1
|
Wolf HN, Guempelein L, Schikora J, Pauly D. C3a Mediates Endothelial Barrier Disruption in Brain-Derived, but Not Retinal, Human Endothelial Cells. Int J Mol Sci 2024; 25:11240. [PMID: 39457022 PMCID: PMC11508547 DOI: 10.3390/ijms252011240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is associated with pathological aquaporin-4 immunoglobulin G (AQP4-IgG), which cause brain damage. However, the impact of AQP4-IgG on retinal tissue remains unclear. Additionally, dysregulated complement anaphylatoxins C3a and C5a, known to modulate the endothelial barrier, are implicated in NMOSD. This study evaluates the susceptibility of human brain microvascular endothelial cells (HBMEC) and human retinal endothelial cells (HREC) to C3a- and C5a-mediated stress using real-time cell barrier analysis, immunocytochemical staining, qPCR and IgG transmigration assays. The findings reveal that C3a induced a concentration-dependent paracellular barrier breakdown and increased transcellular permeability in HBMEC, while HREC maintained barrier integrity under the same conditions. C5a attenuated C3a-induced disruption in HBMEC, indicating a protective role. Anaphylatoxin treatment elevated transcript levels of complement component C3 and increased C5 gene and protein expression in HREC, with no changes observed in HBMEC. In HBMEC, C5a treatment led to a transient upregulation of C3a receptor (C3AR) mRNA and an early decrease in C5a receptor 1 (C5AR1) protein detection. Conversely, HREC exhibited a late increase in C5aR1 protein levels. These results indicate that the retinal endothelial barrier is more stable under anaphylatoxin-induced stress compared to the brain, potentially offering better protection against paracellular AQP4-IgG transport.
Collapse
Affiliation(s)
| | | | | | - Diana Pauly
- Department of Experimental Ophthalmology, University Marburg, 35043 Marburg, Germany
| |
Collapse
|
2
|
Gnanaguru G, Tabor SJ, Bonilla GM, Sadreyev R, Yuda K, Köhl J, Connor KM. Microglia refine developing retinal astrocytic and vascular networks through the complement C3/C3aR axis. Development 2023; 150:dev201047. [PMID: 36762625 PMCID: PMC10110418 DOI: 10.1242/dev.201047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Microglia, a resident immune cell of the central nervous system (CNS), play a pivotal role in facilitating neurovascular development through mechanisms that are not fully understood. Previous reports indicate a role for microglia in regulating astrocyte density. This current work resolves the mechanism through which microglia facilitate astrocyte spatial patterning and superficial vascular bed formation in the neuroretina during development. Ablation of microglia increased astrocyte density and altered spatial patterning. Mechanistically, we show that microglia regulate the formation of the spatially organized astrocyte template required for subsequent vascular growth, through the complement C3/C3aR axis during neuroretinal development. Lack of C3 or C3aR hindered the developmental phagocytic removal of astrocyte bodies and resulted in increased astrocyte density. In addition, increased astrocyte density was associated with elevated proangiogenic extracellular matrix gene expression in C3- and C3aR-deficient retinas, resulting in increased vascular density. These data demonstrate that microglia regulate developmental astrocyte and vascular network spatial patterning in the neuroretina via the complement axis.
