ local transients in OPCs using computational modeling. Biophys J 2022; 121:4419-4432. [PMID: 36352783 PMCID: PMC9748374 DOI: 10.1016/j.bpj.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/03/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Spontaneous Ca2+ local transients (SCaLTs) in isolated oligodendrocyte precursor cells are largely regulated by the following fluxes: store-operated Ca2+ entry (SOCE), Na+/Ca2+ exchange, Ca2+ pumping through Ca2+-ATPases, and Ca2+-induced Ca2+-release through ryanodine receptors and inositol-trisphosphate receptors. However, the relative contributions of these fluxes in mediating fast spiking and the slow baseline oscillations seen in SCaLTs remain incompletely understood. Here, we developed a stochastic spatiotemporal computational model to simulate SCaLTs in a homogeneous medium with ionic flow between the extracellular, cytoplasmic, and endoplasmic-reticulum compartments. By simulating the model and plotting both the histograms of SCaLTs obtained experimentally and from the model as well as the standard deviation of inter-SCaLT intervals against inter-SCaLT interval averages of multiple model and experimental realizations, we revealed the following: (1) SCaLTs exhibit very similar characteristics between the two data sets, (2) they are mostly random, (3) they encode information in their frequency, and (4) their slow baseline oscillations could be due to the stochastic slow clustering of inositol-trisphosphate receptors (modeled as an Ornstein-Uhlenbeck noise process). Bifurcation analysis of a deterministic temporal version of the model showed that the contribution of fluxes to SCaLTs depends on the parameter regime and that the combination of excitability, stochasticity, and mixed-mode oscillations are responsible for irregular spiking and doublets in SCaLTs. Additionally, our results demonstrated that blocking each flux reduces SCaLTs' frequency and that the reverse (forward) mode of Na+/Ca2+ exchange decreases (increases) SCaLTs. Taken together, these results provide a quantitative framework for SCaLT formation in oligodendrocyte precursor cells.
Collapse
Affiliation(s)
- Lawrence Oprea
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | | | - Xiaoyu Jiang
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - Kushagra Sareen
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - James Q Zheng
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia
| | - Anmar Khadra
- Department of Physiology, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
4
|
Interactions Between Astrocytes and Oligodendroglia in Myelin Development and Related Brain Diseases. Neurosci Bull 2022; 39:541-552. [PMID: 36370324 PMCID: PMC10043111 DOI: 10.1007/s12264-022-00981-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractAstrocytes (ASTs) and oligodendroglial lineage cells (OLGs) are major macroglial cells in the central nervous system. ASTs communicate with each other through connexin (Cx) and Cx-based network structures, both of which allow for quick transport of nutrients and signals. Moreover, ASTs interact with OLGs through connexin (Cx)-mediated networks to modulate various physiological processes in the brain. In this article, following a brief description of the infrastructural basis of the glial networks and exocrine factors by which ASTs and OLGs may crosstalk, we focus on recapitulating how the interactions between these two types of glial cells modulate myelination, and how the AST-OLG interactions are involved in protecting the integrity of the blood-brain barrier (BBB) and regulating synaptogenesis and neural activity. Recent studies further suggest that AST-OLG interactions are associated with myelin-related diseases, such as multiple sclerosis. A better understanding of the regulatory mechanisms underlying AST-OLG interactions may inspire the development of novel therapeutic strategies for related brain diseases.
