1
|
Lazarov O, Gupta M, Kumar P, Morrissey Z, Phan T. Memory circuits in dementia: The engram, hippocampal neurogenesis and Alzheimer's disease. Prog Neurobiol 2024; 236:102601. [PMID: 38570083 PMCID: PMC11221328 DOI: 10.1016/j.pneurobio.2024.102601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Here, we provide an in-depth consideration of our current understanding of engrams, spanning from molecular to network levels, and hippocampal neurogenesis, in health and Alzheimer's disease (AD). This review highlights novel findings in these emerging research fields and future research directions for novel therapeutic avenues for memory failure in dementia. Engrams, memory in AD, and hippocampal neurogenesis have each been extensively studied. The integration of these topics, however, has been relatively less deliberated, and is the focus of this review. We primarily focus on the dentate gyrus (DG) of the hippocampus, which is a key area of episodic memory formation. Episodic memory is significantly impaired in AD, and is also the site of adult hippocampal neurogenesis. Advancements in technology, especially opto- and chemogenetics, have made sophisticated manipulations of engram cells possible. Furthermore, innovative methods have emerged for monitoring neurons, even specific neuronal populations, in vivo while animals engage in tasks, such as calcium imaging. In vivo calcium imaging contributes to a more comprehensive understanding of engram cells. Critically, studies of the engram in the DG using these technologies have shown the important contribution of hippocampal neurogenesis for memory in both health and AD. Together, the discussion of these topics provides a holistic perspective that motivates questions for future research.
Collapse
Affiliation(s)
- Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Muskan Gupta
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Pavan Kumar
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zachery Morrissey
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Trongha Phan
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
2
|
Lopez MR, Wasberg SMH, Gagliardi CM, Normandin ME, Muzzio IA. Mystery of the memory engram: History, current knowledge, and unanswered questions. Neurosci Biobehav Rev 2024; 159:105574. [PMID: 38331127 DOI: 10.1016/j.neubiorev.2024.105574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/22/2023] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
The quest to understand the memory engram has intrigued humans for centuries. Recent technological advances, including genetic labelling, imaging, optogenetic and chemogenetic techniques, have propelled the field of memory research forward. These tools have enabled researchers to create and erase memory components. While these innovative techniques have yielded invaluable insights, they often focus on specific elements of the memory trace. Genetic labelling may rely on a particular immediate early gene as a marker of activity, optogenetics may activate or inhibit one specific type of neuron, and imaging may capture activity snapshots in a given brain region at specific times. Yet, memories are multifaceted, involving diverse arrays of neuronal subpopulations, circuits, and regions that work in concert to create, store, and retrieve information. Consideration of contributions of both excitatory and inhibitory neurons, micro and macro circuits across brain regions, the dynamic nature of active ensembles, and representational drift is crucial for a comprehensive understanding of the complex nature of memory.
Collapse
Affiliation(s)
- M R Lopez
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - S M H Wasberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - C M Gagliardi
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - M E Normandin
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - I A Muzzio
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
3
|
Li X, Wu X, Lu T, Kuang C, Si Y, Zheng W, Li Z, Xue Y. Perineuronal Nets in the CNS: Architects of Memory and Potential Therapeutic Target in Neuropsychiatric Disorders. Int J Mol Sci 2024; 25:3412. [PMID: 38542386 PMCID: PMC10970535 DOI: 10.3390/ijms25063412] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 11/11/2024] Open
Abstract
The extracellular matrix (ECM) within the brain possesses a distinctive composition and functionality, influencing a spectrum of physiological and pathological states. Among its constituents, perineuronal nets (PNNs) are unique ECM structures that wrap around the cell body of many neurons and extend along their dendrites within the central nervous system (CNS). PNNs are pivotal regulators of plasticity in CNS, both during development and adulthood stages. Characterized by their condensed glycosaminoglycan-rich structures and heterogeneous molecular composition, PNNs not only offer neuroprotection but also participate in signal transduction, orchestrating neuronal activity and plasticity. Interfering with the PNNs in adult animals induces the reactivation of critical period plasticity, permitting modifications in neuronal connections and promoting the recovery of neuroplasticity following spinal cord damage. Interestingly, in the adult brain, PNN expression is dynamic, potentially modulating plasticity-associated states. Given their multifaceted roles, PNNs have emerged as regulators in the domains of learning, memory, addiction behaviors, and other neuropsychiatric disorders. In this review, we aimed to address how PNNs contribute to the memory processes in physiological and pathological conditions.
