1
|
Rawat K, Gautam V, Sandhu A, Kumar A, Sharma A, Bhatia A, Saha L. Wnt Signaling Modulators Exhibit Neuroprotective Effects via Combating Astrogliosis and Balancing Synaptic Density at Early and Late Stage Temporal Lobe Epilepsy. Neurochem Res 2024; 49:3156-3175. [PMID: 39235578 DOI: 10.1007/s11064-024-04236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/17/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Temporal Lobe Epilepsy (TLE) is a severe neurological condition characterized by recurrent seizures that often do not respond well to available anti-seizure medications. TLE has been associated with epileptogenesis, a process that starts during the latent period following a neurologic insult and is followed by chronic phase. Recent research has linked canonical Wnt signaling to the pathophysiology of epileptogenesis and TLE. Our previous study demonstrated differential regulation of canonical Wnt signaling during early and late stage post status epilepticus (SE) induction. Building on these findings, our current study utilized Wnt modulators: GSK-3β inhibitor 6-bromoindirubin-3'-oxime (6-Bio) and disheveled inhibitor niclosamide and investigated their impact on canonical Wnt signaling during the early (30 days) and later stages (60 days) following SE induction. We assessed several parameters, including seizure frequency, astrogliosis, synaptic density, and neuronal counts in hippocampal tissue. We used immunohistochemistry and Nissl staining to evaluate gliosis, synaptic density, and neuronal counts in micro-dissected hippocampi. Western blotting was used to examine the expression of proteins involved in canonical Wnt/β-catenin signaling, and real-time PCR was conducted to analyze their relative mRNA expression. Wnt modulators, 6-Bio and Niclosamide were found to reduce seizure frequency and various other parameters including behavioral parameters, hippocampal morphology, astrogliosis and synaptic density at different stages of TLE.
Collapse
Affiliation(s)
- Kajal Rawat
- Department of Pharmacology, Research Block B, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Vipasha Gautam
- Department of Pharmacology, Research Block B, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Arushi Sandhu
- Department of Pharmacology, Research Block B, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Anil Kumar
- Department of Pharmacology, Research Block B, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Antika Sharma
- Department of Pharmacology, Research Block B, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Research Block B, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Lekha Saha
- Department of Pharmacology, Research Block B, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
2
|
Spagnoli G, Parrella E, Ghazanfar Tehrani S, Mengoni F, Salari V, Nistreanu C, Scambi I, Sbarbati A, Bertini G, Fabene PF. Glial Response and Neuronal Modulation Induced by Epidural Electrode Implant in the Pilocarpine Mouse Model of Epilepsy. Biomolecules 2024; 14:834. [PMID: 39062548 PMCID: PMC11274793 DOI: 10.3390/biom14070834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
In animal models of epilepsy, cranial surgery is often required to implant electrodes for electroencephalography (EEG) recording. However, electrode implants can lead to the activation of glial cells and interfere with physiological neuronal activity. In this study, we evaluated the impact of epidural electrode implants in the pilocarpine mouse model of temporal lobe epilepsy. Brain neuroinflammation was assessed 1 and 3 weeks after surgery by cytokines quantification, immunohistochemistry, and western blotting. Moreover, we investigated the effect of pilocarpine, administered two weeks after surgery, on mice mortality rate. The reported results indicate that implanted mice suffer from neuroinflammation, characterized by an early release of pro-inflammatory cytokines, microglia activation, and subsequent astrogliosis, which persists after three weeks. Notably, mice subjected to electrode implants displayed a higher mortality rate following pilocarpine injection 2 weeks after the surgery. Moreover, the analysis of EEGs recorded from implanted mice revealed a high number of single spikes, indicating a possible increased susceptibility to seizures. In conclusion, epidural electrode implant in mice promotes neuroinflammation that could lower the seizure thresholds to pilocarpine and increase the death rate. An improved protocol considering the persistent neuroinflammation induced by electrode implants will address refinement and reduction, two of the 3Rs principles for the ethical use of animals in scientific research.
