1
|
Hu D, Sato T, Rockland KS, Tanifuji M, Tanigawa H. Relationship between functional structures and horizontal connections in macaque inferior temporal cortex. Sci Rep 2025; 15:3436. [PMID: 39870740 PMCID: PMC11772672 DOI: 10.1038/s41598-025-87517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/20/2025] [Indexed: 01/29/2025] Open
Abstract
Horizontal connections in anterior inferior temporal cortex (ITC) are thought to play an important role in object recognition by integrating information across spatially separated functional columns, but their functional organization remains unclear. Using a combination of optical imaging, electrophysiological recording, and anatomical tracing, we investigated the relationship between stimulus-response maps and patterns of horizontal axon terminals in the macaque ITC. In contrast to the "like-to-like" connectivity observed in the early visual cortex, we found that horizontal axons in ITC do not preferentially connect sites with similar object selectivity. While some axon terminal patches shared responsiveness to specific visual features with the injection site, many connected to regions with different selectivity. Our results suggest that horizontal connections in anterior ITC exhibit diverse functional connectivity, potentially supporting flexible integration of visual information for advanced object recognition processes.
Collapse
Affiliation(s)
- Danling Hu
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Takayuki Sato
- Laboratory for Integrative Neural Systems, RIKEN Center for Brain Science, Wako, Saitama, Japan
- Communication Future Design Center, Fukushima University, Fukushima, Fukushima, Japan
| | - Kathleen S Rockland
- Department of Anatomy and Neurobiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Manabu Tanifuji
- Laboratory for Integrative Neural Systems, RIKEN Center for Brain Science, Wako, Saitama, Japan
- Department of Life Science and Medical Bio-Science, Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Hisashi Tanigawa
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
- Laboratory for Integrative Neural Systems, RIKEN Center for Brain Science, Wako, Saitama, Japan.
| |
Collapse
|
2
|
Yang H, Han F, Wang Q. A large-scale neuronal network modelling study: Stimulus size modulates gamma oscillations in the primary visual cortex by long-range connections. Eur J Neurosci 2024; 60:4224-4243. [PMID: 38812400 DOI: 10.1111/ejn.16429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
Stimulus size modulation of neuronal firing activity is a fundamental property of the primary visual cortex. Numerous biological experiments have shown that stimulus size modulation is affected by multiple factors at different spatiotemporal scales, but the exact pathways and mechanisms remain incompletely understood. In this paper, we establish a large-scale neuronal network model of primary visual cortex with layer 2/3 to study how gamma oscillation properties are modulated by stimulus size and especially how long-range connections affect the modulation as realistic neuronal properties and spatial distributions of synaptic connections are considered. It is shown that long-range horizontal synaptic connections are sufficient to produce dimensional modulation of firing rates and gamma oscillations. In particular, with increasing grating stimulus size, the firing rate increases and then decreases, the peak frequency of gamma oscillations decreases and the spectral power increases. These are consistent with biological experimental observations. Furthermore, we explain in detail how the number and spatial distribution of long-range connections affect the size modulation of gamma oscillations by using the analysis of neuronal firing activity and synaptic current fluctuations. Our results provide a mechanism explanation for size modulation of gamma oscillations in the primary visual cortex and reveal the important and unique role played by long-range connections, which contributes to a deeper understanding of the cognitive function of gamma oscillations in visual cortex.
Collapse
Affiliation(s)
- Hao Yang
- College of Information Science and Technology, Donghua University, Shanghai, China
| | - Fang Han
- College of Information Science and Technology, Donghua University, Shanghai, China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing, China
| |
Collapse
|
3
|
Ladret HJ, Cortes N, Ikan L, Chavane F, Casanova C, Perrinet LU. Cortical recurrence supports resilience to sensory variance in the primary visual cortex. Commun Biol 2023; 6:667. [PMID: 37353519 PMCID: PMC10290066 DOI: 10.1038/s42003-023-05042-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/13/2023] [Indexed: 06/25/2023] Open
Abstract
Our daily endeavors occur in a complex visual environment, whose intrinsic variability challenges the way we integrate information to make decisions. By processing myriads of parallel sensory inputs, our brain is theoretically able to compute the variance of its environment, a cue known to guide our behavior. Yet, the neurobiological and computational basis of such variance computations are still poorly understood. Here, we quantify the dynamics of sensory variance modulations of cat primary visual cortex neurons. We report two archetypal neuronal responses, one of which is resilient to changes in variance and co-encodes the sensory feature and its variance, improving the population encoding of orientation. The existence of these variance-specific responses can be accounted for by a model of intracortical recurrent connectivity. We thus propose that local recurrent circuits process uncertainty as a generic computation, advancing our understanding of how the brain handles naturalistic inputs.