Collapse
Affiliation(s)
- Xue Li
- National Institute on Drug Dependence, Peking University, Beijing 100191, China; (X.L.); (T.L.); (Y.S.); (Z.L.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xianwen Wu
- Department of Laboratory Animal Sciences, Peking University Health Sciences Center, Beijing 100191, China;
| | - Tangsheng Lu
- National Institute on Drug Dependence, Peking University, Beijing 100191, China; (X.L.); (T.L.); (Y.S.); (Z.L.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chenyan Kuang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China;
| | - Yue Si
- National Institute on Drug Dependence, Peking University, Beijing 100191, China; (X.L.); (T.L.); (Y.S.); (Z.L.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei Zheng
- Peking-Tsinghua Centre for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China;
| | - Zhonghao Li
- National Institute on Drug Dependence, Peking University, Beijing 100191, China; (X.L.); (T.L.); (Y.S.); (Z.L.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yanxue Xue
- National Institute on Drug Dependence, Peking University, Beijing 100191, China; (X.L.); (T.L.); (Y.S.); (Z.L.)
| |
Collapse
|
4
|
Ramos-Brossier M, Romeo-Guitart D, Lanté F, Boitez V, Mailliet F, Saha S, Rivagorda M, Siopi E, Nemazanyy I, Leroy C, Moriceau S, Beck-Cormier S, Codogno P, Buisson A, Beck L, Friedlander G, Oury F. Slc20a1 and Slc20a2 regulate neuronal plasticity and cognition independently of their phosphate transport ability. Cell Death Dis 2024; 15:20. [PMID: 38195526 PMCID: PMC10776841 DOI: 10.1038/s41419-023-06292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
In recent years, primary familial brain calcification (PFBC), a rare neurological disease characterized by a wide spectrum of cognitive disorders, has been associated to mutations in the sodium (Na)-Phosphate (Pi) co-transporter SLC20A2. However, the functional roles of the Na-Pi co-transporters in the brain remain still largely elusive. Here we show that Slc20a1 (PiT-1) and Slc20a2 (PiT-2) are the most abundant Na-Pi co-transporters expressed in the brain and are involved in the control of hippocampal-dependent learning and memory. We reveal that Slc20a1 and Slc20a2 are differentially distributed in the hippocampus and associated with independent gene clusters, suggesting that they influence cognition by different mechanisms. Accordingly, using a combination of molecular, electrophysiological and behavioral analyses, we show that while PiT-2 favors hippocampal neuronal branching and survival, PiT-1 promotes synaptic plasticity. The latter relies on a likely Otoferlin-dependent regulation of synaptic vesicle trafficking, which impacts the GABAergic system. These results provide the first demonstration that Na-Pi co-transporters play key albeit distinct roles in the hippocampus pertaining to the control of neuronal plasticity and cognition. These findings could provide the foundation for the development of novel effective therapies for PFBC and cognitive disorders.
Collapse
Affiliation(s)
- Mariana Ramos-Brossier
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France.
| | - David Romeo-Guitart
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - Fabien Lanté
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Valérie Boitez
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - François Mailliet
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - Soham Saha
- Institut Pasteur, Perception & Memory Unit, F-75015, Paris, France
- MedInsights, 6 rue de l'église, F-02810, Veuilly la Poterie, France
| | - Manon Rivagorda
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - Eleni Siopi
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR, 3633, Paris, France
| | - Christine Leroy
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 6, F-75015, Paris, France
| | - Stéphanie Moriceau
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
- Platform for Neurobehavioural and metabolism, Structure Fédérative de Recherche Necker, INSERM, US24/CNRS UAR, 3633, Paris, France
- Institute of Genetic Diseases, Imagine, 75015, Paris, France
| | - Sarah Beck-Cormier
- Nantes Université, CNRS, Inserm, l'Institut du Thorax, F-44000, Nantes, France
| | - Patrice Codogno
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 6, F-75015, Paris, France
| | - Alain Buisson
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Laurent Beck
- Nantes Université, CNRS, Inserm, l'Institut du Thorax, F-44000, Nantes, France.