Collapse
|
5
|
The ROS/GRK2/HIF-1α/NLRP3 Pathway Mediates Pyroptosis of Fibroblast-Like Synoviocytes and the Regulation of Monomer Derivatives of Paeoniflorin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4566851. [PMID: 35132350 PMCID: PMC8817856 DOI: 10.1155/2022/4566851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022]
Abstract
Hypoxia is an important factor in the development of synovitis in rheumatoid arthritis (RA). The previous study of the research group found that monomeric derivatives of paeoniflorin (MDP) can alleviate joint inflammation in adjuvant-induced arthritis (AA) rats by inhibiting macrophage pyroptosis. This study revealed increased levels of hypoxia-inducible factor- (HIF-) 1α and N-terminal p30 fragment of GSDMD (GSDMD-N) in fibroblast-like synoviocytes (FLS) of RA patients and AA rats, while MDP significantly inhibited their expression. Subsequently, FLS were exposed to a hypoxic environment or treated with cobalt ion in vitro. Western blot and immunofluorescence analysis showed increased expression of G protein-coupled receptor kinase 2 (GRK2), HIF-1α, nucleotide-binding oligomerization segment-like receptor family 3 (NLRP3), ASC, caspase-1, cleaved-caspase-1, and GSDMD-N. Electron microscopy revealed FLS pyroptosis after exposure in hypoxia. Next, corresponding shRNAs were transferred into FLS to knock down hypoxia-inducible factor- (HIF-) 1α, and in turn, NLRP3 and western blot results confirmed the same. The enhanced level of GSDMD was reversed under hypoxia by inhibiting NLRP3 expression. Knockdown and overexpression of GRK2 in FLS revealed GRK2 to be a positive regulator of HIF-1α. Levels of GRK2 and HIF-1α were inhibited by eliminating excess reactive oxygen species (ROS). Furthermore, MDP reduced FLS pyroptosis through targeted inhibition of GRK2 phosphorylation. According to these findings, hypoxia induces FLS pyroptosis through the ROS/GRK2/HIF-1α/NLRP3 pathway, while MDP regulates this pathway to reduce FLS pyroptosis.
Collapse
|
6
|
Cammarota M, de Rosa V, Pannaccione A, Secondo A, Tedeschi V, Piccialli I, Fiorino F, Severino B, Annunziato L, Boscia F. Rebound effects of NCX3 pharmacological inhibition: A novel strategy to accelerate myelin formation in oligodendrocytes. Biomed Pharmacother 2021; 143:112111. [PMID: 34481380 DOI: 10.1016/j.biopha.2021.112111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
The Na+/Ca2+ exchanger NCX3 is an important regulator of sodium and calcium homeostasis in oligodendrocyte lineage. To date, no information is available on the effects resulting from prolonged exposure to NCX3 blockers and subsequent drug washout in oligodendroglia. Here, we investigated, by means of biochemical, morphological and functional analyses, the pharmacological effects of the NCX3 inhibitor, the 5-amino-N-butyl-2-(4-ethoxyphenoxy)-benzamide hydrochloride (BED), on NCXs expression and activity, as well as intracellular [Na+]i and [Ca2+]i levels, during treatment and following drug washout both in human MO3.13 oligodendrocytes and rat primary oligodendrocyte precursor cells (OPCs). BED exposure antagonized NCX activity, induced OPCs proliferation and [Na+]i accumulation. By contrast, 2 days of BED washout after 4 days of treatment significantly upregulated low molecular weight NCX3 proteins, reversed NCX activity, and increased intracellular [Ca2+]i. This BED-free effect was accompanied by an upregulation of NCX3 expression in oligodendrocyte processes and accelerated expression of myelin markers in rat primary oligodendrocytes. Collectively, our findings show that the pharmacological inhibition of the NCX3 exchanger with BED blocker maybe followed by a rebound increase in NCX3 expression and reversal activity that accelerate myelin sheet formation in oligodendrocytes. In addition, they indicate that a particular attention should be paid to the use of NCX inhibitors for possible rebound effects, and suggest that further studies will be necessary to investigate whether selective pharmacological modulation of NCX3 exchanger may be exploited to benefit demyelination and remyelination in demyelinating diseases.