Collapse
Affiliation(s)
- Gopalan Gnanaguru
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Steven J. Tabor
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Gracia M. Bonilla
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kentaro Yuda
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kip M. Connor
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
3
|
Functional and Expressional Analyses Reveal the Distinct Role of Complement Factor I in Regulating Complement System Activation during GCRV Infection in Ctenopharyngodon idella. Int J Mol Sci 2022; 23:ijms231911369. [PMID: 36232671 PMCID: PMC9569754 DOI: 10.3390/ijms231911369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Complement factor I (CFI), a complement inhibitor, is well known for regulating the complement system activation by degrading complement component 3b (C3b) in animal serum, thus becoming involved in innate defense. Nevertheless, the functional mechanisms of CFI in the complement system and in host-pathogen interactions are far from being clarified in teleost fish. In the present study, we cloned and characterized the CFI gene, CiCFI, from grass carp (Ctenopharyngodon idella) and analyzed its function in degrading serum C3b and expression changes after grass carp reovirus (GCRV) infection. The open reading frame of CiCFI was found to be 2121 bp, encoding 706 amino acids with a molecular mass of 79.06 kDa. The pairwise alignments showed that CiCFI shared the highest identity (66.9%) with CFI from Carassius gibelio and the highest similarity (78.7%) with CFI from Danio rerio. The CiCFI protein was characterized by a conserved functional core Tryp_SPc domain with the catalytic triad and substrate binding sites. Phylogenetic analysis indicated that CiCFI and the homologs CFIs from other teleost fish formed a distinct evolutionary branch. Similar with the CFIs reported in mammals, the recombinant CiCFI protein could significantly reduce the C3b content in the serum, demonstrating the conserved function of CiCFI in the complement system in the grass carp. CiCFI mRNA and protein showed the highest expression level in the liver. After GCRV infection, the mRNA expressions of CiCFI were first down-regulated, then up-regulated, and then down-regulated to the initial level, while the protein expression levels maintained an overall downward trend to the late stage of infection in the liver of grass carps. Unexpectedly, the protein levels of CiCFI were also continuously down-regulated in the serum of grass carps during GCRV infection, while the content of serum C3b proteins first increases and then returns to the initial level, suggesting a distinct role of CiCFI in regulating complement activation and fish-virus interaction. Combining our previous results that complement factor D, a complement enhancer, shows continuously up-regulated expression levels in grass carps during GCRV infection, and this study may provide the further essential data for the full picture of complex complement regulation mechanism mediated by Df and CFI of the grass carp during pathogen infection.
Collapse
|
4
|
Guo L, Choi S, Bikkannavar P, Cordeiro MF. Microglia: Key Players in Retinal Ageing and Neurodegeneration. Front Cell Neurosci 2022; 16:804782. [PMID: 35370560 PMCID: PMC8968040 DOI: 10.3389/fncel.2022.804782] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/11/2022] [Indexed: 12/20/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS) and play a key role in maintaining the normal function of the retina and brain. During early development, microglia migrate into the retina, transform into a highly ramified phenotype, and scan their environment constantly. Microglia can be activated by any homeostatic disturbance that may endanger neurons and threaten tissue integrity. Once activated, the young microglia exhibit a high diversity in their phenotypes as well as their functions, which relate to either beneficial or harmful consequences. Microglial activation is associated with the release of cytokines, chemokines, and growth factors that can determine pathological outcomes. As the professional phagocytes in the retina, microglia are responsible for the clearance of pathogens, dead cells, and protein aggregates. However, their phenotypic diversity and phagocytic capacity is compromised with ageing. This may result in the accumulation of protein aggregates and myelin debris leading to retinal neuroinflammation and neurodegeneration. In this review, we describe microglial phenotypes and functions in the context of the young and ageing retina, and the mechanisms underlying changes in ageing. Additionally, we review microglia-mediated retinal neuroinflammation and discuss the mechanisms of microglial involvement in retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Li Guo
- Institute of Ophthalmology, University College London, London, United Kingdom
- *Correspondence: Li Guo,
| | - Soyoung Choi
- Institute of Ophthalmology, University College London, London, United Kingdom
| | | | - M. Francesca Cordeiro
- Institute of Ophthalmology, University College London, London, United Kingdom
- Imperial College Ophthalmology Research Group, Imperial College London, London, United Kingdom
- M. Francesca Cordeiro,
| |
Collapse
|
5
|
Zimmerlin L, Park TS, Bhutto I, Lutty G, Zambidis ET. Generation of Pericytic-Vascular Progenitors from Tankyrase/PARP-Inhibitor-Regulated Naïve (TIRN) Human Pluripotent Stem Cells. Methods Mol Biol 2022; 2416:133-156. [PMID: 34870835 PMCID: PMC9529319 DOI: 10.1007/978-1-0716-1908-7_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tankyrase/PARP inhibitor-regulated naïve human pluripotent stem cells (TIRN-hPSC) represent a new class of human stem cells for regenerative medicine that can differentiate into multi-lineage progenitors with improved in vivo functionality. Chemical reversion of conventional, primed hPSC to a TIRN-hPSC state alleviates dysfunctional epigenetic donor cell memory, lineage-primed gene expression, and potentially disease-associated aberrations in their differentiated progeny. Here, we provide methods for the reversion of normal or diseased patient-specific primed hPSC to TIRN-hPSC and describe their subsequent differentiation into embryonic-like pericytic-endothelial "naïve" vascular progenitors (N-VP). N-VP possess improved vascular functionality, high epigenetic plasticity, maintain greater genomic stability, and are more efficient in migrating to and re-vascularizing ischemic tissues than those generated from primed isogenic hPSC. We also describe detailed methods for the ocular transplantation and quantitation of vascular engraftment of N-VP into the ischemia-damaged neural retina of a humanized mouse model of ischemic retinopathy. The application of TIRN-hPSC-derived N-VP will advance vascular cell therapies of ischemic retinopathy, myocardial infarction, and cerebral vascular stroke.
