1
|
Rarinca V, Hritcu LD, Burducea M, Plavan G, Lefter R, Burlui V, Romila L, Ciobică A, Todirascu-Ciornea E, Barbacariu CA. Assessing the Influence of Low Doses of Sucrose on Memory Deficits in Fish Exposed to Common Insecticide Based on Fipronil and Pyriproxyfen. Curr Issues Mol Biol 2024; 46:14168-14189. [PMID: 39727976 DOI: 10.3390/cimb46120848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Although pesticides have been a constant concern for decades, in the last ten years, public discussions and scientific research have emphasized their impact on human health and the environment, drawing increased attention to the problems associated with their use. The association of environmental stressors such as pesticides with a sugar-rich diet can contribute to the growing global metabolic disease epidemic through overlapping mechanisms of insulin resistance, inflammation, and metabolic dysregulation. The main aim of this study was to evaluate the behavioral effects of the exposure of Silver crucian carp (Carassius auratus gibelio) to a commercial insecticide formulation containing fipronil, pyriproxyfen, and other additives, as well as sucrose and their mixtures. The behavioral responses in the T-test showed significant abnormalities in the exploratory activity evocative of memory deficits and an increased degree of anxiety in the groups of fish treated with the insecticide formulation and the mixture of the insecticide with sucrose. Aggression, quantified in the mirror-biting test, as biting and the frequency of approaches to the mirror contact zone, was significantly decreased only in the insecticide and sucrose group. All three groups showed behavioral changes reflective of toxicity, but only the combination of the two stress factors, environmental (insecticide) and metabolic (sucrose intake), resulted in pronounced memory alterations.
Collapse
Affiliation(s)
- Viorica Rarinca
- Doctoral School of Geosciences, Faculty of Geography and Geology, "Alexandru Ioan Cuza" University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
- Doctoral School of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iași, Carol I Avenue, 20A, 700505 Iasi, Romania
- Preclinical Department, Apollonia University, Pacurari Street 11, 700511 Iasi, Romania
| | - Luminita Diana Hritcu
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences, Mihail Sadoveanu Street, No. 3, 700490 Iasi, Romania
| | - Marian Burducea
- Research and Development Station for Aquaculture and Aquatic Ecology, "Alexandru Ioan Cuza" University, Carol I, 20A, 700505 Iasi, Romania
| | - Gabriel Plavan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
| | - Radu Lefter
- Center of Biomedical Research, Romanian Academy, No. 8, Carol I Avenue, 700506 Iasi, Romania
| | - Vasile Burlui
- Preclinical Department, Apollonia University, Pacurari Street 11, 700511 Iasi, Romania
| | - Laura Romila
- Preclinical Department, Apollonia University, Pacurari Street 11, 700511 Iasi, Romania
| | - Alin Ciobică
- Preclinical Department, Apollonia University, Pacurari Street 11, 700511 Iasi, Romania
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
- Center of Biomedical Research, Romanian Academy, No. 8, Carol I Avenue, 700506 Iasi, Romania
- Academy of Romanian Scientists, No. 54, Independence Street, Sector 5, 050094 Bucharest, Romania
| | - Elena Todirascu-Ciornea
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
| | - Cristian-Alin Barbacariu
- Research and Development Station for Aquaculture and Aquatic Ecology, "Alexandru Ioan Cuza" University, Carol I, 20A, 700505 Iasi, Romania
| |
Collapse
|
2
|
Kumar M, Gusain C, Bhatt B, Lal R, Bishnoi M. Sex-specific effects of sucrose withdrawal on anxiety-like behavior and neuroimmune response. Neuropharmacology 2024; 249:109868. [PMID: 38403263 DOI: 10.1016/j.neuropharm.2024.109868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/13/2024] [Accepted: 02/09/2024] [Indexed: 02/27/2024]
Abstract
Sugar bingeing induces maladaptive neuroadaptations to decrease dietary control and promote withdrawal symptoms. This study investigated sex differences in sucrose bingeing, sucrose withdrawal-induced negative mood effects and underlying neuroimmune response in the prefrontal cortex (PFC) and nucleus accumbens (NAc) of C57BL/6J male and female mice. Two-bottle sucrose choice paradigm was used to develop sucrose dependence in mice. Female mice consumed more sucrose than male mice when given free access to water and 10% sucrose for four weeks. A significant increase in the mRNA expression of neuroinflammatory markers (Il1β, Tnfα) was found in the PFC of males exposed to sucrose withdrawal. Sucrose bingeing and subsequent sucrose withdrawal showed elevated protein levels of pro-inflammatory cytokines/chemokines/growth factors in the PFC (IL-1β, IL-6, TNFα, IFN-γ, IL-10, CCL5, VEGF) and NAc (IL-1β, IL-6, IL-10, VEGF) of male mice as compared to their water controls. These effects were concurrent with reduced mRNA expression of neuronal activation marker (cFos) in the PFC of sucrose withdrawal males. One week of sucrose withdrawal after prolonged sucrose consumption showed anxiety-like behavior in male mice, not in females. In conclusion, this study demonstrates that repeated access to sucrose induces anxiety-like behavior when the sugar is no longer available in the diet and these effects are male-specific. Elevated neuroinflammation in reward neurocircuitry may underlie these sex-specific effects.
