1
|
Rodriguez-Hernandez MA, Alemany I, Olofsson JK, Diaz-Galvan P, Nemy M, Westman E, Barroso J, Ferreira D, Cedres N. Degeneration of the cholinergic system in individuals with subjective cognitive decline: A systematic review. Neurosci Biobehav Rev 2024; 157:105534. [PMID: 38220033 DOI: 10.1016/j.neubiorev.2024.105534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Subjective cognitive decline (SCD) is a risk factor for future cognitive impairment and dementia. It is uncertain whether the neurodegeneration of the cholinergic system is already present in SCD individuals. We aimed to review the current evidence about the association between SCD and biomarkers of degeneration in the cholinergic system. METHOD Original articles were extracted from three databases: Pubmed, Web of Sciences, and Scopus, in January 2023. Two researchers screened the studies independently. RESULTS A total of 11 research articles were selected. SCD was mostly based on amnestic cognitive complaints. Cholinergic system biomarkers included neuroimaging markers of basal forebrain volume, functional connectivity, transcranial magnetic stimulation, or biofluid. The evidence showed associations between basal forebrain atrophy, poorer connectivity of the cholinergic system, and SCD CONCLUSIONS: Degenerative changes in the cholinergic system can be present in SCD. Subjective complaints may help when identifying individuals with brain changes that are associated with cognitive impairment. These findings may have important implications in targeting individuals that may benefit from cholinergic-target treatments at very early stages of neurodegenerative diseases.
Collapse
Affiliation(s)
- Marta A Rodriguez-Hernandez
- Department of Psychology, Faculty of Health Sciences, University Fernando Pessoa-Canarias, Santa María de Guia, Spain
| | - Iris Alemany
- Department of Psychology, Faculty of Health Sciences, University Fernando Pessoa-Canarias, Santa María de Guia, Spain
| | - Jonas K Olofsson
- Department of Psychology, Sensory Cognitive Interaction Laboratory (SCI-lab), Stockholm University, Stockholm, Sweden
| | | | - Milan Nemy
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic; Department of Biomedical Engineering and Assistive Technology, Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Center for Alzheimer Research, Stockholm, Sweden; Division of Clinical Geriatrics, Care Sciences and Society. Karolinska Institutet, Stockholm, Sweden
| | - Eric Westman
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Center for Alzheimer Research, Stockholm, Sweden; Division of Clinical Geriatrics, Care Sciences and Society. Karolinska Institutet, Stockholm, Sweden; Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jose Barroso
- Department of Psychology, Faculty of Health Sciences, University Fernando Pessoa-Canarias, Santa María de Guia, Spain
| | - Daniel Ferreira
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Center for Alzheimer Research, Stockholm, Sweden; Division of Clinical Geriatrics, Care Sciences and Society. Karolinska Institutet, Stockholm, Sweden
| | - Nira Cedres
- Department of Psychology, Faculty of Health Sciences, University Fernando Pessoa-Canarias, Santa María de Guia, Spain; Department of Psychology, Sensory Cognitive Interaction Laboratory (SCI-lab), Stockholm University, Stockholm, Sweden; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Center for Alzheimer Research, Stockholm, Sweden; Division of Clinical Geriatrics, Care Sciences and Society. Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Thakur B, Hasooni LP, Gera R, Mitra S, Björndahl L, Darreh-Shori T. Presence of key cholinergic enzymes in human spermatozoa and seminal fluid†. Biol Reprod 2024; 110:63-77. [PMID: 37741056 PMCID: PMC10790344 DOI: 10.1093/biolre/ioad127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/11/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023] Open
Abstract