Collapse
Affiliation(s)
- Giulia Spagnoli
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Edoardo Parrella
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
- Section of Innovation Biomedicine, Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy;
| | - Sara Ghazanfar Tehrani
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Francesca Mengoni
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Valentina Salari
- Section of Innovation Biomedicine, Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy;
| | - Cristina Nistreanu
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Ilaria Scambi
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Andrea Sbarbati
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Giuseppe Bertini
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Paolo Francesco Fabene
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
- Section of Innovation Biomedicine, Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy;
| |
Collapse
|
3
|
Gautam V, Rawat K, Sandhu A, Kumar A, Kharbanda PS, Medhi B, Bhatia A, Saha L. Exploring the effect of 6-BIO and sulindac in modulation of Wnt/β-catenin signaling pathway in chronic phase of temporal lobe epilepsy. Neuropharmacology 2024; 251:109931. [PMID: 38570067 DOI: 10.1016/j.neuropharm.2024.109931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
The prospective involvement of the Wnt/β-catenin signaling pathway in epilepsy, with the proposed therapeutic uses of its modulators, has been suggested; however, comprehensive knowledge in this regard is currently limited. Despite postulations about the pathway's significance and treatment potential, a systematic investigation is required to better understand its implications in chronic epilepsy. We investigated the role of key proteins like β-catenin, GSK-3β, and their modulators sulindac and 6-BIO, in Wnt/β-catenin pathway during chronic phase of temporal lobe epilepsy. We also evaluated the role of modulators in seizure score, seizure frequency and neurobehavioral parameters in temporal lobe epilepsy. We developed status epilepticus model using lithium-pilocarpine. The assessment of neurobehavioral parameters was done followed by histopathological examination and immunohistochemistry staining of hippocampus as well as RT-qPCR and western blotting to analyse gene and protein expression. In SE rats, seizure score and frequency were significantly high compared to control rats, with notable changes in neurobehavioral parameters and neuronal damage observed in hippocampus. Our study also revealed a substantial upregulation of the Wnt/β-catenin pathway in chronic epilepsy, as evidenced by gene and protein expression studies. Sulindac emerged as a potent modulator, reducing seizure score, frequency, neuronal damage, apoptosis, and downregulating the Wnt/β-catenin pathway when compared to 6-BIO. Our findings emphasize the potential of GSK-3β and β-catenin as promising drug targets for chronic temporal lobe epilepsy, offering valuable treatment options for chronic epilepsy. The promising outcomes with sulindac encourages further exploration in clinical trials to assess its therapeutic potential.
Collapse
Affiliation(s)
- Vipasha Gautam
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Kajal Rawat
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Arushi Sandhu
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Anil Kumar
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Parampreet Singh Kharbanda
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Lekha Saha
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
4
|
Fikry H, Saleh LA, Mahmoud FA, Gawad SA, Abd-Alkhalek HA. CoQ10 targeted hippocampal ferroptosis in a status epilepticus rat model. Cell Tissue Res 2024; 396:371-397. [PMID: 38499882 PMCID: PMC11144258 DOI: 10.1007/s00441-024-03880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
Status epilepticus (SE), the most severe form of epilepsy, leads to brain damage. Uncertainty persists about the mechanisms that lead to the pathophysiology of epilepsy and the death of neurons. Overloading of intracellular iron ions has recently been identified as the cause of a newly recognized form of controlled cell death called ferroptosis. Inhibiting ferroptosis has shown promise as a treatment for epilepsy, according to recent studies. So, the current study aimed to assess the possible antiepileptic impact of CoQ10 either alone or with the standard antiepileptic drug sodium valproate (SVP) and to evaluate the targeted effect of COQ10 on hippocampal oxidative stress and ferroptosis in a SE rat model. Using a lithium-pilocarpine rat model of epilepsy, we evaluated the effect of SVP, CoQ10, or both on seizure severity, histological, and immunohistochemical of the hippocampus. Furthermore, due to the essential role of oxidative stress and lipid peroxidation in inducing ferroptosis, we evaluated malonaldehyde (MDA), reduced glutathione (GSH), glutathione peroxidase 4 (GPX4), and ferritin in tissue homogenate. Our work illustrated that ferroptosis occurs in murine models of lithium-pilocarpine-induced seizures (epileptic group). Nissl staining revealed significant neurodegeneration. A significant increase in the number of astrocytes stained with an astrocyte-specific marker was observed in the hippocampus. Effective seizure relief can be achieved in the seizure model by administering CoQ10 alone compared to SVP. This was accomplished by lowering ferritin levels and increasing GPX4, reducing MDA, and increasing GSH in the hippocampus tissue homogenate. In addition, the benefits of SVP therapy for regulating iron stores, GPX4, and oxidative stress markers were amplified by incorporating CoQ10 as compared to SVP alone. It was concluded that CoQ10 alone has a more beneficial effect than SVP alone in restoring histological structures and has a targeted effect on hippocampal oxidative stress and ferroptosis. In addition, COQ10 could be useful as an adjuvant to SVP in protecting against oxidative damage and ferroptosis-related damage that result from epileptic seizures.