| | - Gérard Friedlander
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 6, F-75015, Paris, France.
| | - Franck Oury
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France.
| |
Collapse
|
5
|
Sohn J. Synaptic configuration and reconfiguration in the neocortex are spatiotemporally selective. Anat Sci Int 2024; 99:17-33. [PMID: 37837522 PMCID: PMC10771605 DOI: 10.1007/s12565-023-00743-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/14/2023] [Indexed: 10/16/2023]
Abstract
Brain computation relies on the neural networks. Neurons extend the neurites such as dendrites and axons, and the contacts of these neurites that form chemical synapses are the biological basis of signal transmissions in the central nervous system. Individual neuronal outputs can influence the other neurons within the range of the axonal spread, while the activities of single neurons can be affected by the afferents in their somatodendritic fields. The morphological profile, therefore, binds the functional role each neuron can play. In addition, synaptic connectivity among neurons displays preference based on the characteristics of presynaptic and postsynaptic neurons. Here, the author reviews the "spatial" and "temporal" connection selectivity in the neocortex. The histological description of the neocortical circuitry depends primarily on the classification of cell types, and the development of gene engineering techniques allows the cell type-specific visualization of dendrites and axons as well as somata. Using genetic labeling of particular cell populations combined with immunohistochemistry and imaging at a subcellular spatial resolution, we revealed the "spatial selectivity" of cortical wirings in which synapses are non-uniformly distributed on the subcellular somatodendritic domains in a presynaptic cell type-specific manner. In addition, cortical synaptic dynamics in learning exhibit presynaptic cell type-dependent "temporal selectivity": corticocortical synapses appear only transiently during the learning phase, while learning-induced new thalamocortical synapses persist, indicating that distinct circuits may supervise learning-specific ephemeral synapse and memory-specific immortal synapse formation. The selectivity of spatial configuration and temporal reconfiguration in the neural circuitry may govern diverse functions in the neocortex.
Collapse
Affiliation(s)
- Jaerin Sohn
- Department of Systematic Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
6
|
Tzilivaki A, Tukker JJ, Maier N, Poirazi P, Sammons RP, Schmitz D. Hippocampal GABAergic interneurons and memory. Neuron 2023; 111:3154-3175. [PMID: 37467748 PMCID: PMC10593603 DOI: 10.1016/j.neuron.2023.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/04/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
One of the most captivating questions in neuroscience revolves around the brain's ability to efficiently and durably capture and store information. It must process continuous input from sensory organs while also encoding memories that can persist throughout a lifetime. What are the cellular-, subcellular-, and network-level mechanisms that underlie this remarkable capacity for long-term information storage? Furthermore, what contributions do distinct types of GABAergic interneurons make to this process? As the hippocampus plays a pivotal role in memory, our review focuses on three aspects: (1) delineation of hippocampal interneuron types and their connectivity, (2) interneuron plasticity, and (3) activity patterns of interneurons during memory-related rhythms, including the role of long-range interneurons and disinhibition. We explore how these three elements, together showcasing the remarkable diversity of inhibitory circuits, shape the processing of memories in the hippocampus.
Collapse
Affiliation(s)
- Alexandra Tzilivaki
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; Einstein Center for Neurosciences, Chariteplatz 1, 10117 Berlin, Germany; NeuroCure Cluster of Excellence, Chariteplatz 1, 10117 Berlin, Germany
| | - John J Tukker
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Nikolaus Maier
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany
| | - Panayiota Poirazi
- Foundation for Research and Technology Hellas (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), N. Plastira 100, Heraklion, Crete, Greece
| | - Rosanna P Sammons
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; Einstein Center for Neurosciences, Chariteplatz 1, 10117 Berlin, Germany; NeuroCure Cluster of Excellence, Chariteplatz 1, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Philippstrasse. 13, 10115 Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany.