Little is known about the non-neuronal spermic cholinergic system, which may regulate sperm motility and the acrosome reaction initiation process. We investigated the presence of the key acetylcholine (ACh)-biosynthesizing enzyme, choline acetyltransferase (ChAT), and the acetylcholine-degrading enzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) and two ACh-receptors in human spermatozoa and seminal plasma. Fresh ejaculates were used for intra- and extracellular flow cytometric analysis of ChAT, AChE, BChE, and alpha-7-nicotinic and M1-muscarinic ACh-receptors in sperm. For determining the source of soluble enzymes, frozen seminal samples (n = 74) were selected on two bases: (1) from vasectomized (n = 37) and non-vasectomized (n = 37) subjects and (2) based on levels of alpha-glucosidase, fructose, or zinc to define sample subgroups with high or low fluid contribution from the epididymis and seminal vesicle, and prostate, respectively. Flow cytometric analyses revealed that ChAT was expressed intracellularly in essentially all spermatozoa. ChAT was also present in a readily membrane-detachable form at the extracellular membrane of at least 18% of the spermatozoa. These were also highly positive for intra- and extracellular BChE (>83%) and M1 (>84%) and α7 (>59%) ACh-receptors. Intriguingly, the sperm was negative for AChE. Analyses of seminal plasma revealed that spermatozoa and epididymides were major sources of soluble ChAT and BChE, whereas soluble AChE most likely originated from epididymides and seminal vesicles. Prostate had relatively minor contribution to the pool of the soluble enzymes in the seminal fluid. In conclusion, human spermatozoa exhibited a cholinergic phenotype and were one of the major sources of soluble ChAT and BChE in ejaculate. We also provide the first evidence for ChAT as an extracellularly membrane-anchored protein.
Collapse
Affiliation(s)
- Banita Thakur
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Laila Pamela Hasooni
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Ruchi Gera
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Sumonto Mitra
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Lars Björndahl
- ANOVA, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Taher Darreh-Shori
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Assaran AH, Hosseini M, Shirazinia M, Ghalibaf MHE, Beheshti F, Mobasheri L, Mirzavi F, Rajabian A. Neuro-protective Effect of Acetyl-11-keto-β-boswellic Acid in a Rat Model of Scopolamine-induced Cholinergic Dysfunction. Curr Pharm Des 2024; 30:140-150. [PMID: 38532323 DOI: 10.2174/0113816128269289231226115446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/07/2023] [Indexed: 03/28/2024]
Abstract
BACKGROUND Acetyl-11-keto-β-boswellic acid (AKBA) is a major component of the oleo-gum resin of B. serrata with multiple pharmacological activities. The objective of this study was to explore the underlying mechanisms of neuroprotective potential of AKBA against scopolamine-mediated cholinergic dysfunction and memory deficits in rats. METHODS The rats received AKBA (2.5, 5, and 10 mg/kg, oral) for 21 days. In the third week, scopolamine was administered 30 min before the Morris water maze and passive avoidance tests. In order to perform biochemical assessments, the hippocampus and prefrontal cortex were extracted from the rats euthanized under deep anesthesia. RESULTS In the MWM test, treatment with AKBA (5 and 10 mg/kg) decreased the latency and distance to find the platform. Moreover, in the PA test, AKBA remarkably increased latency to darkness and stayed time in lightness while decreasing the frequency of entry and time in the darkness. According to the biochemical assessments, AKBA decreased acetylcholinesterase activity and malondialdehyde levels while increasing antioxidant enzymes and total thiol content. Furthermore, AKBA administration restored the hippocampal mRNA and protein levels of brain-derived neurotrophic factor (BDNF) and mRNA expression of B-cell lymphoma (Bcl)- 2 and Bcl-2- associated X genes in brain tissue of scopolamine-injured rats. CONCLUSION The results suggested the effectiveness of AKBA in preventing learning and memory dysfunction induced by scopolamine. Accordingly, these protective effects might be produced by modulating BDNF, cholinergic system function, oxidative stress, and apoptotic markers.