Collapse
Affiliation(s)
- Heba Fikry
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon st, Abbasiya sq., Cairo, 11566, Egypt.
| | - Lobna A Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon st, Abbasiya sq., Cairo, 11566, Egypt
| | - Faten A Mahmoud
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon st, Abbasiya sq., Cairo, 11566, Egypt
| | - Sara Abdel Gawad
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon st, Abbasiya sq., Cairo, 11566, Egypt
| | - Hadwa Ali Abd-Alkhalek
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon st, Abbasiya sq., Cairo, 11566, Egypt
| |
Collapse
|
5
|
Xu H, Wang Y, Yu C, Han C, Cui H. Heparin-Modified Superparamagnetic Iron Oxide Nanoparticles Suppress Lithium Chloride/Pilocarpine-Induced Temporal Lobe Epilepsy in Rats through Attenuation of Inflammation and Oxidative Stress. ACS Chem Neurosci 2024; 15:1937-1947. [PMID: 38630556 DOI: 10.1021/acschemneuro.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
The development of antiepileptic drugs is still a long process. In this study, heparin-modified superparamagnetic iron oxide nanoparticles (UFH-SPIONs) were prepared, and their antiepileptic effect and underlying mechanism were investigated. UFH-SPIONs are stable, homogeneous nanosystems with antioxidant enzyme activity that are able to cross the blood-brain barrier (BBB) and enriched in hippocampal epileptogenic foci. The pretreatment with UFH-SPIONs effectively prolonged the onset of seizures and reduced seizure severity after lithium/pilocarpine (LP)-induced seizures in rats. The pretreatment with UFH-SPIONs significantly decreased the expression of inflammatory factors in hippocampal tissues, including IL-6, IL-1β, and TNF-α. LP-induced oxidative stress in hippocampal tissues was in turn reduced upon pretreatment with UFH-SPIONs, as evidenced by an increase in the levels of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) and a decrease in the level of lipid peroxidation (MDA). Moreover, the LP-induced upregulation of apoptotic cells was decreased upon pretreatment with UFH-SPIONs. Together, these observations suggest that the pretreatment with UFH-SPIONs ameliorates LP-induced seizures and downregulates the inflammatory response and oxidative stress, which exerts neuronal protection during epilepsy.
Collapse
Affiliation(s)
- Hanbing Xu
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yubo Wang
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Congcong Yu
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chunhong Han
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Huifei Cui
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- National Glycoengineering Research Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
6
|
Gautam V, Rawat K, Sandhu A, Medhi B, Bhatia A, Kharbanda PS, Saha L. Evaluation of Wnt/β-catenin signaling and its modulators in repeated dose lithium-pilocarpine rat model of status epilepticus: An acute phase study. Eur J Pharmacol 2024; 966:176375. [PMID: 38307381 DOI: 10.1016/j.ejphar.2024.176375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/13/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
The role of the Wnt/β-catenin signaling pathway in epilepsy and the effects of its modulators as efficacious treatment options, though postulated, has not been sufficiently investigated. We evaluated the involvement of β-catenin and GSK-3β, the significant proteins in this pathway, in the lithium chloride-pilocarpine-induced status epilepticus model in rodents to study acute phase of temporal lobe epilepsy (TLE). The modulators studied were 6-BIO, a GSK-3β inhibitor and Sulindac, a Dvl protein inhibitor. The disease group exhibited increased seizure score and seizure frequency, and the assessment of neurobehavioral parameters indicated notable alterations. Furthermore, histopathological examination of hippocampal brain tissues revealed significant neurodegeneration. Immunohistochemical study of hippocampus revealed neurogenesis in 6-BIO and sulindac groups. The gene and protein expression by RT-qPCR and western blotting studies indicated Wnt/β-catenin pathway downregulation and increased apoptosis in the acute phase of TLE. 6-BIO was very efficient in upregulating the Wnt pathway, decreasing neuronal damage, increasing neurogenesis in hippocampus and decreasing seizure score and frequency in comparison to sulindac. This suggests that both GSK-3β and β-catenin are potential and novel drug targets for acute phase of TLE, and treatment options targeting these proteins could be beneficial in successfully managing acute epilepsy. Further evaluation of 6-BIO to explore its therapeutic potential in other models of epilepsy should be conducted.
