1
|
Huang H, Liu X, Wang L, Wang F. Whole-brain connections of glutamatergic neurons in the mouse lateral habenula in both sexes. Biol Sex Differ 2024; 15:37. [PMID: 38654275 PMCID: PMC11036720 DOI: 10.1186/s13293-024-00611-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The lateral habenula (LHb) is an epithalamus nucleus that is evolutionarily conserved and involved in various physiological functions, such as encoding value signals, integrating emotional information, and regulating related behaviors. The cells in the LHb are predominantly glutamatergic and have heterogeneous functions in response to different stimuli. The circuitry connections of the LHb glutamatergic neurons play a crucial role in integrating a wide range of events. However, the circuitry connections of LHb glutamatergic neurons in both sexes have not been thoroughly investigated. METHODS In this study, we injected Cre-dependent retrograde trace virus and anterograde synaptophysin-labeling virus into the LHb of adult male and female Vglut2-ires-Cre mice, respectively. We then quantitatively analyzed the input and output of the LHb glutamatergic connections in both the ipsilateral and contralateral whole brain. RESULTS Our findings showed that the inputs to LHbvGlut2 neurons come from more than 30 brain subregions, including the cortex, striatum, pallidum, thalamus, hypothalamus, midbrain, pons, medulla, and cerebellum with no significant differences between males and females. The outputs of LHbvGlut2 neurons targeted eight large brain regions, primarily focusing on the midbrain and pons nuclei, with distinct features in presynaptic bouton across different brain subregions. While correlation and cluster analysis revealed differences in input and collateral projection features, the input-output connection pattern of LHbvGlut2 neurons in both sexes was highly similar. CONCLUSIONS This study provides a systematic and comprehensive analysis of the input and output connections of LHbvGlut2 neurons in male and female mice, shedding light on the anatomical architecture of these specific cell types in the mouse LHb. This structural understanding can help guide further investigations into the complex functions of the LHb.
Collapse
Affiliation(s)
- Hongren Huang
- Shenzhen Key Laboratory of Neuropsychiatric Modulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Xue Liu
- Shenzhen Key Laboratory of Neuropsychiatric Modulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Liping Wang
- Shenzhen Key Laboratory of Neuropsychiatric Modulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Feng Wang
- Shenzhen Key Laboratory of Neuropsychiatric Modulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
| |
Collapse
|
2
|
Lalive AL, Congiu M, Lewis C, Groos D, Clerke JA, Tchenio A, Ge Y, Helmchen F, Mameli M. Synaptic inhibition in the lateral habenula shapes reward anticipation. Curr Biol 2022; 32:1829-1836.e4. [DOI: 10.1016/j.cub.2022.02.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 12/20/2022]
|
3
|
Reward and aversion encoding in the lateral habenula for innate and learned behaviours. Transl Psychiatry 2022; 12:3. [PMID: 35013094 PMCID: PMC8748902 DOI: 10.1038/s41398-021-01774-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022] Open
Abstract
Throughout life, individuals experience a vast array of positive and aversive events that trigger adaptive behavioural responses. These events are often unpredicted and engage actions that are likely anchored on innate behavioural programs expressed by each individual member of virtually all animal species. In a second step, environmental cues, that are initially neutral, acquire value through the association with external sensory stimuli, and become instrumental to predict upcoming positive or negative events. This process ultimately prompts learned goal-directed actions allowing the pursuit of rewarding experience or the avoidance of a danger. Both innate and learned behavioural programs are evolutionarily conserved and fundamental for survival. Among the brain structures participating in the encoding of positive/negative stimuli and contributing to innate and learned behaviours is the epithalamic lateral habenula (LHb). The LHb provides top-down control of monoaminergic systems, responds to unexpected appetitive/aversive stimuli as well as external cues that predict the upcoming rewards or punishments. Accordingly, the LHb controls a number of behaviours that are innate (originating from unpredicted stimuli), and learned (stemming from predictive cues). In this review, we will discuss the progresses that rodent's experimental work made in identifying how LHb activity governs these vital processes, and we will provide a view on how these findings integrate within a complex circuit connectivity.