Collapse
Affiliation(s)
- Mariarosaria Cammarota
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Valeria de Rosa
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| | | | - Beatrice Severino
- Department of Pharmacy, Federico II University of Naples, Naples, Italy
| | | | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy.
| |
Collapse
|
7
|
Ten-eleven translocation 1 mediated-DNA hydroxymethylation is required for myelination and remyelination in the mouse brain. Nat Commun 2021; 12:5091. [PMID: 34429415 PMCID: PMC8385008 DOI: 10.1038/s41467-021-25353-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 08/05/2021] [Indexed: 11/08/2022] Open
Abstract
Ten-eleven translocation (TET) proteins, the dioxygenase for DNA hydroxymethylation, are important players in nervous system development and diseases. However, their role in myelination and remyelination after injury remains elusive. Here, we identify a genome-wide and locus-specific DNA hydroxymethylation landscape shift during differentiation of oligodendrocyte-progenitor cells (OPC). Ablation of Tet1 results in stage-dependent defects in oligodendrocyte (OL) development and myelination in the mouse brain. The mice lacking Tet1 in the oligodendrocyte lineage develop behavioral deficiency. We also show that TET1 is required for remyelination in adulthood. Transcriptomic, genomic occupancy, and 5-hydroxymethylcytosine (5hmC) profiling reveal a critical TET1-regulated epigenetic program for oligodendrocyte differentiation that includes genes associated with myelination, cell division, and calcium transport. Tet1-deficient OPCs exhibit reduced calcium activity, increasing calcium activity rescues the differentiation defects in vitro. Deletion of a TET1-5hmC target gene, Itpr2, impairs the onset of OPC differentiation. Together, our results suggest that stage-specific TET1-mediated epigenetic programming and intracellular signaling are important for proper myelination and remyelination in mice.
Collapse
|
8
|
Ion Channels as New Attractive Targets to Improve Re-Myelination Processes in the Brain. Int J Mol Sci 2021; 22:ijms22147277. [PMID: 34298893 PMCID: PMC8305962 DOI: 10.3390/ijms22147277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is the most demyelinating disease of the central nervous system (CNS) characterized by neuroinflammation. Oligodendrocyte progenitor cells (OPCs) are cycling cells in the developing and adult CNS that, under demyelinating conditions, migrate to the site of lesions and differentiate into mature oligodendrocytes to remyelinate damaged axons. However, this process fails during disease chronicization due to impaired OPC differentiation. Moreover, OPCs are crucial players in neuro-glial communication as they receive synaptic inputs from neurons and express ion channels and neurotransmitter/neuromodulator receptors that control their maturation. Ion channels are recognized as attractive therapeutic targets, and indeed ligand-gated and voltage-gated channels can both be found among the top five pharmaceutical target groups of FDA-approved agents. Their modulation ameliorates some of the symptoms of MS and improves the outcome of related animal models. However, the exact mechanism of action of ion-channel targeting compounds is often still unclear due to the wide expression of these channels on neurons, glia, and infiltrating immune cells. The present review summarizes recent findings in the field to get further insights into physio-pathophysiological processes and possible therapeutic mechanisms of drug actions.