Collapse
Affiliation(s)
- Ludovic Zimmerlin
- Sidney Kimmel Comprehensive Cancer Center, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tea Soon Park
- Sidney Kimmel Comprehensive Cancer Center, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Imran Bhutto
- Sidney Kimmel Comprehensive Cancer Center, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerard Lutty
- Sidney Kimmel Comprehensive Cancer Center, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elias T Zambidis
- Sidney Kimmel Comprehensive Cancer Center, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Functional Identification of Complement Factor D and Analysis of Its Expression during GCRV Infection in Grass Carp ( Ctenopharyngodon idella). Int J Mol Sci 2021; 22:ijms222112011. [PMID: 34769442 PMCID: PMC8584590 DOI: 10.3390/ijms222112011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Complement factor D (Df) is a serine protease well known for activating the alternative pathway (AP) in mammals by promoting the cleavage of complement component 3 (C3), thus becoming involved in innate defense. In teleost fish, however, the functional mechanisms of Df in the AP and against pathogen infection are far from clear. In the present study, we cloned and characterized the Df gene, CiDf, from grass carp (Ctenopharyngodon idella) and analyzed its function in promoting C3 cleavage and expression changes after grass carp reovirus (GCRV) infection. The open reading frame of CiDf was found to be 753 bp, encoding 250 amino acids with a molecular mass of 27.06 kDa. CiDf harbors a conserved Tryp_SPc domain, with three conserved residues representing the catalytic triad and three conserved binding sites in the substrate specificity pocket. Pairwise alignment showed that CiDf shares the highest identity (96%) and similarity (98%) with Df from Anabarilius grahami. Phylogenetic analysis indicated that CiDf and other fish Dfs formed a distinct evolutionary branch. Similar to most Dfs from other vertebrates, the CiDf gene structure is characterized by four introns and five exons. The incubation of recombinant CiDf protein with grass carp serum significantly increased the C3b content, demonstrating the conserved function of CiDf in the AP in promoting C3 cleavage, similar to Dfs in mammals. CiDf mRNA expression was widely detected in various tissues and levels were relatively higher in the liver, spleen, and intestine of grass carp. During GCRV infection over a 168-hour period, a high level of CiDf mRNA expression in the liver, spleen, and intestine was maintained at 144 and 168 h, suggesting AP activity at the late stage of GCRV infection. Collectively, the above results reveal the conserved structure and function of CiDf and its distinct expression patterns after GCRV infection, which provide a key basis for studying the roles of Df and AP during GCRV infection in the grass carp C. idella.