Collapse
Affiliation(s)
- Hugo J Ladret
- Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix-Marseille Université, Marseille, France.
- School of Optometry, Université de Montréal, Montréal, Canada.
| | - Nelson Cortes
- School of Optometry, Université de Montréal, Montréal, Canada
| | - Lamyae Ikan
- School of Optometry, Université de Montréal, Montréal, Canada
| | - Frédéric Chavane
- Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix-Marseille Université, Marseille, France
| | | | - Laurent U Perrinet
- Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix-Marseille Université, Marseille, France
| |
Collapse
|
4
|
Mir Y, Zalányi L, Pálfi E, Ashaber M, Roe AW, Friedman RM, Négyessy L. Modular Organization of Signal Transmission in Primate Somatosensory Cortex. Front Neuroanat 2022; 16:915238. [PMID: 35873660 PMCID: PMC9305200 DOI: 10.3389/fnana.2022.915238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022] Open
Abstract
Axonal patches are known as the major sites of synaptic connections in the cerebral cortex of higher order mammals. However, the functional role of these patches is highly debated. Patches are formed by populations of nearby neurons in a topographic manner and are recognized as the termination fields of long-distance lateral connections within and between cortical areas. In addition, axons form numerous boutons that lie outside the patches, whose function is also unknown. To better understand the functional roles of these two distinct populations of boutons, we compared individual and collective morphological features of axons within and outside the patches of intra-areal, feedforward, and feedback pathways by way of tract tracing in the somatosensory cortex of New World monkeys. We found that, with the exception of tortuosity, which is an invariant property, bouton spacing and axonal convergence properties differ significantly between axons within patch and no-patch domains. Principal component analyses corroborated the clustering of axons according to patch formation without any additional effect by the type of pathway or laminar distribution. Stepwise logistic regression identified convergence and bouton density as the best predictors of patch formation. These findings support that patches are specific sites of axonal convergence that promote the synchronous activity of neuronal populations. On the other hand, no-patch domains could form a neuroanatomical substrate to diversify the responses of cortical neurons.
Collapse
Affiliation(s)
- Yaqub Mir
- Theoretical Neuroscience and Complex Systems Group, Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
- *Correspondence: Yaqub Mir
| | - László Zalányi
- Theoretical Neuroscience and Complex Systems Group, Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, Hungary
| | - Emese Pálfi
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Mária Ashaber
- California Institute of Technology, Department of Biology and Biological Engineering, Pasadena, CA, United States
| | - Anna W. Roe
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Robert M. Friedman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - László Négyessy
- Theoretical Neuroscience and Complex Systems Group, Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, Hungary
- László Négyessy
| |
Collapse
|
5
|
Revisiting horizontal connectivity rules in V1: from like-to-like towards like-to-all. Brain Struct Funct 2022; 227:1279-1295. [PMID: 35122520 DOI: 10.1007/s00429-022-02455-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 01/03/2022] [Indexed: 01/15/2023]
Abstract
Horizontal connections in the primary visual cortex of carnivores, ungulates and primates organize on a near-regular lattice. Given the similar length scale for the regularity found in cortical orientation maps, the currently accepted theoretical standpoint is that these maps are underpinned by a like-to-like connectivity rule: horizontal axons connect preferentially to neurons with similar preferred orientation. However, there is reason to doubt the rule's explanatory power, since a growing number of quantitative studies show that the like-to-like connectivity preference and bias mostly observed at short-range scale, are highly variable on a neuron-to-neuron level and depend on the origin of the presynaptic neuron. Despite the wide availability of published data, the accepted model of visual processing has never been revised. Here, we review three lines of independent evidence supporting a much-needed revision of the like-to-like connectivity rule, ranging from anatomy to population functional measures, computational models and to theoretical approaches. We advocate an alternative, distance-dependent connectivity rule that is consistent with new structural and functional evidence: from like-to-like bias at short horizontal distance to like-to-all at long horizontal distance. This generic rule accounts for the observed high heterogeneity in interactions between the orientation and retinotopic domains, that we argue is necessary to process non-trivial stimuli in a task-dependent manner.