Collapse
Affiliation(s)
- Amir Hossein Assaran
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matin Shirazinia
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Medical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Leila Mobasheri
- Department of Pharmacology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Arezoo Rajabian
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Amyloid β, Lipid Metabolism, Basal Cholinergic System, and Therapeutics in Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms232012092. [PMID: 36292947 PMCID: PMC9603563 DOI: 10.3390/ijms232012092] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 12/05/2022] Open
Abstract
The presence of insoluble aggregates of amyloid β (Aβ) in the form of neuritic plaques (NPs) is one of the main features that define Alzheimer’s disease. Studies have suggested that the accumulation of these peptides in the brain significantly contributes to extensive neuronal loss. Furthermore, the content and distribution of cholesterol in the membrane have been shown to have an important effect on the production and subsequent accumulation of Aβ peptides in the plasma membrane, contributing to dysfunction and neuronal death. The monomeric forms of these membrane-bound peptides undergo several conformational changes, ranging from oligomeric forms to beta-sheet structures, each presenting different levels of toxicity. Aβ peptides can be internalized by particular receptors and trigger changes from Tau phosphorylation to alterations in cognitive function, through dysfunction of the cholinergic system. The goal of this review is to summarize the current knowledge on the role of lipids in Alzheimer’s disease and their relationship with the basal cholinergic system, as well as potential disease-modifying therapies.
Collapse
|
5
|
Dwomoh L, Tejeda G, Tobin A. Targeting the M1 muscarinic acetylcholine receptor in Alzheimer's disease. Neuronal Signal 2022; 6:NS20210004. [PMID: 35571495 PMCID: PMC9069568 DOI: 10.1042/ns20210004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease (AD) remains a major cause of morbidity and mortality worldwide, and despite extensive research, only a few drugs are available for management of the disease. One strategy has been to up-regulate cholinergic neurotransmission to improve cognitive function, but this approach has dose-limiting adverse effects. To avoid these adverse effects, new drugs that target specific receptor subtypes of the cholinergic system are needed, and the M1 subtype of muscarinic acetylcholine receptor (M1-mAChR) has been shown to be a good target for this approach. By using several strategies, M1-mAChR ligands have been developed and trialled in preclinical animal models and in human studies, with varying degrees of success. This article reviews the different approaches to targeting the M1-mAChR in AD and discusses the advantages and limitations of these strategies. The factors to consider in targeting the M1-mAChR in AD are also discussed.
Collapse
Affiliation(s)
- Louis Dwomoh
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gonzalo S. Tejeda
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andrew B. Tobin
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
6
|
Neuroprotective Effects of Myrtenal in an Experimental Model of Dementia Induced in Rats. Antioxidants (Basel) 2022; 11:antiox11020374. [PMID: 35204256 PMCID: PMC8869161 DOI: 10.3390/antiox11020374] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/25/2022] Open
Abstract
There is growing attention on natural substances capable of stimulating the cholinergic system and of exerting antioxidant effects, as potential therapeutic agents in Alzheimer’s disease (AD). The aim of the present study is to evaluate the expected neuroprotective mechanisms of myrtenal (M) in an experimental model of dementia in rats. Dementia was induced in male Wistar rats by scopolamine (Sc) administration (0.1 mg/kg for 8 days and 20.0 mg/kg on day 9). The animals were divided into 5 groups (1) Controls; (2) Sc; (3) Sc + Myrtenal (40 mg/kg), (4) Sc + Galantamine (1 mg/kg); (5) Sc + Lipoic acid (30 mg/kg). Changes in recognition memory and habituation were evaluated via the Novel Object Recognition and Open Field tests. Acetylcholinesterase (AChE) activity, ACh levels, and changes in oxidative status of the brain were measured biochemically. The histological changes in two brain regions—cortex and hippocampus, were evaluated qualitatively and quantitatively. Myrtenal improved recognition memory and habituation, exerted antioxidant effects and significantly increased ACh brain levels. Histologically, the neuroprotective capacity of myrtenal was also confirmed. For the first time, we have demonstrated the neuroprotective potential of myrtenal in an experimental model of dementia. Our study provides proof-of-concept for the testing of myrtenal, in association with standard of care treatments, in patients affected by cognitive decline.