Collapse
|
4
|
Nuno-Perez A, Mondoloni S, Tchenio A, Lecca S, Mameli M. Biophysical and synaptic properties of NMDA receptors in the lateral habenula. Neuropharmacology 2021; 196:108718. [PMID: 34273390 DOI: 10.1016/j.neuropharm.2021.108718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022]
Abstract
Excitatory synaptic transmission in the lateral habenula (LHb), an evolutionarily ancient subcortical structure, encodes aversive stimuli and affective states. Habenular glutamatergic synapses contribute to these processes partly through the activation of AMPA receptors. Yet, N-methyl-d-aspartate receptors (NMDARs) are also expressed in the LHb and support the emergence of depressive symptoms. Indeed, local NMDAR blockade in the LHb rescues anhedonia and behavioral despair in rodent models of depression. However, the subunit composition and biophysical properties of habenular NMDARs remain unknown, thereby hindering their study in the context of mental health. Here, we performed electrophysiological recordings and optogenetic-assisted circuit mapping in mice, to study pharmacologically-isolated NMDAR currents in LHb neurons that receive innervation from different brain regions (entopeduncular nucleus, lateral hypothalamic area, bed nucleus of the stria terminalis, or ventral tegmental area). This systematic approach revealed that habenular NMDAR currents are sensitive to TCN and ifenprodil - drugs that specifically inhibit GluN2A- and GluN2B-containing NMDARs, respectively. Whilst these pharmacological effects were consistently observed across inputs, we detected region-specific differences in the current-voltage relationship and decay time of NMDAR currents. Finally, inspired by the firing of LHb neurons in vivo, we designed a burst protocol capable of eliciting calcium-dependent long-term potentiation of habenular NMDAR transmission ex vivo. Altogether, we define basic biophysical and synaptic properties of NMDARs in LHb neurons, opening new avenues for studying their plasticity processes in physiological as well as pathological contexts.
Collapse
Affiliation(s)
- Alvaro Nuno-Perez
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005, Lausanne, Switzerland.
| | - Sarah Mondoloni
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005, Lausanne, Switzerland
| | - Anna Tchenio
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005, Lausanne, Switzerland
| | - Salvatore Lecca
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005, Lausanne, Switzerland
| | - Manuel Mameli
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005, Lausanne, Switzerland; Inserm, UMR-S 839, 75005, Paris, France.
| |
Collapse
|
5
|
Clerke JA, Congiu M, Mameli M. Neuronal adaptations in the lateral habenula during drug withdrawal: Preclinical evidence for addiction therapy. Neuropharmacology 2021; 192:108617. [PMID: 34019906 DOI: 10.1016/j.neuropharm.2021.108617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/14/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022]
Abstract
The epithalamic lateral habenula (LHb) regulates monoaminergic systems and contributes to the expression of both appetitive and aversive behaviours. Over the past years, the LHb has emerged as a vulnerable brain structure in mental illnesses including addiction. Behavioural and functional evidence in humans and rodents provide substantial support for a role of LHb in the negative affective symptoms emerging during withdrawal from addictive substances. Multiple forms of cellular and synaptic adaptations that take hold during drug withdrawal within the LHb are causally linked with the emergence of negative affective symptoms. These results indicate that targeting drug withdrawal-driven adaptations in the LHb may represent a potential strategy to normalize drug-related behavioural adaptations. In the current review we describe the mechanisms leading to functional alterations in the LHb, as well as the existing interventions used to counteract addictive behaviours. Finally, closing this loop we discuss and propose new avenues to potentially target the LHb in humans in light of the mechanistic understanding stemming from pre-clinical studies. Altogether, we provide an overview on how to leverage cellular-level understanding to envision clinically-relevant approaches for the treatment of specific aspects in drug addiction.
Collapse
Affiliation(s)
- Joseph A Clerke
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005, Lausanne, Switzerland
| | - Mauro Congiu
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005, Lausanne, Switzerland
| | - Manuel Mameli
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005, Lausanne, Switzerland; Inserm, UMR-S 839, 75005, Paris, France.
| |
Collapse
|