| |
Collapse
|
7
|
Nakamura NH, Furue H, Kobayashi K, Oku Y. Hippocampal ensemble dynamics and memory performance are modulated by respiration during encoding. Nat Commun 2023; 14:4391. [PMID: 37500646 PMCID: PMC10374532 DOI: 10.1038/s41467-023-40139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
During offline brain states, such as sleep and memory consolidation, respiration coordinates hippocampal activity. However, the role of breathing during online memory traces remains unclear. Here, we show that respiration can be recruited during online memory encoding. Optogenetic manipulation was used to control activation of the primary inspiratory rhythm generator PreBötzinger complex (PreBötC) in transgenic mice. When intermittent PreBötC-induced apnea covered the object exploration time during encoding, novel object detection was impaired. Moreover, the mice did not exhibit freezing behavior during presentation of fear-conditioned stimuli (CS+) when PreBötC-induced apnea occurred at the exact time of encoding. This apnea did not evoke changes in CA3 cell ensembles between presentations of CS+ and conditioned inhibition (CS-), whereas in normal breathing, CS+ presentations produced dynamic changes. Our findings demonstrate that components of central respiratory activity (e.g., frequency) during online encoding strongly contribute to shaping hippocampal ensemble dynamics and memory performance.
Collapse
Affiliation(s)
- Nozomu H Nakamura
- Division of Physiome, Department of Physiology, Hyogo Medical University, 1-1, Mukogawa cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Hidemasa Furue
- Division of Neurophysiology, Department of Physiology, Hyogo Medical University, 1-1, Mukogawa cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Yoshitaka Oku
- Division of Physiome, Department of Physiology, Hyogo Medical University, 1-1, Mukogawa cho, Nishinomiya, Hyogo, 663-8501, Japan
| |
Collapse
|
8
|
Bergoin R, Torcini A, Deco G, Quoy M, Zamora-López G. Inhibitory neurons control the consolidation of neural assemblies via adaptation to selective stimuli. Sci Rep 2023; 13:6949. [PMID: 37117236 PMCID: PMC10147639 DOI: 10.1038/s41598-023-34165-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/25/2023] [Indexed: 04/30/2023] Open
Abstract
Brain circuits display modular architecture at different scales of organization. Such neural assemblies are typically associated to functional specialization but the mechanisms leading to their emergence and consolidation still remain elusive. In this paper we investigate the role of inhibition in structuring new neural assemblies driven by the entrainment to various inputs. In particular, we focus on the role of partially synchronized dynamics for the creation and maintenance of structural modules in neural circuits by considering a network of excitatory and inhibitory [Formula: see text]-neurons with plastic Hebbian synapses. The learning process consists of an entrainment to temporally alternating stimuli that are applied to separate regions of the network. This entrainment leads to the emergence of modular structures. Contrary to common practice in artificial neural networks-where the acquired weights are typically frozen after the learning session-we allow for synaptic adaptation even after the learning phase. We find that the presence of inhibitory neurons in the network is crucial for the emergence and the post-learning consolidation of the modular structures. Indeed networks made of purely excitatory neurons or of neurons not respecting Dale's principle are unable to form or to maintain the modular architecture induced by the stimuli. We also demonstrate that the number of inhibitory neurons in the network is directly related to the maximal number of neural assemblies that can be consolidated, supporting the idea that inhibition has a direct impact on the memory capacity of the neural network.
Collapse
Affiliation(s)
- Raphaël Bergoin
- ETIS, UMR 8051, ENSEA, CY Cergy Paris Université, CNRS, 6 Av. du Ponceau, 95000, Cergy-Pontoise, France.
- Center for Brain and Cognition, Department of Information and Communications Technologies, Pompeu Fabra University, Carrer Ramón Trias i Fargas 25-27, 08005, Barcelona, Spain.