Collapse
|
7
|
Karami A, Darreh-Shori T, Schultzberg M, Eriksdotter M. CSF and Plasma Cholinergic Markers in Patients With Cognitive Impairment. Front Aging Neurosci 2021; 13:704583. [PMID: 34512307 PMCID: PMC8426513 DOI: 10.3389/fnagi.2021.704583] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Alzheimer’s disease (AD) is the most prevalent form of dementia with symptoms of deteriorating cognitive functions and memory loss, partially as a result of a decrease in cholinergic neurotransmission. The disease is incurable and treatment with cholinesterase inhibitors (ChEIs) is symptomatic. Choline acetyltransferase (ChAT), the enzyme that synthesizes acetylcholine (ACh), has been proven recently to be present in both cerebrospinal fluid (CSF) and plasma. As ChAT plays a role in regulating the extracellular ACh levels, it may have an impact on prognosis and cognitive performance in AD patients. Objectives To measure ChAT activity and its protein concentration in CSF and plasma from patients with AD, mild cognitive impairment (MCI), or Subjective cognitive impairment (SCI). Methods Plasma and CSF samples were obtained from 21 AD, 32 MCI, and 30 SCI patients. The activity and protein levels of ChAT and acetylcholinesterase (AChE), the enzyme catalyzing the hydrolysis of ACh, were analyzed using an integrated activity and protein concentration ELISA-like assay. A Cholinergic Index was calculated as the ratio of ChAT to AChE activities in CSF. The data were analyzed in relation to dementia biomarkers and cognitive performance of the patients. Results The CSF ChAT activity was significantly higher (55–67%) in MCI patients compared to AD and SCI cases. The CSF Cholinergic Index was 41 and 22% lower in AD patients than in MCI and SCI subjects, respectively. This index correlated positively with the Aβ42/p-tau ratio in CSF in SCI but negatively with that in AD and MCI. The ChAT activity and protein levels in plasma exhibited significant differences with the pattern of AD>>MCI>SCI. Conclusion This is the first study investigating soluble levels of the key cholinergic enzyme, ChAT, in both plasma and CSF of individuals at different clinical stages of dementia. Although further validation is needed, the overall pattern of the results suggests that in the continuum of AD, the cholinergic signaling exhibits an inverse U-shape dynamic of changes in the brain that greatly differs from the changes observed in the plasma compartment.
Collapse
Affiliation(s)
- Azadeh Karami
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Campus Flemingsberg, Stockholm, Sweden
| | - Taher Darreh-Shori
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Campus Flemingsberg, Stockholm, Sweden
| | - Marianne Schultzberg
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Campus Solna, Stockholm, Sweden
| | - Maria Eriksdotter
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Campus Flemingsberg, Stockholm, Sweden.,Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Mitra S, Turconi G, Darreh-Shori T, Mätlik K, Aquilino M, Eriksdotter M, Andressoo JO. Increased Endogenous GDNF in Mice Protects Against Age-Related Decline in Neuronal Cholinergic Markers. Front Aging Neurosci 2021; 13:714186. [PMID: 34475820 PMCID: PMC8406776 DOI: 10.3389/fnagi.2021.714186] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Gradual decline in cholinergic transmission and cognitive function occurs during normal aging, whereas pathological loss of cholinergic function is a hallmark of different types of dementia, including Alzheimer’s disease (AD), Lewy body dementia (LBD), and Parkinson’s disease dementia (PDD). Glial cell line-derived neurotrophic factor (GDNF) is known to modulate and enhance the dopamine system. However, how endogenous GDNF influences brain cholinergic transmission has remained elusive. In this study, we explored the effect of a twofold increase in endogenous GDNF (Gdnf hypermorphic mice, Gdnfwt/hyper) on cholinergic markers and cognitive function upon aging. We found that Gdnfwt/hyper mice resisted an overall age-associated decline in the cholinergic index observed in the brain of Gdnfwt/wt animals. Biochemical analysis revealed that the level of nerve growth factor (NGF), which is important for survival and function of central cholinergic neurons, was significantly increased in several brain areas of old Gdnfwt/hyper mice. Analysis of expression of genes involved in cholinergic transmission in the cortex and striatum confirmed modulation of cholinergic pathways by GDNF upon aging. In line with these findings, Gdnfwt/hyper mice did not undergo an age-related decline in cognitive function in the Y-maze test, as observed in the wild type littermates. Our results identify endogenous GDNF as a potential modulator of cholinergic transmission and call for future studies on endogenous GDNF function in neurodegenerative disorders characterized by cognitive impairments, including AD, LBD, and PDD.