Collapse
Affiliation(s)
- Mohit Kumar
- Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector 81 (Knowledge City), Punjab, India.
| | - Chitralekha Gusain
- Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector 81 (Knowledge City), Punjab, India
| | - Babita Bhatt
- Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector 81 (Knowledge City), Punjab, India
| | - Roshan Lal
- Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector 81 (Knowledge City), Punjab, India
| | - Mahendra Bishnoi
- Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector 81 (Knowledge City), Punjab, India
| |
Collapse
|
3
|
Wang J, Chehrehasa F, Moody H, Beecher K. Does neuroscience research change behaviour? A scoping review and case study in obesity neuroscience. Neurosci Biobehav Rev 2024; 159:105598. [PMID: 38401576 DOI: 10.1016/j.neubiorev.2024.105598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
The language employed by researchers to define and discuss diseases can itself be a determinant of health. Despite this, the framing of diseases in medical research literature is largely unexplored. This scoping review examines a prevalent medical issue with social determinants influenced by the framing of its pathogenesis: obesity. Specifically, we compare the currently dominant framing of obesity as an addiction to food with the emerging frame of obesity developing from neuroinflammation. We triangulate both corpus linguistic and bibliometric analysis of the top 200 most engaging neuroscience journal articles discussing obesity that were published open access in the past 10 years. The constructed Neurobesity Corpus is available for public use. The scoping review analysis confirmed that neuroinflammation is an emerging way for obesity to be framed in medical research. Importantly, the articles analysed that discussed neuroinflammation were less likely to use crisis terminology, such as referring to an obesity "epidemic". We highlight a potential relationship between the adoption of addiction frames and the use of stigmatising language in medical research.
Collapse
Affiliation(s)
- Joshua Wang
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia.
| | - Fatemeh Chehrehasa
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Hayley Moody
- Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Kate Beecher
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Building 71/918 Royal Brisbane and Women's Hospital Campus, Herston, QLD 4029, Australia
| |
Collapse
|
4
|
Silva SCDA, de Lemos MDT, Dos Santos Junior OH, Rodrigues TO, Silva TL, da Silva AI, Fiamoncini J, Lagranha CJ. Overweight during development dysregulates cellular metabolism and critical genes that control food intake in the prefrontal cortex. Physiol Behav 2024; 276:114453. [PMID: 38159589 DOI: 10.1016/j.physbeh.2023.114453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUNDS AND AIMS Childhood obesity is increasing substantially across the world. The World Obesity Federation (WOF) and World Health Organization (WHO) predicted that in 2030 > 1 billion people will be obese, and by 2035 over 4 billion will reach obesity worldwide. According to WHO, the world soon cannot afford the economic cost of obesity, and we need to act to stop obesity acceleration now. Data in the literature supports that the first 1000 days of life are essential in preventing obesity and related adversities. Therefore, using basic research, the present a study that focuses on the immediate effect of overnutrition and serotonin modulation during the lactation period. METHODS Using a neonatal overfeeding model, male Wistar rats were divided into four groups based on nutrition or serotonin modulation by pharmacological treatment up to 22 days of life. Cellular and mitochondrial function markers, oxidative stress biomarkers and mRNA levels of hedonic and homeostatic genes were evaluated. RESULTS Our data showed that overfeeding during lactation decrease NAD/NADH ratio, citrate synthase activity, and increase ROS production. Lipid and protein oxidation were increased in overfed animals, with a decrease in antioxidant defenses, we also observe a differential expression of mRNA levels of homeostatic and hedonic genes. On the contrary, serotonin modulation with selective serotonin reuptake inhibitors treatment reduces harmful effects caused by overnutrition. CONCLUSION Early effects of overnutrition significantly affect the prefrontal cortex at molecular and cellular level, which could mediate obesity-related neurodegenerative dysfunction.