Collapse
Affiliation(s)
- Vipasha Gautam
- Department of Pharmacology, PGIMER Chandigarh, 160012, India
| | - Kajal Rawat
- Department of Pharmacology, PGIMER Chandigarh, 160012, India
| | - Arushi Sandhu
- Department of Pharmacology, PGIMER Chandigarh, 160012, India
| | - Bikash Medhi
- Department of Pharmacology, PGIMER Chandigarh, 160012, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012, India
| | | | - Lekha Saha
- Department of Pharmacology, PGIMER Chandigarh, 160012, India.
| |
Collapse
|
7
|
Che Has AT. The applications of the pilocarpine animal model of status epilepticus: 40 years of progress (1983-2023). Behav Brain Res 2023; 452:114551. [PMID: 37348654 DOI: 10.1016/j.bbr.2023.114551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/02/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Status epilepticus is a neurological disorder that can result in various neuropathological conditions and presentations. Various studies involving animal models have been accomplished to understand and replicating its prominent manifestations including characteristics of related clinical cases. Up to these days, there are variety of methods and techniques to be utilized in inducing this disorder that can be chemically or electrically applied which depending on the experimental designs and targets of the studies. In particular, the chemically induced pilocarpine animal model of status epilepticus is a reliable choice which has evolved for 40 years from its initial discovery back in 1983. Although the development of the model can be considered as a remarkable breakthrough in understanding status epilepticus, several aspects of the model have been improved, throughout the years. Among the major issues in developing this model are the morbidity and mortality rates during induction process. Several modifications have been introduced in the process by different studies to tackle the related problems including application of dose fractionation, adaptation of pilocarpine to lithium-pilocarpine model and utilization of various drugs. Despite all challenges and drawbacks, this model has proven its pertinent and relevance with improvements that have been adapted since it was introduced 40 years ago. In this review, we emphasize on the evolution of this animal model from the beginning until now (1983 - 2023) and the related issues that have made this model still a popular choice in status epilepticus studies.
Collapse
Affiliation(s)
- Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus Kubang Kerian, 16150, Kota Bharu, Kelantan, Malaysia.
| |
Collapse
|
8
|
Zavaleta-Viveros JA, Toledo P, Avendaño-Garrido ML, Escalante-Martínez JE, López-Meraz ML, Ramos-Riera KP. A modification to the Kuramoto model to simulate epileptic seizures as synchronization. J Math Biol 2023; 87:9. [PMID: 37329353 PMCID: PMC10276802 DOI: 10.1007/s00285-023-01938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/19/2023]
Abstract
The Kuramoto model was developed to describe the coupling of oscillators, motivated by the natural synchronization phenomena. We are interested in modeling an epileptic seizure considering it as the synchronization of action potentials using and modifying this model. In this article, we propose to modify this model, changing the constant coupling force for a function with logistic growth to simulate the onset and epileptic seizure level in an adult male rat caused by the administration of lithium-pilocarpine. Later, we select some frequencies and their respective amplitude values using an algorithm based on the fast Fourier transform (FFT) from an electroencephalography signal when the rat is in basal conditions. Then, we take these values as the natural frequencies of the oscillators in the modified Kuramoto model, considering every oscillator as a single neuron to simulate the emergence of an epileptic seizure numerically by increasing the synchronization value in the coupling function. Finally, using Dynamic Time Warping algorithm, we compare the simulated signal by the Kuramoto model with an FFT approximation of the epileptic seizure.