Collapse
Affiliation(s)
- Sumonto Mitra
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Huddinge, Sweden
| | - Giorgio Turconi
- Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Taher Darreh-Shori
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Huddinge, Sweden
| | - Kärt Mätlik
- Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Matilde Aquilino
- Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Maria Eriksdotter
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Huddinge, Sweden.,Theme Inflammation and Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Jaan-Olle Andressoo
- Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Devanand DP, Liu X, Chunga RE, Cohen H, Andrews H, Schofield PW, Stern Y, Huey ED, Choi J, Pelton GH. Odor Identification Impairment and Change with Cholinesterase Inhibitor Treatment in Mild Cognitive Impairment. J Alzheimers Dis 2021; 75:845-854. [PMID: 32333591 DOI: 10.3233/jad-200021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Anticholinergic challenge can induce odor identification impairment that indicates Alzheimer's disease (AD) pathology, and short-term change in odor identification impairment with cholinesterase inhibitor (CheI) treatment may predict longer term cognitive outcomes. OBJECTIVE In patients with mild cognitive impairment (MCI) treated prospectively with donepezil, a CheI, for 52 weeks, to determine if 1) acute decline in odor identification ability with anticholinergic challenge can predict cognitive improvement, and 2) change in odor identification over 8 weeks can predict cognitive improvement. METHODS MCI was diagnosed clinically without AD biomarkers. At baseline, the University of Pennsylvania Smell identification Test (UPSIT) was administered before and after an anticholinergic atropine nasal spray challenge. Donepezil was started at 5 mg daily, increased to 10 mg daily if tolerated, and this dose was maintained for 52 weeks. Main outcomes were ADAS-Cog total score and Selective Reminding Test (SRT) total immediate recall score measured at baseline, 26 and 52 weeks. RESULTS In 100 study participants, mean age 70.14 (SD 9.35) years, atropine-induced decrease in UPSIT score at baseline was not associated with change in ADAS-Cog or SRT scores over 52 weeks. Change in UPSIT score from 0 to 8 weeks did not show a significant association with change in the ADAS-Cog or SRT measures over 52 weeks. CONCLUSION These negative findings in a relatively large sample of patients with MCI did not replicate results in much smaller samples. Change in odor identification with anticholinergic challenge, and over 8 weeks, may not be useful predictors of cognitive improvement with CheI in patients with MCI.
Collapse
Affiliation(s)
- D P Devanand
- The Memory Disorders Center and the Division of Geriatric Psychiatry at the New York State Psychiatric Institute, New York, NY, USA.,Department of Neurology and the Taub Institute for Research in Alzheimer's disease at Columbia University Medical Center, New York, NY, USA
| | - Xinhua Liu
- The Mailman School of Public Health at Columbia University Medical Center, New York, NY, USA
| | - Richard E Chunga
- The Memory Disorders Center and the Division of Geriatric Psychiatry at the New York State Psychiatric Institute, New York, NY, USA
| | - Hannah Cohen
- The Memory Disorders Center and the Division of Geriatric Psychiatry at the New York State Psychiatric Institute, New York, NY, USA
| | - Howard Andrews
- The Mailman School of Public Health at Columbia University Medical Center, New York, NY, USA.,Department of Biostatistics, Columbia University, New York, NY, USA
| | - Peter W Schofield
- The University of Newcastle, Newcastle, Australia.,Hunter New England Local Health District, New Lambton, Australia
| | - Yaakov Stern
- Department of Neurology and the Taub Institute for Research in Alzheimer's disease at Columbia University Medical Center, New York, NY, USA
| | - Edward D Huey
- Department of Neurology and the Taub Institute for Research in Alzheimer's disease at Columbia University Medical Center, New York, NY, USA
| | - Jongwoo Choi
- Mental Health Data Science at the New York State Psychiatric Institute, New York, NY, USA.,Department of Biostatistics, Columbia University, New York, NY, USA
| | - Gregory H Pelton
- The Memory Disorders Center and the Division of Geriatric Psychiatry at the New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
10
|