Collapse
Affiliation(s)
| | | | | | - Thyago Oliveira Rodrigues
- Gradute Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco - CAV, Vitória de Santo Antão, Brazil
| | - Tercya Lucidi Silva
- Neuropsychiatry and Behavior Science Graduate Program, Federal University of Pernambuco - CAV, Vitória de Santo Antão, Brazil
| | | | - Jarlei Fiamoncini
- Food Research Center, Department of Food Science and Experimental Nutrition, University of São Paulo, São Paulo, SP, Brazil
| | - Claudia J Lagranha
- Neuropsychiatry and Behavior Science Graduate Program, Federal University of Pernambuco - CAV, Vitória de Santo Antão, Brazil; Biochemistry and Physiology Graduate Program, Federal University of Pernambuco - CAV, Vitória de Santo Antão, Brazil; Gradute Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco - CAV, Vitória de Santo Antão, Brazil.
| |
Collapse
|
5
|
Yılmaz HÖ, Meriç ÇS, Yabancı Ayhan N. Comparing the effects of dietary sugars on cognitive performance and reaction time: A randomized, placebo- controlled and double-blind experimental trial. APPLIED NEUROPSYCHOLOGY. ADULT 2023:1-9. [PMID: 37453741 DOI: 10.1080/23279095.2023.2232911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The aim of the study was to compare the effects of acute intake dietary sugars on cognitive performance and reaction time. This study was, randomized, placebo-controlled, double-blind experimental design, conducted with 75 healthy adults. At the beginning of the study, the participants (36 male, 39 female; 21.6 ± 1.3 years of age; body mass index: 21.59 ± 1.94 kg/m2) were randomly divided into equal five groups (n:15) (glucose (10 g), fructose (10 g), sucrose (10 g), saccharin (0.24 g), placebo), and received dietary sugars dissolved in 200 mL of water. Cognitive performance was determined with Cancelation Test, and the Simple Response Time and Ruler Drop Tests were used in order to response and reaction time of participants, respectively. General score of cognitive performance (0.93 ± 0.1), reaction (295 ± 20 ms), and response (204 ms) were highest in glucose and lowest in placebo (0.63 ± 0.1; 368 ± 22 ms; 251 ms, respectively) (p < .001). Saccharin groups had a higher reaction (312 ± 22 ms) and response (216 ms) time score compared to consumed fructose (316 ± 39; 227 ms), sucrose (354 ± 26; 246 ms), and placebo (368 ± 22; 251 ms) groups, respectively (p < .001). These findings show that differences in the absorption pattern and sweetness levels of sugar types may have different effects on cognitive performance and reaction time.
Collapse
Affiliation(s)
- Hacı Ömer Yılmaz
- Department of Nutrition and Dietetics, Gümüşhane University, Gümüşhane, Türkiye
| | - Çağdaş Salih Meriç
- Department of Nutrition and Dietetics, Gaziantep University, Gaziantep, Türkiye
| | | |
Collapse
|
6
|
Sugar-sweetened beverage consumption retarded weight gain but not induced depression and anxiety-like behaviors in mice. Life Sci 2023; 317:121469. [PMID: 36736765 DOI: 10.1016/j.lfs.2023.121469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/22/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
AIMS To assess the effects of sugar-sweetened beverage (SSB) consumption and exercise on behaviors. METHODS Twenty-four male mice were divided into four groups: the water + sedentary (WS), the SSB + sedentary (CS), the water + exercise (WE), and the SSB + exercise (CE). After three-month of interventions, forced swim test (FST), open field test (OFT), and morris water maze (MWM) were conducted. Then, mRNA levels of MAO-A, COMT, and 5-HT1A and protein levels of synapsin, STAT3, A2AR, CRTC1, CREB, and BDNF were measured. RESULTS Under a similar baseline body weight condition, SSB consumption reduced the weight gain from the 3rd week (p < 0.05, or p < 0.01). Exercise decreased the escape latency in the CE group when compared to the CS group on day5 (p < 0.01) and increased the time in the target quadrant in the WE group than the WS group on day4 (p < 0.05) and 5 (p < 0.01) during MWM. No significant differences were found during the FST and OFT. COMT mRNA level was increased after SSB consumption (p < 0.05), but no differences were found in the MAO-A and 5-HT1A mRNA levels and the concerned biomarkers, all of which were previously reported to be associated with depression and anxiety-like behaviors. CONCLUSION SSB consumption reduced weight gain but not result in depression and anxiety-like behaviors in mice. Therefore, the behavioral effects of exercise were not significant. This is not consistent with the results of previous epidemiological surveys of humans.