Collapse
|
9
|
Boscia F, Elkjaer ML, Illes Z, Kukley M. Altered Expression of Ion Channels in White Matter Lesions of Progressive Multiple Sclerosis: What Do We Know About Their Function? Front Cell Neurosci 2021; 15:685703. [PMID: 34276310 PMCID: PMC8282214 DOI: 10.3389/fncel.2021.685703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022] Open
Abstract
Despite significant advances in our understanding of the pathophysiology of multiple sclerosis (MS), knowledge about contribution of individual ion channels to axonal impairment and remyelination failure in progressive MS remains incomplete. Ion channel families play a fundamental role in maintaining white matter (WM) integrity and in regulating WM activities in axons, interstitial neurons, glia, and vascular cells. Recently, transcriptomic studies have considerably increased insight into the gene expression changes that occur in diverse WM lesions and the gene expression fingerprint of specific WM cells associated with secondary progressive MS. Here, we review the ion channel genes encoding K+, Ca2+, Na+, and Cl- channels; ryanodine receptors; TRP channels; and others that are significantly and uniquely dysregulated in active, chronic active, inactive, remyelinating WM lesions, and normal-appearing WM of secondary progressive MS brain, based on recently published bulk and single-nuclei RNA-sequencing datasets. We discuss the current state of knowledge about the corresponding ion channels and their implication in the MS brain or in experimental models of MS. This comprehensive review suggests that the intense upregulation of voltage-gated Na+ channel genes in WM lesions with ongoing tissue damage may reflect the imbalance of Na+ homeostasis that is observed in progressive MS brain, while the upregulation of a large number of voltage-gated K+ channel genes may be linked to a protective response to limit neuronal excitability. In addition, the altered chloride homeostasis, revealed by the significant downregulation of voltage-gated Cl- channels in MS lesions, may contribute to an altered inhibitory neurotransmission and increased excitability.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Maria Louise Elkjaer
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
10
|
Pooyan P, Karamzadeh R, Mirzaei M, Meyfour A, Amirkhan A, Wu Y, Gupta V, Baharvand H, Javan M, Salekdeh GH. The Dynamic Proteome of Oligodendrocyte Lineage Differentiation Features Planar Cell Polarity and Macroautophagy Pathways. Gigascience 2020; 9:5945159. [PMID: 33128372 PMCID: PMC7601170 DOI: 10.1093/gigascience/giaa116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/22/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Background Generation of oligodendrocytes is a sophisticated multistep process, the mechanistic underpinnings of which are not fully understood and demand further investigation. To systematically profile proteome dynamics during human embryonic stem cell differentiation into oligodendrocytes, we applied in-depth quantitative proteomics at different developmental stages and monitored changes in protein abundance using a multiplexed tandem mass tag-based proteomics approach. Findings Our proteome data provided a comprehensive protein expression profile that highlighted specific expression clusters based on the protein abundances over the course of human oligodendrocyte lineage differentiation. We identified the eminence of the planar cell polarity signalling and autophagy (particularly macroautophagy) in the progression of oligodendrocyte lineage differentiation—the cooperation of which is assisted by 106 and 77 proteins, respectively, that showed significant expression changes in this differentiation process. Furthermore, differentially expressed protein analysis of the proteome profile of oligodendrocyte lineage cells revealed 378 proteins that were specifically upregulated only in 1 differentiation stage. In addition, comparative pairwise analysis of differentiation stages demonstrated that abundances of 352 proteins differentially changed between consecutive differentiation time points. Conclusions Our study provides a comprehensive systematic proteomics profile of oligodendrocyte lineage cells that can serve as a resource for identifying novel biomarkers from these cells and for indicating numerous proteins that may contribute to regulating the development of myelinating oligodendrocytes and other cells of oligodendrocyte lineage. We showed the importance of planar cell polarity signalling in oligodendrocyte lineage differentiation and revealed the autophagy-related proteins that participate in oligodendrocyte lineage differentiation.
