1
|
Zhang Z, Zheng Z, Luo W, Li J, Liao J, Chen F, Wang D, Lin Y. Identifying immune cell infiltration and effective diagnostic biomarkers for ischemic stroke using bioinformatics analysis. PLoS One 2024; 19:e0310108. [PMID: 39636891 PMCID: PMC11620413 DOI: 10.1371/journal.pone.0310108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/25/2024] [Indexed: 12/07/2024] Open
Abstract
Ischemic stroke (IS) is a leading cause of death and disability worldwide. Screening for marker genes in IS is crucial for its early diagnosis and improvement in clinical outcomes. In the study, the gene expression profiles in the GSE22255 and GSE37587 datasets were extracted from the public database Gene Expression Omnibus. Weighted gene co‑expression network analysis (WGCNA) was used to investigate the gene sets that were related to ubiquitination. A total of 33 ubiquitination-related differentially expressed genes (DEGs) were identified using "limma (version 3.50.0)". Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) analysis enriched multiple pathways that were closely related to IS. The correlations between the HALLMARK signaling pathways and DGEs were analyzed. Receiver operating characteristic analysis was used to validate the diagnostic value of the key genes. Among them, 16 genes were identified as hub genes. Single-sample GSEA was performed to evaluate the infiltration status of immune cells in IS. To understand the potential molecular mechanisms of the hub genes in IS, we constructed RBP-mRNA and mRNA-miRNA-lncRNA interaction networks. Additionally, we used the GeneMANIA database to create a PPI network for the signature genes to investigate their functions. As a result, there was a significant difference in the overall infiltration of immune cells between the IS and control groups. Among the 28 types of immune cells, the degree of infiltration of seven types was significantly different between the two groups (p<0.05). The expression of four types of immune cells, namely type 1 T helper cell, type 17 T helper cell, eosinophil, and mast cell, in the IS group were significantly higher than that in the control group. The expressions of DHFR2 (R = -0.575; p<0.001) and DNAAF2 (R = -0.562; p<0.001) were significantly negatively correlated with eosinophil infiltration. The PPI network demonstrated that the 16 hub genes interacted with each other. In conclusion, we identified DEGs, WGCNA modules, hub genes, enriched pathways, and infiltrating immune cells that may be closely involved in IS. Further studies are required to explore the functions of these genes.
Collapse
Affiliation(s)
- Zongyong Zhang
- Department of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zongqing Zheng
- Department of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wenwei Luo
- Department of Neurosurgery, Nanping First Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Jiebo Li
- Department of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jiushan Liao
- Department of Neurosurgery, Luoyuan County Hospital, Fuzhou, China
| | - Fuxiang Chen
- Department of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Dengliang Wang
- Department of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yuanxiang Lin
- Department of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
2
|
Chen X, Zhu S, Huang C, Liu J, Wang J, Cui S. Bioinformatic analyses reveal lysosomal-associated protein transmembrane 5 as a potential therapeutic target in lipotoxicity-induced injury in diabetic kidney disease. Ren Fail 2024; 46:2359638. [PMID: 38832484 PMCID: PMC11151807 DOI: 10.1080/0886022x.2024.2359638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
Emerging data have revealed that damage to tubular epithelial cell is a driving force in the progression of diabetic kidney disease (DKD). However, the specific mechanisms by which lipotoxicity contributes to the injury of these cells, thereby influencing the development of DKD, are yet to be fully understood. Here, we analyzed the GSE 30529 microarray datasets of human tubulointerstitial tissue samples from the Gene Expression Omnibus database (GEO). Concurrently, we conducted RNA-sequencing on palmitic acid (PA)-treated human renal proximal tubule epithelial cells (HK2 cells). After normalization, the differentially expressed genes (DEGs) were screened by R software and gene ontology (GO) enrichment analysis was conducted, and lysosomal-associated protein transmembrane 5 (LAPTM5) was finally selected. Our findings indicate that the expression of LAPTM5 was obviously increased in DKD patients, and the correlation between LAPTM5, and other clinical parameters of DKD was analyzed using the Spearman correlation analysis. The potential of LAPTM5 as a prognostic biomarker for DKD was further consolidated through receiver operating characteristic (ROC) analysis. To further verify the function of LAPTM5, we established mouse or in vitro systems mimicking DKD. The results showed that a consistent upregulation of LAPTM5, which was also found to be linked with inflammatory mediators within the context of DKD. Additionally, LAPTM5 silencing significantly downregulated mRNA expression of inflammatory factors in PA-treated HK2 cells. These results indicate that LAPTM5 is a potential biomarker and therapeutic treatment target for DKD. This discovery paves the way for future research and development of targeted interventions aimed at mitigating the progression of this prevalent condition.