Collapse
|
7
|
The immediate effect of overnutrition and fluoxetine treatment during the critical period of development on the hippocampus. Neurochem Int 2023; 162:105454. [PMID: 36462683 DOI: 10.1016/j.neuint.2022.105454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/25/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022]
Abstract
It is well known that overnutrition, overweight, and obesity in children can modulate brain mechanisms of plasticity, monoaminergic systems, and mitochondrial function. The immediate effect of overnutrition during the developmental period has not been thoroughly examined in rats until the present. This study sought to evaluate the impact on adult rats of early life overfeeding and fluoxetine treatment from post-natal day 1 (PND1) to post-natal day 21 (PND21) relative to mitochondrial function, oxidative balance, and expression of specific monoaminergic genes in the hippocampus. The following were evaluated: mitochondrial function markers, oxidative stress biomarkers, dopamine-and serotonin-related genes, and BDNF mRNA levels. Overfeeding during the lactation period deregulates cellular metabolism and the monoaminergic systems in the hippocampus. Strikingly, serotonin modulation by fluoxetine treatment protected against some of the effects of early overnutrition. We conclude that overfeeding during brain development induce detrimental effects in mitochondria and in the genes that regulate homeostatic status that can be the molecular mechanisms related to neurological diseases.
Collapse
|
8
|
Wang J, Beecher K, Chehrehasa F, Moody H. The limitations of investigating appetite through circuit manipulations: are we biting off more than we can chew? Rev Neurosci 2022; 34:295-311. [PMID: 36054842 DOI: 10.1515/revneuro-2022-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/09/2022] [Indexed: 11/15/2022]
Abstract
Disordered eating can underpin a number of debilitating and prevalent chronic diseases, such as obesity. Broader advances in psychopharmacology and biology have motivated some neuroscientists to address diet-induced obesity through reductionist, pre-clinical eating investigations on the rodent brain. Specifically, chemogenetic and optogenetic methods developed in the 21st century allow neuroscientists to perform in vivo, region-specific/projection-specific/promoter-specific circuit manipulations and immediately assess the impact of these manipulations on rodent feeding. These studies are able to rigorously conclude whether a specific neuronal population regulates feeding behaviour in the hope of eventually developing a mechanistic neuroanatomical map of appetite regulation. However, an artificially stimulated/inhibited rodent neuronal population that changes feeding behaviour does not necessarily represent a pharmacological target for treating eating disorders in humans. Chemogenetic/optogenetic findings must therefore be triangulated with the array of theories that contribute to our understanding of appetite. The objective of this review is to provide a wide-ranging discussion of the limitations of chemogenetic/optogenetic circuit manipulation experiments in rodents that are used to investigate appetite. Stepping into and outside of medical science epistemologies, this paper draws on philosophy of science, nutrition, addiction biology and neurophilosophy to prompt more integrative, transdisciplinary interpretations of chemogenetic/optogenetic appetite data. Through discussing the various technical and epistemological limitations of these data, we provide both an overview of chemogenetics and optogenetics accessible to non-neuroscientist obesity researchers, as well as a resource for neuroscientists to expand the number of lenses through which they interpret their circuit manipulation findings.
