1
|
Rogers M, Obergrussberger A, Kondratskyi A, Fertig N. Using automated patch clamp electrophysiology platforms in ion channel drug discovery: an industry perspective. Expert Opin Drug Discov 2024; 19:523-535. [PMID: 38481119 DOI: 10.1080/17460441.2024.2329104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Automated patch clamp (APC) is now well established as a mature technology for ion channel drug discovery in academia, biotech and pharma companies, and in contract research organizations (CRO), for a variety of applications including channelopathy research, compound screening, target validation and cardiac safety testing. AREAS COVERED Ion channels are an important class of drugged and approved drug targets. The authors present a review of the current state of ion channel drug discovery along with new and exciting developments in ion channel research involving APC. This includes topics such as native and iPSC-derived cells in ion channel drug discovery, channelopathy research, organellar and biologics in ion channel drug discovery. EXPERT OPINION It is our belief that APC will continue to play a critical role in ion channel drug discovery, not only in 'classical' hit screening, target validation and cardiac safety testing, but extending these applications to include high throughput organellar recordings and optogenetics. In this way, with advancements in APC capabilities and applications, together with high resolution cryo-EM structures, ion channel drug discovery will be re-invigorated, leading to a growing list of ion channel ligands in clinical development.
Collapse
Affiliation(s)
- Marc Rogers
- Albion Drug Discovery Services Ltd, Cambridge, UK
| | | | | | | |
Collapse
|
2
|
Lin F, Tang R, Zhang C, Scholz N, Nagel G, Gao S. Combining different ion-selective channelrhodopsins to control water flux by light. Pflugers Arch 2023; 475:1375-1385. [PMID: 37670155 PMCID: PMC10730689 DOI: 10.1007/s00424-023-02853-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/03/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
Water transport through water channels, aquaporins (AQPs), is vital for many physiological processes including epithelial fluid secretion, cell migration and adipocyte metabolism. Water flux through AQPs is driven by the osmotic gradient that results from concentration differences of solutes including ions. Here, we developed a novel optogenetic toolkit that combines the light-gated anion channel GtACR1 either with the light-gated K+ channel HcKCR1 or the new Na+ channelrhodopsin HcNCR1 with high Na+ permeability, to manipulate water transport in Xenopus oocytes non-invasively. Water efflux through AQP was achieved by light-activating K+ and Cl- efflux through HcKCR1 and GtACR1. Contrarily, when GtACR1 was co-expressed with HcNCR1, inward movement of Na+ and Cl- was light-triggered, and the resulting osmotic gradient led to water influx through AQP1. In sum, we demonstrate a novel optogenetic strategy to manipulate water movement into or out of Xenopus oocytes non-invasively. This approach provides a new avenue to interfere with water homeostasis as a means to study related biological phenomena across cell types and organisms.
Collapse
Affiliation(s)
- Fei Lin
- Department of Neurophysiology, Institute of Physiology, Biocenter, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Ruijing Tang
- Department of Neurophysiology, Institute of Physiology, Biocenter, Julius-Maximilians-University of Würzburg, Würzburg, Germany
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Chong Zhang
- Department of Neurophysiology, Institute of Physiology, Biocenter, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Georg Nagel
- Department of Neurophysiology, Institute of Physiology, Biocenter, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Shiqiang Gao
- Department of Neurophysiology, Institute of Physiology, Biocenter, Julius-Maximilians-University of Würzburg, Würzburg, Germany.