Collapse
|
6
|
Newton TH, Reimann MW, Abdellah M, Chevtchenko G, Muller EB, Markram H. In silico voltage-sensitive dye imaging reveals the emergent dynamics of cortical populations. Nat Commun 2021; 12:3630. [PMID: 34131136 PMCID: PMC8206372 DOI: 10.1038/s41467-021-23901-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/19/2021] [Indexed: 11/08/2022] Open
Abstract
Voltage-sensitive dye imaging (VSDI) is a powerful technique for interrogating membrane potential dynamics in assemblies of cortical neurons, but with effective resolution limits that confound interpretation. To address this limitation, we developed an in silico model of VSDI in a biologically faithful digital reconstruction of rodent neocortical microcircuitry. Using this model, we extend previous experimental observations regarding the cellular origins of VSDI, finding that the signal is driven primarily by neurons in layers 2/3 and 5, and that VSDI measurements do not capture individual spikes. Furthermore, we test the capacity of VSD image sequences to discriminate between afferent thalamic inputs at various spatial locations to estimate a lower bound on the functional resolution of VSDI. Our approach underscores the power of a bottom-up computational approach for relating scales of cortical processing.
Collapse
Affiliation(s)
- Taylor H Newton
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
- IT'IS Foundation for Research on Information Technologies in Society, Zurich, Switzerland.
| | - Michael W Reimann
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Marwan Abdellah
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Grigori Chevtchenko
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Eilif B Muller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Quebec Artificial Intelligence Institute (Mila), Montreal, QC, Canada
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Laboratory of Neural Microcircuitry, Brain Mind Institute, EPFL, Lausanne, Switzerland
| |
Collapse
|
7
|
Antolik J, Sabatier Q, Galle C, Frégnac Y, Benosman R. Assessment of optogenetically-driven strategies for prosthetic restoration of cortical vision in large-scale neural simulation of V1. Sci Rep 2021; 11:10783. [PMID: 34031442 PMCID: PMC8144184 DOI: 10.1038/s41598-021-88960-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/01/2021] [Indexed: 02/04/2023] Open
Abstract
The neural encoding of visual features in primary visual cortex (V1) is well understood, with strong correlates to low-level perception, making V1 a strong candidate for vision restoration through neuroprosthetics. However, the functional relevance of neural dynamics evoked through external stimulation directly imposed at the cortical level is poorly understood. Furthermore, protocols for designing cortical stimulation patterns that would induce a naturalistic perception of the encoded stimuli have not yet been established. Here, we demonstrate a proof of concept by solving these issues through a computational model, combining (1) a large-scale spiking neural network model of cat V1 and (2) a virtual prosthetic system transcoding the visual input into tailored light-stimulation patterns which drive in situ the optogenetically modified cortical tissue. Using such virtual experiments, we design a protocol for translating simple Fourier contrasted stimuli (gratings) into activation patterns of the optogenetic matrix stimulator. We then quantify the relationship between spatial configuration of the imposed light pattern and the induced cortical activity. Our simulations in the absence of visual drive (simulated blindness) show that optogenetic stimulation with a spatial resolution as low as 100 [Formula: see text]m, and light intensity as weak as [Formula: see text] photons/s/cm[Formula: see text] is sufficient to evoke activity patterns in V1 close to those evoked by normal vision.
Collapse
Affiliation(s)
- Jan Antolik
- Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, 118 00, Prague 1, Czechia.
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.