Collapse
|
7
|
N-acetylserotonin alleviated the expression of interleukin-1β in retinal ischemia-reperfusion rats via the TLR4/NF-κB/NLRP3 pathway. Exp Eye Res 2021; 208:108595. [PMID: 34000276 DOI: 10.1016/j.exer.2021.108595] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/09/2021] [Accepted: 04/18/2021] [Indexed: 11/20/2022]
Abstract
This study aimed to explore the effects of N-acetylserotonin (NAS) on the expression of interleukin-1β (IL-1β) in the retina of retinal ischemia-reperfusion injury (RIRI) rats via the toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/nod-like receptor pyrin domain containing 3 (NLRP3) signaling pathway. In this study, adult male Sprague Dawley rats were randomly divided into the sham, RIRI, RIRI + NAS and RIRI + TAK-242 + NAS groups. The rats in the RIRI + NAS and RIRI + TAK-242 + NAS groups were intraperitoneally injected with NAS 30 min before and after modeling. TAK-242, a selective TLR4 inhibitor, was administered by intraperitoneal injection in RIRI + TAK-242 + NAS group. The RIRI rat model was established by elevating the intraocular pressure to 110 mmHg for 60 min. The retinal structure and edema were assessed by H&E staining. The expression levels of TLR4, phosphorylated NF-κB (p-NF-κB), NLRP3, cleaved Caspase-1, and IL-1β in the retina of each group were detected using immunohistochemistry and Western blot. The correlations of the differences of TLR4+ and cleaved Caspase-1+ with IL-1β+ cells (between the NAS and the RIRI groups) were analyzed, using linear regression in the RIRI + NAS group. Results showed that thinner retina, more RGCs, and less TLR4+, p-NF-κB+, NLRP3+, cleaved Caspase-1+, and IL-1β+ cells in the retina were observed in the RIRI + NAS and RIRI + TAK-242 + NAS groups compared with the RIRI group 12 h after RIRI (all P < 0.01). Western blot analysis results showed that the expression of IL-1β in the RIRI + NAS group began to increase 6 h after RIRI, and it reached a high level 12 h after RIRI, and then decreased. And it was lower at each time point in the RIRI + NAS group than in the RIRI group, and there existed significant difference (all P < 0.01). Besides, the expression levels of TLR4, p-NF-κB, NLRP3, and cleaved Caspase-1 proteins in the RIRI + NAS and RIRI + TAK-242 + NAS groups decreased 12 h after RIRI compared with those in the RIRI group (all P < 0.01). The difference in IL-1β+ cells was significantly correlated with those of TLR4+ and cleaved Caspase-1+ cells in the RIRI + NAS group (r2 = 0.9054 or 0.7431, P < 0.01). In conclusion, NAS could attenuate the expression of IL-1β by inhibiting the TLR4/NF-κB/NLRP3 signaling pathway, reduce the retina edema, and promote the survival of RGCs, thereby alleviating the retinal injury and exert its neuroprotective effect.
Collapse
|
8
|
Matveev DV, Kuznetsov MR, Matveev AD, Evteev AV, Fedorov EE. [Reperfusion syndrome: state of the art]. ANGIOLOGII︠A︡ I SOSUDISTAI︠A︡ KHIRURGII︠A︡ = ANGIOLOGY AND VASCULAR SURGERY 2020; 26:176-183. [PMID: 33332321 DOI: 10.33529/angio2020421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Reperfusion syndrome is a complex series of clinical manifestations resulting from restoration of blood flow to previously ischaemic tissues. It is accompanied by damage to cells, tissues and organs at various levels, followed by the development of multiple organ failure. This review deals with the main pathophysiological mechanisms of the development of reperfusion syndrome in lesions of cardiac, cerebral and lower-limb vessels. Oxidative stress is considered to be the most important marker of ischaemia-reperfusion injury irrespective of the type of tissues affected. Presented herein are the data on contemporary possibilities of influencing various stages and components of the development of reperfusion injury by means of drug therapy, demonstrating that due to the importance of oxidative stress as a key link of reperfusion injury, antioxidant therapy should be the main component of prevention and treatment of reperfusion injury.