Collapse
Affiliation(s)
- Joshua Wang
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia
| | - Kate Beecher
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Building 71/918 Royal Brisbane and Women's Hospital Campus, Herston 4029, QLD, Australia
| | - Fatemeh Chehrehasa
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia
| | - Hayley Moody
- Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia
| |
Collapse
|
9
|
Morales-Ríos EI, García-Machorro J, Briones-Aranda A, Gómez-Pliego R, Espinosa-Raya J. Effect of Long-term Intake of Nutritive and Non-nutritive Sweeteners on Metabolic Health and Cognition in Adult Male Rats. J Med Food 2022; 25:1059-1065. [PMID: 35951019 DOI: 10.1089/jmf.2022.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study evaluated the effects of long-term intake of nutritive sweeteners (NSs) and non-nutritive sweeteners (NNSs) on body weight, food and energy intake, blood pressure, metabolic parameters, and memory retention in rats. Sixty male Sprague-Dawley rats were randomly divided into six groups (n = 10 per group): control (water),10% sucrose (SUC), aspartame (ASP), sucralose (SCA), stevia (STV), and 5% xylitol (XYL). Pure NSs (SUC and XYL) and NNSs were added to the drinking water for 18 weeks. ASP, SCA, and STV dosage was based on the estimated daily intake limit: 4.1, 2.0, and 3.4 mg/kg/day, respectively. Chronic access to NNSs did not result in any difference in total weight gain of the rats, while it was significantly elevated in the SUC group compared with the control and NNSs groups. Food intake was significantly lower in all NNSs groups compared with SUC and control groups. Sweetened beverage intake volumes were significantly diminished in all NNSs groups compared with intake in SUC and control groups. Total calories consumed were lower for the STV and XYL groups compared with all other groups. Blood pressure and glucose metabolism did not differ significantly between the groups. All sweeteners increased total cholesterol, low-density lipoprotein, and triglyceride levels. Short-term memory was significantly impaired in the ASP group in the novel object recognition task, while long-term memory was impaired in SUC and STV groups. These metabolic and behavioral results suggest that the long-term intake of NSs or NNSs can be associated with peripheral and central effects.
Collapse
Affiliation(s)
- Emmanuel Iván Morales-Ríos
- Laboratorio de Neurofarmacología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Jazmín García-Machorro
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Alfredo Briones-Aranda
- Laboratorio de Farmacología, Facultad de Medicina Humana, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez Chiapas, México
| | - Raquel Gómez-Pliego
- Sección de Ciencias de la Salud Humana, Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México, México
| | - Judith Espinosa-Raya
- Laboratorio de Neurofarmacología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
10
|
Witek K, Wydra K, Filip M. A High-Sugar Diet Consumption, Metabolism and Health Impacts with a Focus on the Development of Substance Use Disorder: A Narrative Review. Nutrients 2022; 14:2940. [PMID: 35889898 PMCID: PMC9323357 DOI: 10.3390/nu14142940] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 01/01/2023] Open
Abstract
Carbohydrates are important macronutrients in human and rodent diet patterns that play a key role in crucial metabolic pathways and provide the necessary energy for proper body functioning. Sugar homeostasis and intake require complex hormonal and nervous control to proper body energy balance. Added sugar in processed food results in metabolic, cardiovascular, and nervous disorders. Epidemiological reports have shown enhanced consumption of sweet products in children and adults, especially in reproductive age and in pregnant women, which can lead to the susceptibility of offspring's health to diseases in early life or in adulthood and proneness to mental disorders. In this review, we discuss the impacts of high-sugar diet (HSD) or sugar intake during the perinatal and/or postnatal periods on neural and behavioural disturbances as well as on the development of substance use disorder (SUD). Since several emotional behavioural disturbances are recognized as predictors of SUD, we also present how HSD enhances impulsive behaviour, stress, anxiety and depression. Apart from the influence of HSD on these mood disturbances, added sugar can render food addiction. Both food and addictive substances change the sensitivity of the brain rewarding neurotransmission signalling. The results of the collected studies could be important in assessing sugar intake, especially via maternal dietary patterns, from the clinical perspective of SUD prevention or pre-existing emotional disorders. Methodology: This narrative review focuses on the roles of a high-sugar diet (HSD) and added sugar in foods and on the impacts of glucose and fructose on the development of substance use disorder (SUD) and on the behavioural predictors of drugs abuse. The literature was reviewed by two authors independently according to the topic of the review. We searched the PubMed and Scopus databases and Multidisciplinary Digital Publishing Institute open access scientific journals using the following keyword search strategy depending on the theme of the chapter: "high-sugar diet" OR "high-carbohydrate diet" OR "sugar" OR "glucose" OR "fructose" OR "added sugar" AND keywords. We excluded inaccessible or pay-walled articles, abstracts, conference papers, editorials, letters, commentary, and short notes. Reviews, experimental studies, and epidemiological data, published since 1990s, were searched and collected depending on the chapter structure. After the search, all duplicates are thrown out and full texts were read, and findings were rescreened. After the selection process, appropriate papers were included to present in this review.