| | - Quentin Sabatier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Charlie Galle
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Yves Frégnac
- Unité de Neurosciences, Information et Complexité (UNIC), NeuroPSI, Gif-sur-Yvette, France
| | - Ryad Benosman
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
- University of Pittsburgh, McGowan Institute, 3025 E Carson St, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Kulkarni A, Ranft J, Hakim V. Synchronization, Stochasticity, and Phase Waves in Neuronal Networks With Spatially-Structured Connectivity. Front Comput Neurosci 2020; 14:569644. [PMID: 33192427 PMCID: PMC7604323 DOI: 10.3389/fncom.2020.569644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/18/2020] [Indexed: 01/15/2023] Open
Abstract
Oscillations in the beta/low gamma range (10–45 Hz) are recorded in diverse neural structures. They have successfully been modeled as sparsely synchronized oscillations arising from reciprocal interactions between randomly connected excitatory (E) pyramidal cells and local interneurons (I). The synchronization of spatially distant oscillatory spiking E–I modules has been well-studied in the rate model framework but less so for modules of spiking neurons. Here, we first show that previously proposed modifications of rate models provide a quantitative description of spiking E–I modules of Exponential Integrate-and-Fire (EIF) neurons. This allows us to analyze the dynamical regimes of sparsely synchronized oscillatory E–I modules connected by long-range excitatory interactions, for two modules, as well as for a chain of such modules. For modules with a large number of neurons (> 105), we obtain results similar to previously obtained ones based on the classic deterministic Wilson-Cowan rate model, with the added bonus that the results quantitatively describe simulations of spiking EIF neurons. However, for modules with a moderate (~ 104) number of neurons, stochastic variations in the spike emission of neurons are important and need to be taken into account. On the one hand, they modify the oscillations in a way that tends to promote synchronization between different modules. On the other hand, independent fluctuations on different modules tend to disrupt synchronization. The correlations between distant oscillatory modules can be described by stochastic equations for the oscillator phases that have been intensely studied in other contexts. On shorter distances, we develop a description that also takes into account amplitude modes and that quantitatively accounts for our simulation data. Stochastic dephasing of neighboring modules produces transient phase gradients and the transient appearance of phase waves. We propose that these stochastically-induced phase waves provide an explanative framework for the observations of traveling waves in the cortex during beta oscillations.
Collapse
Affiliation(s)
- Anirudh Kulkarni
- Laboratoire de Physique de l'Ecole Normale Supérieure, CNRS, Ecole Normale Supérieure, PSL University, Sorbonne Université, Université de Paris, Paris, France.,IBENS, Ecole Normale Supérieure, PSL University, CNRS, INSERM, Paris, France
| | - Jonas Ranft
- Laboratoire de Physique de l'Ecole Normale Supérieure, CNRS, Ecole Normale Supérieure, PSL University, Sorbonne Université, Université de Paris, Paris, France.,IBENS, Ecole Normale Supérieure, PSL University, CNRS, INSERM, Paris, France
| | - Vincent Hakim
- Laboratoire de Physique de l'Ecole Normale Supérieure, CNRS, Ecole Normale Supérieure, PSL University, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
9
|
Heitmann S, Ermentrout GB. Direction-selective motion discrimination by traveling waves in visual cortex. PLoS Comput Biol 2020; 16:e1008164. [PMID: 32877405 PMCID: PMC7467221 DOI: 10.1371/journal.pcbi.1008164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/19/2020] [Indexed: 11/19/2022] Open
Abstract
The majority of neurons in primary visual cortex respond selectively to bars of light that have a specific orientation and move in a specific direction. The spatial and temporal responses of such neurons are non-separable. How neurons accomplish that computational feat without resort to explicit time delays is unknown. We propose a novel neural mechanism whereby visual cortex computes non-separable responses by generating endogenous traveling waves of neural activity that resonate with the space-time signature of the visual stimulus. The spatiotemporal characteristics of the response are defined by the local topology of excitatory and inhibitory lateral connections in the cortex. We simulated the interaction between endogenous traveling waves and the visual stimulus using spatially distributed populations of excitatory and inhibitory neurons with Wilson-Cowan dynamics and inhibitory-surround coupling. Our model reliably detected visual gratings that moved with a given speed and direction provided that we incorporated neural competition to suppress false motion signals in the opposite direction. The findings suggest that endogenous traveling waves in visual cortex can impart direction-selectivity on neural responses without resort to explicit time delays. They also suggest a functional role for motion opponency in eliminating false motion signals. It is well established that the so-called ‘simple cells’ of the primary visual cortex respond preferentially to oriented bars of light that move across the visual field with a particular speed and direction. The spatiotemporal responses of such neurons are said to be non-separable because they cannot be constructed from independent spatial and temporal neural mechanisms. Contemporary theories of how neurons compute non-separable responses typically rely on finely tuned transmission delays between signals from disparate regions of the visual field. However the existence of such delays is controversial. We propose an alternative neural mechanism for computing non-separable responses that does not require transmission delays. It instead relies on the predisposition of the cortical tissue to spontaneously generate spatiotemporal waves of neural activity that travel with a particular speed and direction. We propose that the endogenous wave activity resonates with the visual stimulus to elicit direction-selective neural responses to visual motion. We demonstrate the principle in computer models and show that competition between opposing neurons robustly enhances their ability to discriminate between visual gratings that move in opposite directions.