| |
Collapse
|
3
|
Morizumi T, Kim K, Li H, Govorunova EG, Sineshchekov OA, Wang Y, Zheng L, Bertalan É, Bondar AN, Askari A, Brown LS, Spudich JL, Ernst OP. Structures of channelrhodopsin paralogs in peptidiscs explain their contrasting K + and Na + selectivities. Nat Commun 2023; 14:4365. [PMID: 37474513 PMCID: PMC10359266 DOI: 10.1038/s41467-023-40041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
Kalium channelrhodopsin 1 from Hyphochytrium catenoides (HcKCR1) is a light-gated channel used for optogenetic silencing of mammalian neurons. It selects K+ over Na+ in the absence of the canonical tetrameric K+ selectivity filter found universally in voltage- and ligand-gated channels. The genome of H. catenoides also encodes a highly homologous cation channelrhodopsin (HcCCR), a Na+ channel with >100-fold larger Na+ to K+ permeability ratio. Here, we use cryo-electron microscopy to determine atomic structures of these two channels embedded in peptidiscs to elucidate structural foundations of their dramatically different cation selectivity. Together with structure-guided mutagenesis, we show that K+ versus Na+ selectivity is determined at two distinct sites on the putative ion conduction pathway: in a patch of critical residues in the intracellular segment (Leu69/Phe69, Ile73/Ser73 and Asp116) and within a cluster of aromatic residues in the extracellular segment (primarily, Trp102 and Tyr222). The two filters are on the opposite sides of the photoactive site involved in channel gating.
Collapse
Affiliation(s)
- Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Kyumhyuk Kim
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Hai Li
- Department of Biochemistry & Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Elena G Govorunova
- Department of Biochemistry & Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Oleg A Sineshchekov
- Department of Biochemistry & Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Yumei Wang
- Department of Biochemistry & Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Lei Zheng
- Department of Biochemistry & Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Éva Bertalan
- Physikzentrum, RWTH-Aachen University, Aachen, Germany
| | - Ana-Nicoleta Bondar
- Faculty of Physics, University of Bucharest, Măgurele, Romania
- Institute of Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich, Germany
| | - Azam Askari
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
| | - Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
| | - John L Spudich
- Department of Biochemistry & Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA.
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Govorunova EG, Sineshchekov OA, Spudich JL. Potassium-selective channelrhodopsins. Biophys Physicobiol 2023; 20:e201011. [PMID: 38362336 PMCID: PMC10865875 DOI: 10.2142/biophysico.bppb-v20.s011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/03/2023] [Indexed: 02/05/2023] Open
Abstract
Since their discovery 21 years ago, channelrhodopsins have come of age and have become indispensable tools for optogenetic control of excitable cells such as neurons and myocytes. Potential therapeutic utility of channelrhodopsins has been proven by partial vision restoration in a human patient. Previously known channelrhodopsins are either proton channels, non-selective cation channels almost equally permeable to Na+ and K+ besides protons, or anion channels. Two years ago, we discovered a group of channelrhodopsins that exhibit over an order of magnitude higher selectivity for K+ than for Na+. These proteins, known as "kalium channelrhodopsins" or KCRs, lack the canonical tetrameric selectivity filter found in voltage- and ligand-gated K+ channels, and use a unique selectivity mechanism intrinsic to their individual protomers. Mutant analysis has revealed that the key residues responsible for K+ selectivity in KCRs are located at both ends of the putative cation conduction pathway, and their role has been confirmed by high-resolution KCR structures. Expression of KCRs in mouse neurons and human cardiomyocytes enabled optical inhibition of these cells' electrical activity. In this minireview we briefly discuss major results of KCR research obtained during the last two years and suggest some directions of future research.