| | - Alessandro Torcini
- Laboratoire de Physique Théorique et Modélisation, UMR 8089, CY Cergy Paris Université, CNRS, 2 Av. Adolphe Chauvin, 95032, Cergy-Pontoise, France
| | - Gustavo Deco
- Center for Brain and Cognition, Department of Information and Communications Technologies, Pompeu Fabra University, Carrer Ramón Trias i Fargas 25-27, 08005, Barcelona, Spain
- Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010, Barcelona, Spain
| | - Mathias Quoy
- ETIS, UMR 8051, ENSEA, CY Cergy Paris Université, CNRS, 6 Av. du Ponceau, 95000, Cergy-Pontoise, France
- IPAL, CNRS, 1 Fusionopolis Way #21-01 Connexis (South Tower), Singapore, 138632, Singapore
| | - Gorka Zamora-López
- Center for Brain and Cognition, Department of Information and Communications Technologies, Pompeu Fabra University, Carrer Ramón Trias i Fargas 25-27, 08005, Barcelona, Spain
| |
Collapse
|
9
|
Frank SM, Becker M, Qi A, Geiger P, Frank UI, Rosedahl LA, Malloni WM, Sasaki Y, Greenlee MW, Watanabe T. Efficient learning in children with rapid GABA boosting during and after training. Curr Biol 2022; 32:5022-5030.e7. [PMID: 36384138 DOI: 10.1016/j.cub.2022.10.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/10/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
It is generally thought that children learn more efficiently than adults. One way to accomplish this is to have learning rapidly stabilized such that it is not interfered with by subsequent learning. Although γ-aminobutyric acid (GABA) plays an important role in stabilization, it has been reported that GABAergic inhibitory processing is not fully matured yet in children compared with adults. Does this finding indicate that more efficient learning in children is not due to more rapid stabilization? Here, we measured the concentration of GABA in early visual cortical areas in a time-resolved fashion before, during, and after visual perceptual learning (VPL) within subjects using functional MRS (fMRS) and then compared the concentrations between children (8 to 11 years old) and adults (18 to 35 years old). We found that children exhibited a rapid boost of GABA during visual training that persisted after training ended, whereas the concentration of GABA in adults remained unchanged. Moreover, behavioral experiments showed that children exhibited rapid development of resilience to retrograde interference, which indicates that children stabilize VPL much faster than adults. These results together suggest that inhibitory processing in children's brains is more dynamic and adapts more quickly to stabilize learning than in adults, making learning more efficient in children.
Collapse
Affiliation(s)
- Sebastian M Frank
- University of Regensburg, Institute for Experimental Psychology, Universitätsstraße 31, 93053 Regensburg, Germany; Brown University, Department of Cognitive, Linguistic and Psychological Sciences, 190 Thayer Street, Providence, RI 02912, USA.
| | - Markus Becker
- University of Regensburg, Institute for Experimental Psychology, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Andrea Qi
- Brown University, Department of Cognitive, Linguistic and Psychological Sciences, 190 Thayer Street, Providence, RI 02912, USA
| | - Patricia Geiger
- University of Regensburg, Institute for Experimental Psychology, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Ulrike I Frank
- University of Regensburg, Institute for Experimental Psychology, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Luke A Rosedahl
- Brown University, Department of Cognitive, Linguistic and Psychological Sciences, 190 Thayer Street, Providence, RI 02912, USA
| | - Wilhelm M Malloni
- University of Regensburg, Institute for Experimental Psychology, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Yuka Sasaki
- Brown University, Department of Cognitive, Linguistic and Psychological Sciences, 190 Thayer Street, Providence, RI 02912, USA
| | - Mark W Greenlee
- University of Regensburg, Institute for Experimental Psychology, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Takeo Watanabe
- Brown University, Department of Cognitive, Linguistic and Psychological Sciences, 190 Thayer Street, Providence, RI 02912, USA.
| |
Collapse
|
10
|
Yang J, Serrano P, Yin X, Sun X, Lin Y, Chen SX. Functionally distinct NPAS4-expressing somatostatin interneuron ensembles critical for motor skill learning. Neuron 2022; 110:3339-3355.e8. [PMID: 36099920 DOI: 10.1016/j.neuron.2022.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 10/14/2022]
Abstract
During motor learning, dendritic spines on pyramidal neurons (PNs) in the primary motor cortex (M1) undergo reorganization. Intriguingly, the inhibition from local somatostatin-expressing inhibitory neurons (SST-INs) plays an important role in regulating the PN plasticity and thus new motor skill acquisition. However, the molecular mechanisms underlying this process remain unclear. Here, we identified that the early-response transcription factor, NPAS4, is selectively expressed in SST-INs during motor learning. By utilizing in vivo two-photon imaging in mice, we found that cell-type-specific deletion of Npas4 in M1 disrupted learning-induced spine reorganization among PNs and impaired motor learning. In addition, NPAS4-expressing SST-INs exhibited lower neuronal activity during task-related movements, and chemogenetically increasing the activity of NPAS4-expressing ensembles was sufficient to mimic the effects of Npas4 deletion. Together, our results reveal an instructive role of NPAS4-expressing SST-INs in modulating the inhibition to downstream task-related PNs to allow proper spine reorganization that is critical for motor learning.