Collapse
Affiliation(s)
- José Alfredo Zavaleta-Viveros
- Facultad de Matemáticas, Universidad Veracruzana, Calle Paseo No. 112, Lote 12, Sección 2a, Villa Nueva, Nuevo Xalapa, 91097 Xalapa, Veracruz México
| | - Porfirio Toledo
- Facultad de Matemáticas, Universidad Veracruzana, Calle Paseo No. 112, Lote 12, Sección 2a, Villa Nueva, Nuevo Xalapa, 91097 Xalapa, Veracruz México
| | - Martha Lorena Avendaño-Garrido
- Facultad de Matemáticas, Universidad Veracruzana, Calle Paseo No. 112, Lote 12, Sección 2a, Villa Nueva, Nuevo Xalapa, 91097 Xalapa, Veracruz México
| | - Jesús Enrique Escalante-Martínez
- Facultad de Ingeniería Mecánica y Eléctrica, Universidad Veracruzana, Prolongación de la Avenida Venustiano Carranza S/N. Colonia Revolución, 93390 Poza Rica, Veracruz Mexico
| | - María-Leonor López-Meraz
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, 91190 Xalapa, Veracruz México
| | - Karen Paola Ramos-Riera
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, 91190 Xalapa, Veracruz México
| |
Collapse
|
9
|
Neuroprotective effect and herbal-drug pharmacokinetic interaction of Gastrodia elata extract on valproic acid. Biomed Pharmacother 2022; 156:113938. [DOI: 10.1016/j.biopha.2022.113938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022] Open
|
10
|
Dutta SS, Andonova AA, Wöllert T, Hewett SJ, Hewett JA. P2X7-dependent constitutive Interleukin-1β release from pyramidal neurons of the normal mouse hippocampus: Evidence for a role in maintenance of the innate seizure threshold. Neurobiol Dis 2022; 168:105689. [DOI: 10.1016/j.nbd.2022.105689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
|
11
|
Wang Y, Wei P, Yan F, Luo Y, Zhao G. Animal Models of Epilepsy: A Phenotype-oriented Review. Aging Dis 2022; 13:215-231. [PMID: 35111370 PMCID: PMC8782545 DOI: 10.14336/ad.2021.0723] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/23/2021] [Indexed: 12/26/2022] Open
Abstract
Epilepsy is a serious neurological disorder characterized by abnormal, recurrent, and synchronous discharges in the brain. Long-term recurrent seizure attacks can cause serious damage to brain function, which is usually observed in patients with temporal lobe epilepsy. Controlling seizure attacks is vital for the treatment and prognosis of epilepsy. Animal models, such as the kindling model, which was the most widely used model in the past, allow the understanding of the potential epileptogenic mechanisms and selection of antiepileptic drugs. In recent years, various animal models of epilepsy have been established to mimic different seizure types, without clear merits and demerits. Accordingly, this review provides a summary of the views mentioned above, aiming to provide a reference for animal model selection.
Collapse
Affiliation(s)
- Yilin Wang
- 2Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Penghu Wei
- 1Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China.,4Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
| | - Feng Yan
- 2Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yumin Luo
- 2Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,3Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,4Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
| | - Guoguang Zhao
- 1Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China.,3Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,4Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Kulikov AA, Naumova AA, Aleksandrova EP, Glazova MV, Chernigovskaya EV. Audiogenic kindling stimulates aberrant neurogenesis, synaptopodin expression, and mossy fiber sprouting in the hippocampus of rats genetically prone to audiogenic seizures. Epilepsy Behav 2021; 125:108445. [PMID: 34837844 DOI: 10.1016/j.yebeh.2021.108445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022]
Abstract
Temporal lobe epilepsy is associated with considerable structural changes in the hippocampus. Pharmacological and electrical models of temporal lobe epilepsy in animals strongly suggest that hippocampal reorganization is based on seizure-stimulated aberrant neurogenesis but the data are often controversial and hard to interpret. The aim of the present study was to estimate neurogenesis and synaptic remodeling in the hippocampus of Krushinsky-Molodkina (KM) rats genetically prone to audiogenic seizures (AGS). In our experiments we exposed KM rats to audiogenic kindling of different durations (4, 14, and 21 AGS) to model different stages of epilepsy development. Naïve KM rats were used as a control. Our results showed that even 4 AGS stimulated proliferation in the subgranular layer of the dentate gyrus (DG) accompanied with increase in number of doublecortin (DCX)-positive immature granular cells. Elevated number of proliferating cells was also observed in the hilus indicating the enhancement of abnormal migration of neural progenitors. In contrast to the DG, all DCX-positive cells in the hilus expressed VGLUT1/2 and their number was increased indicating that seizure activity accelerates glutamatergic differentiation of ectopic hilar cells. 14-day kindling further stimulated proliferation, abnormal migration, and glutamatergic differentiation of new neurons both in the DG granular and subgranular layers and in the hilus. However, after 21 AGS increased proliferation was observed only in the DG, while the numbers of immature neurons expressed VGLUT1/2 were still enhanced in both hippocampal areas. Audiogenic kindling also stimulated sprouting of mossy fibers and enhanced expression of synaptopodin in the hippocampus indicating generation of new synaptic contacts between granular cells, mossy cells, and CA3 pyramid neurons. Thus, our data suggest that epilepsy progression is associated with exacerbation of aberrant neurogenesis and reorganization of hippocampal neural circuits that contribute to the enhancement and spreading of epileptiform activity.