Collapse
Affiliation(s)
- Elena G. Govorunova
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA
| | - Oleg A. Sineshchekov
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA
| | - John L. Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|
5
|
Govorunova EG, Sineshchekov OA, Brown LS, Bondar AN, Spudich JL. Structural Foundations of Potassium Selectivity in Channelrhodopsins. mBio 2022; 13:e0303922. [PMID: 36413022 PMCID: PMC9765531 DOI: 10.1128/mbio.03039-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
Potassium-selective channelrhodopsins (KCRs) are light-gated K+ channels recently found in the stramenopile protist Hyphochytrium catenoides. When expressed in neurons, KCRs enable high-precision optical inhibition of spiking (optogenetic silencing). KCRs are capable of discriminating K+ from Na+ without the conventional K+ selectivity filter found in classical K+ channels. The genome of H. catenoides also encodes a third paralog that is more permeable for Na+ than for K+. To identify structural motifs responsible for the unusual K+ selectivity of KCRs, we systematically analyzed a series of chimeras and mutants of this protein. We found that mutations of three critical residues in the paralog convert its Na+-selective channel into a K+-selective one. Our characterization of homologous proteins from other protists (Colponema vietnamica, Cafeteria burkhardae, and Chromera velia) and metagenomic samples confirmed the importance of these residues for K+ selectivity. We also show that Trp102 and Asp116, conserved in all three H. catenoides paralogs, are necessary, although not sufficient, for K+ selectivity. Our results provide the foundation for further engineering of KCRs for optogenetic needs. IMPORTANCE Recently discovered microbial light-gated ion channels (channelrhodopsins) with a higher permeability for K+ than for Na+ (potassium-selective channelrhodopsins [kalium channelrhodopsins, or KCRs]) demonstrate an alternative K+ selectivity mechanism, unrelated to well-characterized "selectivity filters" of voltage- and ligand-gated K+ channels. KCRs can be used for optogenetic inhibition of neuronal firing and potentially for the development of gene therapies to treat neurological and cardiovascular disorders. In this study, we identified structural motifs that determine the K+ selectivity of KCRs that provide the foundation for their further improvement as optogenetic tools.
Collapse
Affiliation(s)
- Elena G. Govorunova
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Oleg A. Sineshchekov
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Leonid S. Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | - Ana-Nicoleta Bondar
- Faculty of Physics, University of Bucharest, Bucharest, Romania
- Institute of Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany
| | - John L. Spudich
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
6
|
Vierock J, Peter E, Grimm C, Rozenberg A, Chen IW, Tillert L, Castro Scalise AG, Casini M, Augustin S, Tanese D, Forget BC, Peyronnet R, Schneider-Warme F, Emiliani V, Béjà O, Hegemann P. WiChR, a highly potassium-selective channelrhodopsin for low-light one- and two-photon inhibition of excitable cells. SCIENCE ADVANCES 2022; 8:eadd7729. [PMID: 36383037 PMCID: PMC9733931 DOI: 10.1126/sciadv.add7729] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/28/2022] [Indexed: 05/30/2023]
Abstract
The electric excitability of muscle, heart, and brain tissue relies on the precise interplay of Na+- and K+-selective ion channels. The involved ion fluxes are controlled in optogenetic studies using light-gated channelrhodopsins (ChRs). While non-selective cation-conducting ChRs are well established for excitation, K+-selective ChRs (KCRs) for efficient inhibition have only recently come into reach. Here, we report the molecular analysis of recently discovered KCRs from the stramenopile Hyphochytrium catenoides and identification of a novel type of hydrophobic K+ selectivity filter. Next, we demonstrate that the KCR signature motif is conserved in related stramenopile ChRs. Among them, WiChR from Wobblia lunata features a so far unmatched preference for K+ over Na+, stable photocurrents under continuous illumination, and a prolonged open-state lifetime. Showing high expression levels in cardiac myocytes and neurons, WiChR allows single- and two-photon inhibition at low irradiance and reduced tissue heating. Therefore, we recommend WiChR as the long-awaited efficient and versatile optogenetic inhibitor.
Collapse
Affiliation(s)
- Johannes Vierock
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Berlin, Germany
- Neuroscience Research Center, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Enrico Peter
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christiane Grimm
- Wavefront Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Andrey Rozenberg
- Faculty of Biology, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - I-Wen Chen
- Wavefront Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Linda Tillert
- Neuroscience Research Center, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | | | - Marilù Casini
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg · Bad Krozingen, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe and ITACA Institute (COR), Universitat Politècnica de València, Valencia, Spain
| | - Sandra Augustin
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dimitrii Tanese
- Wavefront Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Benoît C. Forget
- Wavefront Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg · Bad Krozingen, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Franziska Schneider-Warme
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg · Bad Krozingen, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Valentina Emiliani
- Wavefront Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Oded Béjà
- Faculty of Biology, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Peter Hegemann
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|