Collapse
Affiliation(s)
- Jungwoo Yang
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Pablo Serrano
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Xuming Yin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Xiaochen Sun
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Yingxi Lin
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Simon X Chen
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Center for Neural Dynamics, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
11
|
Zeltser G, Sukhanov IM, Nevorotin AJ. MMM - The molecular model of memory. J Theor Biol 2022; 549:111219. [PMID: 35810778 DOI: 10.1016/j.jtbi.2022.111219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022]
Abstract
Identifying mechanisms underlying neurons ability to process information including acquisition, storage, and retrieval plays an important role in the understanding of the different types of memory, pathogenesis of many neurological diseases affecting memory and therapeutic target discovery. However, the traditional understanding of the mechanisms of memory associated with the electrical signals having a unique combination of frequency and amplitude does not answer the question how the memories can survive for life-long periods of time, while exposed to synaptic noise. Recent evidence suggests that, apart from neuronal circuits, a diversity of the molecular memory (MM) carriers, are essential for memory performance. The molecular model of memory (MMM) is proposed, according to which each item of incoming information (the elementary memory item - eMI) is encoded by both circuitries, with the unique for a given MI electrical parameters, and also the MM carriers, unique by its molecular composition. While operating as the carriers of incoming information, the MMs, are functioning within the neuron plasma membrane. Inactive (latent) initially, during acquisition each of the eMIs is activated to become a virtual copy of some real fact or events bygone. This activation is accompanied by the considerable remodeling of the MM molecule associated with the resonance effect.
Collapse
Affiliation(s)
| | - Ilya M Sukhanov
- Lab. Behavioral Pharmacology, Dept. Psychopharmacology, Valdman Institute of Pharmacology, I.P. Pavlov Medical University, Leo Tolstoi Street 6/8, St. Petersburg 197022, The Russian Federation
| | - Alexey J Nevorotin
- Laboratory of Electron Microscopy, I.P. Pavlov Medical University, Leo Tolstoi Street 6/8, St. Petersburg 197022, The Russian Federation
| |
Collapse
|
12
|
Gil-Marti B, Barredo CG, Pina-Flores S, Trejo JL, Turiegano E, Martin FA. The elusive transcriptional memory trace. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac008. [PMID: 38596710 PMCID: PMC10913820 DOI: 10.1093/oons/kvac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/19/2022] [Accepted: 05/07/2022] [Indexed: 04/11/2024]
Abstract
Memory is the brain faculty to store and remember information. It is a sequential process in which four different phases can be distinguished: encoding or learning, consolidation, storage and reactivation. Since the discovery of the first Drosophila gene essential for memory formation in 1976, our knowledge of its mechanisms has progressed greatly. The current view considers the existence of engrams, ensembles of neuronal populations whose activity is temporally coordinated and represents the minimal correlate of experience in brain circuits. In order to form and maintain the engram, protein synthesis and, probably, specific transcriptional program(s) is required. The immediate early gene response during learning process has been extensively studied. However, a detailed description of the transcriptional response for later memory phases was technically challenging. Recent advances in transcriptomics have allowed us to tackle this biological problem. This review summarizes recent findings in this field, and discusses whether or not it is possible to identify a transcriptional trace for memory.
Collapse
Affiliation(s)
- Beatriz Gil-Marti
- Molecular Physiology of Behavior Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), 28002 Madrid, Spain
- Department of Biology, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Celia G Barredo
- Molecular Physiology of Behavior Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), 28002 Madrid, Spain
| | - Sara Pina-Flores
- Molecular Physiology of Behavior Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), 28002 Madrid, Spain
| | - Jose Luis Trejo
- Neurogenesis of the Adult Animal Laboratory. Department of Translational Neuroscience, Cajal Institute, Spanish National Research Council (CSIC), 28049, Madrid, Spain
| | - Enrique Turiegano
- Department of Biology, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Francisco A Martin
- Molecular Physiology of Behavior Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), 28002 Madrid, Spain
| |
Collapse
|