Collapse
Affiliation(s)
- Paria Pooyan
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran.,Department of Brain and Cognitive Science, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
| | - Razieh Karamzadeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran.,Department of Brain and Cognitive Science, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
| | - Mehdi Mirzaei
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.,Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW 2109, Australia
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Daneshjoo Blv., Velenjak, Tehran 19839-63113, Iran
| | - Ardeshir Amirkhan
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW 2109, Australia
| | - Yunqi Wu
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW 2109, Australia
| | - Vivek Gupta
- Department of Clinical Medicine, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran.,Department of Brain and Cognitive Science, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran.,Department of Developmental Biology, University of Science and Culture, Ashrafi Esfahani, Tehran 1461968151, Iran
| | - Mohammad Javan
- Department of Brain and Cognitive Science, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran.,Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal AleAhmad, Tehran 14115-111, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran.,Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| |
Collapse
|
11
|
Bassetti D, Hammann J, Luhmann HJ, White R, Kirischuk S. Ryanodine receptor- and sodium-calcium exchanger-mediated spontaneous calcium activity in immature oligodendrocytes in cultures. Neurosci Lett 2020; 732:134913. [PMID: 32482568 DOI: 10.1016/j.neulet.2020.134913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/03/2020] [Accepted: 03/12/2020] [Indexed: 11/17/2022]
Abstract
Myelination in the central nervous system depends on interactions between axons and oligodendrocyte precursor cells (OPCs). Action potentials in an axon can be followed by release of biologically active substances, like glutamate, which can instruct OPCs to start myelination. Myelin Basic Protein (MBP) is an "executive molecule of myelin" required for the formation of compact myelin. As cells of the oligodendrocyte lineage (OLCs) are capable of producing MBP in pure oligodendrocyte cultures, i.e. without neurons, we investigated Ca2+ signaling in developing OLCs in cultures. We show that spontaneous Ca2+ transients (CTs) occur at very low frequency in both bipolar OPCs and mature oligodendrocytes. In contrast immature OLCs (imOLCs), cells with several thick processes, demonstrate a relatively high frequency of CTs. Moreover, CT frequency in imOLC processes is much higher as compared with the somatic CT frequency. Somatic CTs are almost completely blocked by thapsigargin, an antagonist of sarco-(endo-) plasmic reticulum Ca2+ ATPase, and ryanodine, a blocker of ryanodine receptors, indicating an involvement of Ca2+ release from the endoplasmic reticulum. Ryanodine strongly reduces CT frequency in imOLC processes. Ouabain, an antagonist of Na+, K+-ATPase (NKA), applied at low concentration increases CT frequency, while KB-R7943, a blocker of reverse mode of Na+, Ca2+ exchanger (NCX), decreases CT frequency. We suggest that local RyR-NCX-(NKA?) interaction might underlie the generation of CTs in imOLC in the absence of neurons, and this activity influences oligodendrocyte maturation.
Collapse
Affiliation(s)
- Davide Bassetti
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jens Hammann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Robin White
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
12
|
Neuron-oligodendroglia interactions: Activity-dependent regulation of cellular signaling. Neurosci Lett 2020; 727:134916. [PMID: 32194135 DOI: 10.1016/j.neulet.2020.134916] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 12/31/2022]
Abstract
Oligodendrocyte lineage cells (oligodendroglia) and neurons engage in bidirectional communication throughout life to support healthy brain function. Recent work shows that changes in neuronal activity can modulate proliferation, differentiation, and myelination to support the formation and function of neural circuits. While oligodendroglia express a diverse collection of receptors for growth factors, signaling molecules, neurotransmitters and neuromodulators, our knowledge of the intracellular signaling pathways that are regulated by neuronal activity remains largely incomplete. Many of the pathways that modulate oligodendroglia behavior are driven by changes in intracellular calcium signaling, which may differentially affect cytoskeletal dynamics, gene expression, maturation, integration, and axonal support. Additionally, activity-dependent neuron-oligodendroglia communication plays an integral role in the recovery from demyelinating injuries. In this review, we summarize the modalities of communication between neurons and oligodendroglia and explore possible roles of activity-dependent calcium signaling in mediating cellular behavior and myelination.
Collapse
|
13
|
Strategies for Neuroprotection in Multiple Sclerosis and the Role of Calcium. Int J Mol Sci 2020; 21:ijms21051663. [PMID: 32121306 PMCID: PMC7084497 DOI: 10.3390/ijms21051663] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/16/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Calcium ions are vital for maintaining the physiological and biochemical processes inside cells. The central nervous system (CNS) is particularly dependent on calcium homeostasis and its dysregulation has been associated with several neurodegenerative disorders including Parkinson’s disease (PD), Alzheimer’s disease (AD) and Huntington’s disease (HD), as well as with multiple sclerosis (MS). Hence, the modulation of calcium influx into the cells and the targeting of calcium-mediated signaling pathways may present a promising therapeutic approach for these diseases. This review provides an overview on calcium channels in neurons and glial cells. Special emphasis is put on MS, a chronic autoimmune disease of the CNS. While the initial relapsing-remitting stage of MS can be treated effectively with immune modulatory and immunosuppressive drugs, the subsequent progressive stage has remained largely untreatable. Here we summarize several approaches that have been and are currently being tested for their neuroprotective capacities in MS and we discuss which role calcium could play in this regard.