Moss DE, Perez RG. Anti-Neurodegenerative Benefits of Acetylcholinesterase Inhibitors in Alzheimer's Disease: Nexus of Cholinergic and Nerve Growth Factor Dysfunction. Curr Alzheimer Res 2021; 18:1010-1022. [PMID: 34911424 PMCID: PMC8855657 DOI: 10.2174/1567205018666211215150547] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/04/2021] [Accepted: 11/18/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is increasingly viewed as a complex multi-dimensional disease without effective treatments. Recent randomized, placebo-controlled studies have shown volume losses of ~0.7% and ~3.5% per year, respectively, in the basal cholinergic forebrain (CBF) and hippocampus in untreated suspected prodromal AD. One year of donepezil treatment reduced these annualized rates of atrophy to about half of untreated rates. Similar positive although variable results have also been found in volumetric measurements of the cortex and whole brain in patients with mild cognitive impairment as well as more advanced AD stages after treatments with all three currently available acetylcholinesterase (AChE) inhibitors (donepezil, rivastigmine, and galantamine). Here we review the anti-neurodegenerative benefits of AChE inhibitors and the expected parallel disease-accelerating impairments caused by anticholinergics, within a framework of the cholinergic hypothesis of AD and AD-associated loss of nerve growth factor (NGF). Consistent with the "loss of trophic factor hypothesis of AD," we propose that AChE inhibitors enhance acetylcholine-dependent release and uptake of NGF, thereby sustaining cholinergic neuronal viability and thus slowing AD-associated degeneration of the CBF, to ultimately delay dementia progression. We propose that improved cholinergic therapies for AD started early in asymptomatic persons, especially those with risk factors, will delay the onset, progression, or emergence of dementia. The currently available competitive and pseudo- irreversible AChE inhibitors are not CNS-selective and thus induce gastrointestinal toxicity that limits cortical AChE inhibition to ~30% (ranges from 19% to 41%) as measured by in vivo PET studies in patients undergoing therapy. These levels of inhibition are marginal relative to what is required for effective symptomatic treatment of dementia or slowing AD-associated neurodegeneration. In contrast, because of the inherently slow de novo synthesis of AChE in the CNS (about one-- tenth the rate of synthesis in peripheral tissues), irreversible AChE inhibitors produce significantly higher levels of inhibition in the CNS than in peripheral tissues. For example, methanesulfonyl fluoride, an irreversible inhibitor reduces CNS AChE activity by ~68% in patients undergoing therapy and ~80% in cortical biopsies of non-human primates. The full therapeutic benefits of AChE inhibitors, whether for symptomatic treatment of dementia or disease-slowing, thus would benefit by producing high levels of CNS inhibition. One way to obtain such higher levels of CNS AChE inhibition would be by using irreversible inhibitors.
Collapse
Affiliation(s)
- Donald E. Moss
- Department of Psychology, University of Texas at El Paso, El Paso, Texas, 79968 USA
| | - Ruth G. Perez
- Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, 79905 USA
| |
Collapse
|
11
|
Enlargement of early endosomes and traffic jam in basal forebrain cholinergic neurons in Alzheimer's disease. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:207-218. [PMID: 34225963 DOI: 10.1016/b978-0-12-819975-6.00011-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
While a handful of neurotransmitter systems including cholinergic, norepinephrinergic, and serotonergic undergo significant degeneration in Alzheimer's disease, the cholinergic system has been the prime target for research and therapy. The cholinergic system in the basal forebrain is strategically located to impose significant modulatory effects on vast cortical and subcortical regions of the brain. Numerous studies have established a strong link between neurotrophin signaling and basal forebrain cholinergic neuron degeneration in several neurodegenerative disorders. Evidence presented during the last few years points to the effects of endosomal pathology and primarily unidirectional traffic jam. Hence, formulating new therapies, e.g., to reduce local production of β C-terminal fragments and preventing changes in endosomal morphology have become attractive potential therapeutic strategies to restore cholinergic neurons and their neuromodulatory function. While it is not expected that restoring the cholinergic system function will fully mitigate cognitive dysfunction in Alzheimer's disease, pivotal aspects of cognition including attention-deficit during the prodromal stages might well be at disposal for corrective measures.