Collapse
Affiliation(s)
| | | | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (K.W.); (K.W.)
| |
Collapse
|
11
|
Beecher K, Wang J, Chehrehasa F, Depoortere R, Varney MA, Newman-Tancredi A, Bartlett SE, Belmer A. Dissecting the contribution of 5-HT1A auto- and heteroreceptors in sucrose overconsumption in mice. Biomed Pharmacother 2022; 148:112699. [DOI: 10.1016/j.biopha.2022.112699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 01/04/2023] Open
|
12
|
Fazekas CL, Szabó A, Török B, Bánrévi K, Correia P, Chaves T, Daumas S, Zelena D. A New Player in the Hippocampus: A Review on VGLUT3+ Neurons and Their Role in the Regulation of Hippocampal Activity and Behaviour. Int J Mol Sci 2022; 23:790. [PMID: 35054976 PMCID: PMC8775679 DOI: 10.3390/ijms23020790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 01/05/2023] Open
Abstract
Glutamate is the most abundant excitatory amino acid in the central nervous system. Neurons using glutamate as a neurotransmitter can be characterised by vesicular glutamate transporters (VGLUTs). Among the three subtypes, VGLUT3 is unique, co-localising with other "classical" neurotransmitters, such as the inhibitory GABA. Glutamate, manipulated by VGLUT3, can modulate the packaging as well as the release of other neurotransmitters and serve as a retrograde signal through its release from the somata and dendrites. Its contribution to sensory processes (including seeing, hearing, and mechanosensation) is well characterised. However, its involvement in learning and memory can only be assumed based on its prominent hippocampal presence. Although VGLUT3-expressing neurons are detectable in the hippocampus, most of the hippocampal VGLUT3 positivity can be found on nerve terminals, presumably coming from the median raphe. This hippocampal glutamatergic network plays a pivotal role in several important processes (e.g., learning and memory, emotions, epilepsy, cardiovascular regulation). Indirect information from anatomical studies and KO mice strains suggests the contribution of local VGLUT3-positive hippocampal neurons as well as afferentations in these events. However, further studies making use of more specific tools (e.g., Cre-mice, opto- and chemogenetics) are needed to confirm these assumptions.
Collapse
Affiliation(s)
- Csilla Lea Fazekas
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, Sorbonne Université, CNRS, 75005 Paris, France;
| | - Adrienn Szabó
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Bibiána Török
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Krisztina Bánrévi
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
| | - Pedro Correia
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Tiago Chaves
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Stéphanie Daumas
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, Sorbonne Université, CNRS, 75005 Paris, France;
| | - Dóra Zelena
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
13
|
Neural serotonergic circuits for controlling long-term voluntary alcohol consumption in mice. Mol Psychiatry 2022; 27:4599-4610. [PMID: 36195637 PMCID: PMC9531213 DOI: 10.1038/s41380-022-01789-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
Alcohol-use-disorders are chronic relapsing illnesses, often co-morbid with anxiety. We have previously shown using the "drinking-in-the-dark" model in mice that the stimulation of the serotonin receptor 1A (5-HT1A) reduces ethanol binge-drinking behaviour and withdrawal-induced anxiety. The 5-HT1A receptor is located either on Raphe neurons as autoreceptors, or on target neurons as heteroreceptors. By combining a pharmacological approach with biased agonists targeting the 5-HT1A auto- or heteroreceptor and a chemogenetic approach (DREADDs), here we identified that ethanol-binge drinking behaviour is dependent on 5-HT1A autoreceptors and 5-HT neuronal function, with a transition from DRN-dependent regulation of short-term (6 weeks) ethanol intake, to MRN-dependent regulation after longer ethanol exposure (12 weeks). We further identified a serotonergic microcircuit (5-HTMRN→DG) originating from the MRN and projecting to the dentate gyrus (DG) of the hippocampus, that is specifically affected by, and modulates long-term ethanol consumption. The present study indicates that targeting Raphe nuclei 5-HT1A autoreceptors with agonists might represent an innovative pharmacotherapeutic strategy to combat alcohol abuse.
Collapse
|