Collapse
Affiliation(s)
- Xin Chen
- Department of Endocrinology, Jiangnan University Medical Center, Affiliated Wuxi Clinical College of Nantong University, Wuxi No.2 People’s Hospital, Wuxi, P. R. China
- School of Medicine, Nanjing Medical University, Nanjing, P. R. China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, P. R. China
| | - Ciyou Huang
- Department of Endocrinology, Jiangnan University Medical Center, Affiliated Wuxi Clinical College of Nantong University, Wuxi No.2 People’s Hospital, Wuxi, P. R. China
| | - Jiayi Liu
- Department of Endocrinology, Jiangnan University Medical Center, Affiliated Wuxi Clinical College of Nantong University, Wuxi No.2 People’s Hospital, Wuxi, P. R. China
| | - Jinbang Wang
- Subei People’s Hospital of Jiangsu Province, Clinical Medical School of Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Siyuan Cui
- Department of Endocrinology, Jiangnan University Medical Center, Affiliated Wuxi Clinical College of Nantong University, Wuxi No.2 People’s Hospital, Wuxi, P. R. China
| |
Collapse
|
3
|
Zhang MM, Liang MJ, Zhang DM, Cai JN, Yang QJ, Zhao Y, Zhang JP, Li YL. The function and mechanism of LAPTM5 in diseases. Biomed Pharmacother 2024; 178:117237. [PMID: 39096616 DOI: 10.1016/j.biopha.2024.117237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024] Open
Abstract
The Lysosomal Protein Transmembrane 5 (LAPTM5) is a lysosomal transmembrane protein preferentially expressed in hematopoietic cells. The human LAPTM5 gene is located at position 1p34 and extends approximately 25 kb. Its protein includes five transmembrane domains, three PY motifs, and one UIM. The PY and UIM motifs can interact with various substrates, mediating sorting of proteins from Golgi to lysosome and subsequently participating in intracellular substrate transport and lysosomal stability regulation. Overexpression of LAPTM5 can induce lysosomal cell death (LCD), although the integrity of LAPTM5 protein is necessary for maintaining lysosome stability. Furthermore, LAPTM5 plays a role in autophagy activation during disease processes and has been confirmed to be closely associated with the regulation of immunity and inflammation. Therefore, LAPTM5 regulates a wide range of physiological processes and is involved in various diseases. This article summarizes the characteristics of the LAPTM5 gene and protein structure and provides a comprehensive review of the mechanisms involved in cell death, autophagy, immunity, and inflammation regulation. It emphasizes the significance of LAPTM5 in the clinical prevention and treatment of cardiovascular diseases, immune system disorders, viral infections, cancer, and other diseases, which could provide new therapeutic ideas and targets for human diseases.
Collapse
Affiliation(s)
- Man-Man Zhang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ming-Jun Liang
- Department of Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Dong-Mei Zhang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jun-Nan Cai
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Quan-Jun Yang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yun Zhao
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jian-Ping Zhang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yang-Ling Li
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China.
| |
Collapse
|
4
|
He Y, Jin W, Wan H, Zhang L, Yu L. Research progress on immune-related therapeutic targets of brain injury caused by cerebral ischemia. Cytokine 2024; 180:156651. [PMID: 38761715 DOI: 10.1016/j.cyto.2024.156651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Stroke is the second leading cause of death worldwide and a leading cause of disability. The innate immune response occurs immediately after cerebral ischemia, resulting in adaptive immunity. More and more experimental evidence has proved that the immune response caused by cerebral ischemia plays an important role in early brain injury and later the recovery of brain injury. Innate immune cells and adaptive cells promote the occurrence of cerebral ischemic injury but also protect brain cells. A large number of studies have shown that cytokines and immune-related substances also have dual functions of promoting injury, reducing injury, or promoting injury recovery in the later stage of cerebral ischemia. They can be an important target for treating cerebral ischemic recovery. Therefore, this study discussed the immune cells, cytokines, and immune-related substances with dual roles in cerebral ischemia and summarized the therapeutic targets of cerebral ischemia. To explore more effective methods to treat cerebral ischemia, promote the recovery of brain function, and improve the prognosis of patients.
Collapse
Affiliation(s)
- Yuejia He
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Weifeng Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Haitong Wan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Lijiang Zhang
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Li Yu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Li Z, Zhang M, Yang L, Fan D, Zhang P, Zhang L, Zhang J, Lu Z. Sophoricoside ameliorates cerebral ischemia-reperfusion injury dependent on activating AMPK. Eur J Pharmacol 2024; 971:176439. [PMID: 38401605 DOI: 10.1016/j.ejphar.2024.176439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
AIMS Ischemic stroke accounts for 87% of all strokes, and its death and disability bring a huge burden to society. Brain injury caused by ischemia-reperfusion (I/R) is also a major difficulty in clinical treatment and prognosis. Sophoricoside (SOP) is an isoflavone glycoside isolated from the seed of medical herb Sophora japonica L. Previously, SOP was found to be effective in anti-inflammation and glucose-lipid metabolism-related diseases. In order to investigate whether SOP has a regulatory effect on cerebral I/R injury, we conducted this study. METHODS Here, by application of SOP into MCAO (transient middle cerebral artery occlusion)-induced mice and OGD/R (oxygen glucose deprivation/reperfusion)-induced primary neurons, the regulation effects of SOP was analyzed by detecting neurological score of post-stroke mice, phenotypes of brains and brain sections, cell viabilities, and apoptosis- and inflammation-regulation. RNA sequencing and molecular biology experiments were performed to explore the mechanism of SOP regulating cerebral I/R injury. RESULTS SOP administration decreased the infarct size, neurological deficit score, neuronal cell injury, inflammation and apoptosis. Mechanistically, SOP exerted its protective effect by activating the AMP-activated protein kinase (AMPK) signaling pathway. CONCLUSION SOP inhibits cerebral I/R injury by promoting the phosphorylation of AMPK.