Collapse
Affiliation(s)
- Stewart Heitmann
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- * E-mail:
| | - G. Bard Ermentrout
- Department of Mathematics, University of Pittsburgh, Pennsylvania, United Sates of America
| |
Collapse
|
10
|
Muller L, Chavane F, Reynolds J, Sejnowski TJ. Cortical travelling waves: mechanisms and computational principles. Nat Rev Neurosci 2018; 19:255-268. [PMID: 29563572 DOI: 10.1038/nrn.2018.20] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multichannel recording technologies have revealed travelling waves of neural activity in multiple sensory, motor and cognitive systems. These waves can be spontaneously generated by recurrent circuits or evoked by external stimuli. They travel along brain networks at multiple scales, transiently modulating spiking and excitability as they pass. Here, we review recent experimental findings that have found evidence for travelling waves at single-area (mesoscopic) and whole-brain (macroscopic) scales. We place these findings in the context of the current theoretical understanding of wave generation and propagation in recurrent networks. During the large low-frequency rhythms of sleep or the relatively desynchronized state of the awake cortex, travelling waves may serve a variety of functions, from long-term memory consolidation to processing of dynamic visual stimuli. We explore new avenues for experimental and computational understanding of the role of spatiotemporal activity patterns in the cortex.
Collapse
Affiliation(s)
- Lyle Muller
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Frédéric Chavane
- Institut de Neurosciences de la Timone (INT), Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université, Marseille, France
| | - John Reynolds
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Terrence J Sejnowski
- Salk Institute for Biological Studies, La Jolla, CA, USA.,Division of Biological Sciences, University of California, La Jolla, CA, USA
| |
Collapse
|
11
|
Rankin J, Chavane F. Neural field model to reconcile structure with function in primary visual cortex. PLoS Comput Biol 2017; 13:e1005821. [PMID: 29065120 PMCID: PMC5669491 DOI: 10.1371/journal.pcbi.1005821] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 11/03/2017] [Accepted: 10/14/2017] [Indexed: 11/19/2022] Open
Abstract
Voltage-sensitive dye imaging experiments in primary visual cortex (V1) have shown that local, oriented visual stimuli elicit stable orientation-selective activation within the stimulus retinotopic footprint. The cortical activation dynamically extends far beyond the retinotopic footprint, but the peripheral spread stays non-selective-a surprising finding given a number of anatomo-functional studies showing the orientation specificity of long-range connections. Here we use a computational model to investigate this apparent discrepancy by studying the expected population response using known published anatomical constraints. The dynamics of input-driven localized states were simulated in a planar neural field model with multiple sub-populations encoding orientation. The realistic connectivity profile has parameters controlling the clustering of long-range connections and their orientation bias. We found substantial overlap between the anatomically relevant parameter range and a steep decay in orientation selective activation that is consistent with the imaging experiments. In this way our study reconciles the reported orientation bias of long-range connections with the functional expression of orientation selective neural activity. Our results demonstrate this sharp decay is contingent on three factors, that long-range connections are sufficiently diffuse, that the orientation bias of these connections is in an intermediate range (consistent with anatomy) and that excitation is sufficiently balanced by inhibition. Conversely, our modelling results predict that, for reduced inhibition strength, spurious orientation selective activation could be generated through long-range lateral connections. Furthermore, if the orientation bias of lateral connections is very strong, or if inhibition is particularly weak, the network operates close to an instability leading to unbounded cortical activation.