Collapse
|
14
|
Abstract
Cells of the oligodendrocyte lineage express a wide range of Ca2+ channels and receptors that regulate oligodendrocyte progenitor cell (OPC) and oligodendrocyte formation and function. Here we define those key channels and receptors that regulate Ca2+ signaling and OPC development and myelination. We then discuss how the regulation of intracellular Ca2+ in turn affects OPC and oligodendrocyte biology in the healthy nervous system and under pathological conditions. Activation of Ca2+ channels and receptors in OPCs and oligodendrocytes by neurotransmitters converges on regulating intracellular Ca2+, making Ca2+ signaling a central candidate mediator of activity-driven myelination. Indeed, recent evidence indicates that localized changes in Ca2+ in oligodendrocytes can regulate the formation and remodeling of myelin sheaths and perhaps additional functions of oligodendrocytes and OPCs. Thus, decoding how OPCs and myelinating oligodendrocytes integrate and process Ca2+ signals will be important to fully understand central nervous system formation, health, and function.
Collapse
Affiliation(s)
- Pablo M Paez
- Department of Pharmacology and Toxicology and Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York 14203, USA;
| | - David A Lyons
- Centre for Discovery Brain Sciences, Centre for Multiple Sclerosis Research, and Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom;
| |
Collapse
|
15
|
Zhang M, Liu Y, Wu S, Zhao X. Ca 2+ Signaling in Oligodendrocyte Development. Cell Mol Neurobiol 2019; 39:1071-1080. [PMID: 31222426 DOI: 10.1007/s10571-019-00705-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/11/2019] [Indexed: 12/31/2022]
Abstract
Calcium signaling has essential roles in the development of the nervous system, from neural induction to the proliferation, migration, and differentiation of both neuronal and glia cells. The temporal and spatial dynamics of Ca2+ signals control the highly diverse yet specific transcriptional programs that establish the complex structures of the nervous system. Ca2+-signaling pathways are shaped by interactions among metabotropic signaling cascades, ion channels, intracellular Ca2+ stores, and a multitude of downstream effector proteins that activate specific genetic programs. Progress in the last decade has led to significant advances in our understanding of the functional architecture of Ca2+ signaling networks involved in oligodendrocyte development. In this review, we summarize the molecular and functional organizations of Ca2+-signaling networks during the differentiation of oligodendrocyte, especially its impact on myelin gene expression, proliferation, migration, and myelination. Importantly, the existence of multiple routes of Ca2+ influx opens the possibility that the activity of calcium channels can be manipulated pharmacologically to encourage oligodendrocyte maturation and remyelination after demyelinating episodes in the brain.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Neurobiology, Collaborative Innovation Center for Brain Science and Shaanxi Key Laboratory of Brain Disorders, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuming Liu
- Department of Neurobiology, Collaborative Innovation Center for Brain Science and Shaanxi Key Laboratory of Brain Disorders, Fourth Military Medical University, Xi'an, 710032, China
| | - Shengxi Wu
- Department of Neurobiology, Collaborative Innovation Center for Brain Science and Shaanxi Key Laboratory of Brain Disorders, Fourth Military Medical University, Xi'an, 710032, China.