Collapse
Affiliation(s)
- Alexey A Kulikov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Thorez pr., 194223 St. Petersburg, Russia
| | - Alexandra A Naumova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Thorez pr., 194223 St. Petersburg, Russia
| | - Ekaterina P Aleksandrova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Thorez pr., 194223 St. Petersburg, Russia
| | - Margarita V Glazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Thorez pr., 194223 St. Petersburg, Russia.
| | - Elena V Chernigovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Thorez pr., 194223 St. Petersburg, Russia
| |
Collapse
|
13
|
Akyuz E, Koklu B, Uner A, Angelopoulou E, Paudel YN. Envisioning the role of inwardly rectifying potassium (Kir) channel in epilepsy. J Neurosci Res 2021; 100:413-443. [PMID: 34713909 DOI: 10.1002/jnr.24985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 01/29/2023]
Abstract
Epilepsy is a devastating neurological disorder characterized by recurrent seizures attributed to the disruption of the dynamic excitatory and inhibitory balance in the brain. Epilepsy has emerged as a global health concern affecting about 70 million people worldwide. Despite recent advances in pre-clinical and clinical research, its etiopathogenesis remains obscure, and there are still no treatment strategies modifying disease progression. Although the precise molecular mechanisms underlying epileptogenesis have not been clarified yet, the role of ion channels as regulators of cellular excitability has increasingly gained attention. In this regard, emerging evidence highlights the potential implication of inwardly rectifying potassium (Kir) channels in epileptogenesis. Kir channels consist of seven different subfamilies (Kir1-Kir7), and they are highly expressed in both neuronal and glial cells in the central nervous system. These channels control the cell volume and excitability. In this review, we discuss preclinical and clinical evidence on the role of the several subfamilies of Kir channels in epileptogenesis, aiming to shed more light on the pathogenesis of this disorder and pave the way for future novel therapeutic approaches.
Collapse
Affiliation(s)
- Enes Akyuz
- Faculty of International Medicine, Department of Biophysics, University of Health Sciences, Istanbul, Turkey
| | - Betul Koklu
- Faculty of Medicine, Namık Kemal University, Tekirdağ, Turkey
| | - Arda Uner
- Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
14
|
Kung Y, Hsiao MY, Yang SM, Wen TY, Chen M, Liao WH, Wu CH, Ao L, Chen WS. A single low-energy shockwave pulse opens blood-cerebrospinal fluid barriers and facilitates gastrodin delivery to alleviate epilepsy. ULTRASONICS SONOCHEMISTRY 2021; 78:105730. [PMID: 34464899 PMCID: PMC8408522 DOI: 10.1016/j.ultsonch.2021.105730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/19/2021] [Accepted: 08/14/2021] [Indexed: 05/04/2023]
Abstract
The blood-cerebrospinal fluid barrier (BCSFB) is another gatekeeper between systemic circulation and the central nervous system (CNS), mainly present at the boundary between choroid plexuses and the ventricular system. This study demonstrates BCSFB opening in rats by single pulse of low-energy focused shockwave (FSW, energy flux density 0.03 mJ/mm2, 2 × 106 microbubbles/kg) treatment at lateral ventricle, resulting in significantly elevated cerebrospinal fluid (CSF) concentrations of systemically-administered gastrodin (GTD) (4 times vs. control within 3 hrs) that remained detectable for 24 hrs. The FSW-GTD group had significantly lower Racine's scale (<4) and zero mortality (n = 30) after lithium-pilocarpine-induced epilepsy. Electrophysiological recordings showed decreased epileptiform discharges, and brain section histology revealed reduced inflammation, oxidative stress and apoptosis, when compared with groups without FSW (Racine's scale: 4 ∼ 5; mortality: 26.67 ∼ 36.67%). FSW-mediated BCSFB opening provides a promising alternative for controlled-delivery of therapeutics into the CNS, offering rapid and widespread medication distribution. The technique could by applied in the development of novel therapies for various CNS diseases.