Collapse
Affiliation(s)
- Zhaoshuo Li
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450003, China
| | - Mi Zhang
- Department of Neurology, The Central Hospital of Jingmen, Jingmen, Hubei, 448000, China
| | - Lixia Yang
- Department of Neurology, The Central Hospital of Jingmen, Jingmen, Hubei, 448000, China; Jingmen Clinical Medical College Affiliated to Hubei Minzhu University, Jingmen, Hubei, 448000, China
| | - Ding Fan
- Department of Neurology, The Central Hospital of Jingmen, Jingmen, Hubei, 448000, China; Jingmen Clinical Medical College Affiliated to Hubei Minzhu University, Jingmen, Hubei, 448000, China
| | - Peng Zhang
- School of Basic Medical Science, Wuhan University, Wuhan, Hubei, 430071, China
| | - Li Zhang
- Institute of Model Animal of Wuhan University, Wuhan, Hubei, 430071, China
| | - Jianqing Zhang
- Department of Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 445000, China
| | - Zhigang Lu
- Department of Neurology, The Central Hospital of Jingmen, Jingmen, Hubei, 448000, China; Jingmen Clinical Medical College Affiliated to Hubei Minzhu University, Jingmen, Hubei, 448000, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Enshi, Hubei, 445000, China.
| |
Collapse
|
6
|
Xiao WC, Zhou G, Wan L, Tu J, Yu YJ, She ZG, Xu CL, Wang L. Carnosol inhibits cerebral ischemia-reperfusion injury by promoting AMPK activation. Brain Res Bull 2023; 195:37-46. [PMID: 36775042 DOI: 10.1016/j.brainresbull.2023.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND Carnosol is a phytopolyphenol (diterpene) found and extracted from plants of Mediterranean diet, which has anti-tumor, anti-inflammatory and antioxidant effects. However, its role in ischemic stroke has not been elucidated. METHODS Primary neurons subjected to oxygen-glucose deprivation (OGD) was used to investigate the effect of carnosol in vitro. A mouse MCAO model was used to evaluate the effect of carnosol on ischemic stroke in vivo. The mRNA level of inflammatory and apoptosis-related genes was determined by RT-PCR. The protein level of total and phosphorylated AMPK was determined by WB. H&E and Immunofluorescent assay was used to investigate the necrosis, inflammation and apoptosis in brain tissue. RESULTS Carnosol protected the activity of primary neurons subjected to oxygen-glucose deprivation (OGD) in vitro, as well as inhibited inflammation and apoptosis. Furthermore, carnosol could significantly reduce the infarct and edema volume and protect against neurological deficit in vivo, and had a significant inhibitory effect on brain neuroinflammation and apoptosis. Mechanically, carnosol could activate AMPK, and the effect of carnosol on cerebral ischemia-reperfusion injury cell model could be abolished by AMPK phosphorylation inhibitor. CONCLUSION Carnosol has a protective effect on ischemic stroke, and this effect is achieved through AMPK activation. Our study demonstrates the protective effect of carnosol on cerebral ischemia-reperfusion injury and provides a new perspective for the clinical treatment of ischemic stroke.
Collapse
Affiliation(s)
- Wen-Chang Xiao
- Department of Cardiovascular Surgery, Huanggang Central Hospital, Huanggang, China; Huanggang Institute of Translational Medicine, Huanggang, China.
| | - Gang Zhou
- Department of Neurology, Huanggang Central Hospital, Huanggang, China.
| | - Lu Wan
- Department of Neurosurgery, Huanggang Central Hospital, Huanggang, China.
| | - Jun Tu
- Huanggang Institute of Translational Medicine, Huanggang, China.
| | - Yong-Jie Yu
- Huanggang Institute of Translational Medicine, Huanggang, China.
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Chun-Lin Xu
- Department of Neurosurgery, Huanggang Central Hospital, Huanggang, China.
| | - Lei Wang
- Department of Neurosurgery, Huanggang Central Hospital, Huanggang, China.
| |
Collapse
|