Collapse
|
12
|
Lin X, Tang J, Liu C, Li X, Cao X, Wang B, Dong R, Xu W, Yu X, Wang M, Bi Y. Cerebrospinal fluid cholinergic biomarkers are associated with postoperative delirium in elderly patients undergoing Total hip/knee replacement: a prospective cohort study. BMC Anesthesiol 2020; 20:246. [PMID: 32988381 PMCID: PMC7520969 DOI: 10.1186/s12871-020-01166-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/20/2020] [Indexed: 02/06/2023] Open
Abstract
Background Postoperative delirium (POD) is a frequent complication after surgery and its occurrence is associated with poor outcomes. The neuropathology of this complication is unclear, but it is important to evaluate relevant biomarkers for postoperative status. The purpose of this study is to explore the relationship between expression levels of cholinergic biomarkers in cerebrospinal fluid (CSF) and the occurrence and development of POD in elderly patients. Methods Four hundred and ninety-two elderly patients aged 65 years old or older with elective total hip/knee replacement received combined spinal-epidural anesthesia. Preoperative baseline cognitive function was assessed using the Mini-Mental State Examination (MMSE) before surgery. Each patient was interviewed in post-anesthesia care unit (PACU) and on the first, second, third and seventh (or before discharge) postoperative days. POD was diagnosed using the Confusion Assessment Method (CAM), and POD severity was measured using the Memorial Delirium Assessment Scale (MDAS). Preoperative CSF and plasma choline acetyltransferase (ChAT), acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels were determined by ELISA. The levels of ChAT, AChE and BuChE activities were determined by spectrophotometry. Results POD was detected in 11.4% (51/447) of the patients. AChE, BuChE, ChAT, TNF-α and IL-6 concentrations in CSF and plasma have higher consistency. In preoperative CSF and preoperative and postoperative plasma, down-regulation of the concentration and activity of AChE and BuChE as well as up-regulation of the concentration and activity of ChAT and the concentrations of IL-6 and TNF-α were observed in patients who developed POD, and the decrease in BuChE was the most obvious. Logistic analysis showed the activities of ChAT, AChE and BuChE in CSF were still related to POD after adjusting for related factors such as sex, age, years of education, height, weight, body mass index (BMI), and American Society of Anesthesiologists (ASA) class. Receiver Operating Characteristic (ROC) curve analysis was conducted to determine the Area Under Curve (AUC) of AChE, BuChE and ChAT activity in CSF was 0.679 (P < 0.01), 0.940 (P < 0.01) and 0.819 (P < 0.01) respectively and found that BuChE activity had the most accurate diagnostic value. Conclusion The changes in preoperative activity of AChE, BuChE and ChAT in CSF were associated with the development of POD in elderly patients, and BuChE activity had the greatest diagnostic value, which may be related to central cholinergic degradation. These cholinergic biomarkers might participate in the neuropathology of POD, pending further investigations. Trial registration This study was registered at Chictr.org.cn (NO. ChiCTR1900023729) June 9th, 2019. (Retrospectively registered).
Collapse
Affiliation(s)
- Xu Lin
- Department of Anesthesiology, Qingdao Municipal Hospital, 5, Dong-Hai Middle Road, Shi-Nan District, Qingdao, 266071, Shandong Province, China
| | - Jiaming Tang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, 59, Hai-Er Road, Lao-Shan District, Qingdao, 266000, Shandong Province, China
| | - Chen Liu
- Department of Anesthesiology, Qingdao Municipal Hospital, 5, Dong-Hai Middle Road, Shi-Nan District, Qingdao, 266071, Shandong Province, China
| | - Xiaoxuan Li
- Department of Anesthesiology, Weifang Medical University, 7166, Bao-Tong West Street, Wei-Cheng District, Weifang, 261053, Shandong Province, China
| | - Xipeng Cao
- Clinical Research Center, Qingdao Municipal Hospital, 5, Dong-Hai Middle Road, Shi-Nan District, Qingdao, 266071, Shandong Province, China
| | - Bin Wang
- Department of Anesthesiology, Qingdao Municipal Hospital, 5, Dong-Hai Middle Road, Shi-Nan District, Qingdao, 266071, Shandong Province, China.