Collapse
Affiliation(s)
- Yi Kung
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Ming-Yen Hsiao
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Shu-Mei Yang
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Tz-Yi Wen
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, USA
| | - Moxian Chen
- School of Rehabilitation, Kunming Medical University, Kunming, People's Republic of China
| | - Wei-Hao Liao
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Chueh-Hung Wu
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Lijuan Ao
- School of Rehabilitation, Kunming Medical University, Kunming, People's Republic of China
| | - Wen-Shiang Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei City, Taiwan; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan.
| |
Collapse
|
15
|
In Vivo Microelectrode Arrays for Detecting Multi-Region Epileptic Activities in the Hippocampus in the Latent Period of Rat Model of Temporal Lobe Epilepsy. MICROMACHINES 2021; 12:mi12060659. [PMID: 34205055 PMCID: PMC8228658 DOI: 10.3390/mi12060659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/26/2021] [Accepted: 05/30/2021] [Indexed: 11/25/2022]
Abstract
Temporal lobe epilepsy (TLE) is a form of refractory focal epilepsy, which includes a latent period and a chronic period. Microelectrode arrays capable of multi-region detection of neural activities are important for accurately identifying the epileptic focus and pathogenesis mechanism in the latent period of TLE. Here, we fabricated multi-shank MEAs to detect neural activities in the DG, hilus, CA3, and CA1 in the TLE rat model. In the latent period in TLE rats, seizures were induced and changes in neural activities were detected. The results showed that induced seizures spread from the hilus and CA3 to other areas. Furthermore, interneurons in the hilus and CA3 were more excited than principal cells and exhibited rhythmic oscillations at approximately 15 Hz in grand mal seizures. In addition, the power spectral density (PSD) of neural spikes and local field potentials (LFPs) were synchronized in the frequency domain of the alpha band (9–15 Hz) after the induction of seizures. The results suggest that fabricated MEAs have the advantages of simultaneous and precise detection of neural activities in multiple subregions of the hippocampus. Our MEAs promote the study of cellular mechanisms of TLE during the latent period, which provides an important basis for the diagnosis of the lesion focus of TLE.
Collapse
|
16
|
Ahmed Juvale II, Che Has AT. The evolution of the pilocarpine animal model of status epilepticus. Heliyon 2020; 6:e04557. [PMID: 32775726 PMCID: PMC7393986 DOI: 10.1016/j.heliyon.2020.e04557] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/05/2020] [Accepted: 07/22/2020] [Indexed: 02/02/2023] Open
Abstract
The pilocarpine animal model of status epilepticus is a well-established, clinically translatable model that satisfies all of the criteria essential for an animal model of status epilepticus: a latency period followed by spontaneous recurrent seizures, replication of behavioural, electrographic, metabolic, and neuropathological changes, as well as, pharmacoresistance to anti-epileptic drugs similar to that observed in human status epilepticus. However, this model is also characterized by high mortality rates and studies in recent years have also seen difficulties in seizure induction due to pilocarpine resistant animals. This can be attributed to differences in rodent strains, species, gender, and the presence of the multi-transporter, P-glycoprotein at the blood brain barrier. The current paper highlights the various alterations made to the original pilocarpine model over the years to combat both the high mortality and low induction rates. These range from the initial lithium-pilocarpine model to the more recent Reduced Intensity Status Epilepticus (RISE) model, which finally brought the mortality rates down to 1%. These modifications are essential to improve animal welfare and future experimental outcomes.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|