| | - Xianghui Zhao
- Department of Neurobiology, Collaborative Innovation Center for Brain Science and Shaanxi Key Laboratory of Brain Disorders, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
16
|
Singh V, Mishra VN, Chaurasia RN, Joshi D, Pandey V. Modes of Calcium Regulation in Ischemic Neuron. Indian J Clin Biochem 2019; 34:246-253. [PMID: 31391713 PMCID: PMC6660593 DOI: 10.1007/s12291-019-00838-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022]
Abstract
Calcium (Ca2+) dysregulation is a major catalytic event. Ca2+ dysregulation leads to neuronal cell death and brain damage result in cerebral ischemia. Neurons are unable in maintaining calcium homeostasis. Ca2+ homeostasis imbalance results in increased calcium influx and impaired calcium extrusion across the plasma membrane. Ca2+ dysregulation is mediated by different cellular and biochemical mechanism, which leads to neuronal loss resulting stroke/cerebral ischemia. A better understanding of the Ca2+ dysregulation might help in the development of new treatments in order to reduce ischemic brain injury. An optimal concentration of Ca2+ does not lead to neurotoxicity in the ischemic neuron. Intracellular Ca2+ act as a trigger for acute neurotoxicity and this cause induction of long-lasting processes leading to necrotic and/or apoptotic post-ischemic delayed neuronal death or of compensatory, neuroprotective mechanisms has increased considerably. Moreover, routes of ischemic Ca2+ influx to neurons, involvement of intracellular Ca2+ stores and Ca2+ buffers, spatial and temporal relations between ischemia-induced increases in intracellular Ca2+ concentration and neurotoxicity will further increase our understanding about underlying mechanism and they can act as a target for the development of drugs. Here, in our article we are trying to provide a brief overview of various Ca2+ influx pathways involve in ischemic neuron and how ischemic neuron attempts to counterbalance this calcium overload.
Collapse
Affiliation(s)
- Vineeta Singh
- Department of Neurology, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005 UP India
| | - Vijaya Nath Mishra
- Department of Neurology, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005 UP India
| | - Rameshwar Nath Chaurasia
- Department of Neurology, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005 UP India
| | - Deepika Joshi
- Department of Neurology, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005 UP India
| | - Vibha Pandey
- Department of Neurology, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005 UP India
| |
Collapse
|
17
|
Albrecht S, Korr S, Nowack L, Narayanan V, Starost L, Stortz F, Araúzo‐Bravo MJ, Meuth SG, Kuhlmann T, Hundehege P. The K
2P
‐channel TASK1 affects Oligodendroglial differentiation but not myelin restoration. Glia 2019; 67:870-883. [DOI: 10.1002/glia.23577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Stefanie Albrecht
- Institute of NeuropathologyUniversity Hospital Münster Münster Germany
| | - Sabrina Korr
- Institute of NeuropathologyUniversity Hospital Münster Münster Germany
- Department of Neurology with Institute of Translational NeurologyUniversity Hospital Münster Münster Germany
- Cells in Motion, Cluster of Excellence Münster Germany
| | - Luise Nowack
- Institute of NeuropathologyUniversity Hospital Münster Münster Germany
- Department of Neurology with Institute of Translational NeurologyUniversity Hospital Münster Münster Germany
| | - Venu Narayanan
- Department of Neurology with Institute of Translational NeurologyUniversity Hospital Münster Münster Germany
| | - Laura Starost
- Institute of NeuropathologyUniversity Hospital Münster Münster Germany
| | - Franziska Stortz
- Institute of NeuropathologyUniversity Hospital Münster Münster Germany
| | - Marcos J. Araúzo‐Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute San Sebastian Spain
- IKERBASQUE, Basque Foundation for Science Bilbao Spain
| | - Sven G. Meuth
- Department of Neurology with Institute of Translational NeurologyUniversity Hospital Münster Münster Germany
- Cells in Motion, Cluster of Excellence Münster Germany
| | - Tanja Kuhlmann
- Institute of NeuropathologyUniversity Hospital Münster Münster Germany
| | - Petra Hundehege
- Department of Neurology with Institute of Translational NeurologyUniversity Hospital Münster Münster Germany
- Cells in Motion, Cluster of Excellence Münster Germany
| |
Collapse
|