Collapse
Affiliation(s)
- D V Matveev
- Department of Surgery, Russian Medical Academy of Continuous Professional Education, RF Ministry of Public Health, Moscow, Russia
| | - M R Kuznetsov
- Institute of Cluster Oncology named after L.L. Levshin, I.M. Sechenov First Moscow Medical University, Moscow, Russia
| | - A D Matveev
- Department of Surgery, Russian Medical Academy of Continuous Professional Education, RF Ministry of Public Health, Moscow, Russia
| | - A V Evteev
- Scientific Company "Flamena", Reutov, Moscow Region, Russia
| | - E E Fedorov
- Surgical Department #1, Municipal Clinical Hospital #29 named after N.E. Bauman, Moscow, Russia
| |
Collapse
|
9
|
Kinuthia UM, Wolf A, Langmann T. Microglia and Inflammatory Responses in Diabetic Retinopathy. Front Immunol 2020; 11:564077. [PMID: 33240260 PMCID: PMC7681237 DOI: 10.3389/fimmu.2020.564077] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic retinopathy is a vision-threatening disease affecting neurons and microvasculature of the retina. The development of this disease is associated with the action of inflammatory factors that are connected to the activation of microglial cells, the resident tissue macrophages of the CNS. In the quiescent state, microglial cells help maintain tissue homeostasis in the retina through phagocytosis and control of low-grade inflammation. However, prolonged tissue stress due to hyperglycemia primes microglia to become overly reactive with the concomitant production of pro-inflammatory cytokines and chemokines causing chronic inflammation. In this review, we provide evidence of microglial cell activation and pro-inflammatory molecules associated with the development and progression of diabetic retinopathy. We further highlight innovative animal models that can mimic the disease in humans and discuss strategies in modulating microglial-mediated inflammation as potential therapeutic approaches in managing the disease.
Collapse
Affiliation(s)
- Urbanus Muthai Kinuthia
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Anne Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Shahulhameed S, Vishwakarma S, Chhablani J, Tyagi M, Pappuru RR, Jakati S, Chakrabarti S, Kaur I. A Systematic Investigation on Complement Pathway Activation in Diabetic Retinopathy. Front Immunol 2020; 11:154. [PMID: 32117292 PMCID: PMC7026189 DOI: 10.3389/fimmu.2020.00154] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/21/2020] [Indexed: 01/15/2023] Open
Abstract
The complement system plays a crucial role in retinal homeostasis. While the proteomic analysis of ocular tissues in diabetic retinopathy (DR) has shown the deposition of complement proteins, their exact role in the pathogenesis of DR is yet unclear. We performed a detailed investigation of the role of the complement system by evaluating the levels of major complement proteins including C3, C1q, C4b, Complement Factor B (CFB), and Complement Factor H (CFH) and their activated fragments from both the classical and alternative pathways in vitreous humor and serum samples from proliferative DR (PDR) patients and controls. Further, the expressions of complements and several other key pro- and anti-angiogenic genes in the serum and vitreous humor were analyzed in the blood samples of PDR and non-PDR (NPDR) patients along with controls without diabetes. We also assessed the pro-inflammatory cytokines and matrix metalloproteinases in the vitreous humor samples. There was a significant increase in C3 and its activated fragment C3bα' (110 kDa) along with a corresponding upregulation of CFH in the vitreous of PDR patients, which confirmed the increased activation of the alternative complement pathway in PDR. Likewise, a significant upregulation of angiogenic genes and downregulation of anti-angiogenic genes was seen in PDR and NPDR cases. Increased MMP9 activity and upregulation of inflammatory markers IL8 and sPECAM with a downregulation of anti-inflammatory marker IL-10 in PDR vitreous indicated the possible involvement of microglia in DR pathogenesis. Further, a significantly high C3 deposition in the capillary wall along with thickening of basement membranes and co-localization of CFH expression with CD11b+ve activated microglial cells in diabetic retina suggested microglia as a source of CFH in diabetic retina. The increased CFH levels could be a feedback mechanism for arresting excessive complement activation in DR eyes. A gradual increase of CFH and CD11b expression in retina with early to late changes in epiretinal membranes of DR patients indicated a major role for the alternative complement pathway in disease progression.
Collapse
Affiliation(s)
- Shahna Shahulhameed
- Prof Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Sushma Vishwakarma
- Prof Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Jay Chhablani
- Smt. Kanuri Santhamma Center for Vitreo Retinal Diseases, LV Prasad Eye Institute, Hyderabad, India.,Medical Retina and Vitreoretinal Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Mudit Tyagi
- Smt. Kanuri Santhamma Center for Vitreo Retinal Diseases, LV Prasad Eye Institute, Hyderabad, India
| | - Rajeev R Pappuru
- Medical Retina and Vitreoretinal Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Saumya Jakati
- Ophthalmic Pathology Laboratory, LV Prasad Eye Institute, Hyderabad, India
| | | | - Inderjeet Kaur
- Prof Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| |
Collapse
|