| | - Rui Dong
- Department of Anesthesiology, Qingdao Municipal Hospital, 5, Dong-Hai Middle Road, Shi-Nan District, Qingdao, 266071, Shandong Province, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, 5, Dong-Hai Middle Road, Shi-Nan District, Qingdao, 266071, Shandong Province, China
| | - Xinjuan Yu
- Central Laboratory, Qingdao Municipal Hospital, 5, Dong-Hai Middle Road, Shi-Nan District, Qingdao, 266071, Shandong Province, China
| | - Mingshan Wang
- Department of Anesthesiology, Qingdao Municipal Hospital, 5, Dong-Hai Middle Road, Shi-Nan District, Qingdao, 266071, Shandong Province, China
| | - Yanlin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital, 5, Dong-Hai Middle Road, Shi-Nan District, Qingdao, 266071, Shandong Province, China.
| |
Collapse
|
13
|
Varfolomeev SD, Bykov VI, Tsybenova SB. Kinetic modeling of dynamic processes in the cholinergic synapse. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2939-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Moss DE. Improving Anti-Neurodegenerative Benefits of Acetylcholinesterase Inhibitors in Alzheimer's Disease: Are Irreversible Inhibitors the Future? Int J Mol Sci 2020; 21:E3438. [PMID: 32414155 PMCID: PMC7279429 DOI: 10.3390/ijms21103438] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Decades of research have produced no effective method to prevent, delay the onset, or slow the progression of Alzheimer's disease (AD). In contrast to these failures, acetylcholinesterase (AChE, EC 3.1.1.7) inhibitors slow the clinical progression of the disease and randomized, placebo-controlled trials in prodromal and mild to moderate AD patients have shown AChE inhibitor anti-neurodegenerative benefits in the cortex, hippocampus, and basal forebrain. CNS neurodegeneration and atrophy are now recognized as biomarkers of AD according to the National Institute on Aging-Alzheimer's Association (NIA-AA) criteria and recent evidence shows that these markers are among the earliest signs of prodromal AD, before the appearance of amyloid. The current AChE inhibitors (donepezil, rivastigmine, and galantamine) have short-acting mechanisms of action that result in dose-limiting toxicity and inadequate efficacy. Irreversible AChE inhibitors, with a long-acting mechanism of action, are inherently CNS selective and can more than double CNS AChE inhibition possible with short-acting inhibitors. Irreversible AChE inhibitors open the door to high-level CNS AChE inhibition and improved anti-neurodegenerative benefits that may be an important part of future treatments to more effectively prevent, delay the onset, or slow the progression of AD.
Collapse
Affiliation(s)
- Donald E Moss
- Department of Psychology, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
15
|
Alzheimer's Disease Pharmacotherapy in Relation to Cholinergic System Involvement. Biomolecules 2019; 10:biom10010040. [PMID: 31888102 PMCID: PMC7022522 DOI: 10.3390/biom10010040] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease, a major and increasing global health challenge, is an irreversible, progressive form of dementia, associated with an ongoing decline of brain functioning. The etiology of this disease is not completely understood, and no safe and effective anti-Alzheimer’s disease drug to prevent, stop, or reverse its evolution is currently available. Current pharmacotherapy concentrated on drugs that aimed to improve the cerebral acetylcholine levels by facilitating cholinergic neurotransmission through inhibiting cholinesterase. These compounds, recognized as cholinesterase inhibitors, offer a viable target across key sign domains of Alzheimer’s disease, but have a modest influence on improving the progression of this condition. In this paper, we sought to highlight the current understanding of the cholinergic system involvement in Alzheimer’s disease progression in relation to the recent status of the available cholinesterase inhibitors as effective therapeutics.
Collapse
|