Collapse
Affiliation(s)
- James Rankin
- Department of Mathematics, University of Exeter, Exeter, United Kingdom
- Center for Neural Science, New York University, New York, New York, United States of America
| | - Frédéric Chavane
- Institut de Neurosciences de la Timone, CNRS & Aix-Marseille Université, Faculté de Médecine, Marseille, France
| |
Collapse
|
12
|
Human Occipital and Parietal GABA Selectively Influence Visual Perception of Orientation and Size. J Neurosci 2017; 37:8929-8937. [PMID: 28821653 PMCID: PMC5597977 DOI: 10.1523/jneurosci.3945-16.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/27/2017] [Accepted: 05/03/2017] [Indexed: 11/21/2022] Open
Abstract
GABA is the primary inhibitory neurotransmitter in human brain. The level of GABA varies substantially across individuals, and this variability is associated with interindividual differences in visual perception. However, it remains unclear whether the association between GABA level and visual perception reflects a general influence of visual inhibition or whether the GABA levels of different cortical regions selectively influence perception of different visual features. To address this, we studied how the GABA levels of parietal and occipital cortices related to interindividual differences in size, orientation, and brightness perception. We used visual contextual illusion as a perceptual assay since the illusion dissociates perceptual content from stimulus content and the magnitude of the illusion reflects the effect of visual inhibition. Across individuals, we observed selective correlations between the level of GABA and the magnitude of contextual illusion. Specifically, parietal GABA level correlated with size illusion magnitude but not with orientation or brightness illusion magnitude; in contrast, occipital GABA level correlated with orientation illusion magnitude but not with size or brightness illusion magnitude. Our findings reveal a region- and feature-dependent influence of GABA level on human visual perception. Parietal and occipital cortices contain, respectively, topographic maps of size and orientation preference in which neural responses to stimulus sizes and stimulus orientations are modulated by intraregional lateral connections. We propose that these lateral connections may underlie the selective influence of GABA on visual perception. SIGNIFICANCE STATEMENT GABA, the primary inhibitory neurotransmitter in human visual system, varies substantially across individuals. This interindividual variability in GABA level is linked to interindividual differences in many aspects of visual perception. However, the widespread influence of GABA raises the question of whether interindividual variability in GABA reflects an overall variability in visual inhibition and has a general influence on visual perception or whether the GABA levels of different cortical regions have selective influence on perception of different visual features. Here we report a region- and feature-dependent influence of GABA level on human visual perception. Our findings suggest that GABA level of a cortical region selectively influences perception of visual features that are topographically mapped in this region through intraregional lateral connections.
Collapse
|
13
|
Jancke D. Catching the voltage gradient-asymmetric boost of cortical spread generates motion signals across visual cortex: a brief review with special thanks to Amiram Grinvald. NEUROPHOTONICS 2017; 4:031206. [PMID: 28217713 PMCID: PMC5301132 DOI: 10.1117/1.nph.4.3.031206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
Wide-field voltage imaging is unique in its capability to capture snapshots of activity-across the full gradient of average changes in membrane potentials from subthreshold to suprathreshold levels-of hundreds of thousands of superficial cortical neurons that are simultaneously active. Here, I highlight two examples where voltage-sensitive dye imaging (VSDI) was exploited to track gradual space-time changes of activity within milliseconds across several millimeters of cortex at submillimeter resolution: the line-motion condition, measured in Amiram Grinvald's Laboratory more than 10 years ago and-coming full circle running VSDI in my laboratory-another motion-inducing condition, in which two neighboring stimuli counterchange luminance simultaneously. In both examples, cortical spread is asymmetrically boosted, creating suprathreshold activity drawn out over primary visual cortex. These rapidly propagating waves may integrate brain signals that encode motion independent of direction-selective circuits.
Collapse
Affiliation(s)
- Dirk Jancke
- Ruhr University Bochum, Optical Imaging Group, Institut für Neuroinformatik, Bochum, Germany
| |
Collapse
|
14
|
Chemla S, Muller L, Reynaud A, Takerkart S, Destexhe A, Chavane F. Improving voltage-sensitive dye imaging: with a little help from computational approaches. NEUROPHOTONICS 2017; 4:031215. [PMID: 28573154 PMCID: PMC5438098 DOI: 10.1117/1.nph.4.3.031215] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/24/2017] [Indexed: 05/29/2023]
Abstract
Voltage-sensitive dye imaging (VSDI) is a key neurophysiological recording tool because it reaches brain scales that remain inaccessible to other techniques. The development of this technique from in vitro to the behaving nonhuman primate has only been made possible thanks to the long-lasting, visionary work of Amiram Grinvald. This work has opened new scientific perspectives to the great benefit to the neuroscience community. However, this unprecedented technique remains largely under-utilized, and many future possibilities await for VSDI to reveal new functional operations. One reason why this tool has not been used extensively is the inherent complexity of the signal. For instance, the signal reflects mainly the subthreshold neuronal population response and is not linked to spiking activity in a straightforward manner. Second, VSDI gives access to intracortical recurrent dynamics that are intrinsically complex and therefore nontrivial to process. Computational approaches are thus necessary to promote our understanding and optimal use of this powerful technique. Here, we review such approaches, from computational models to dissect the mechanisms and origin of the recorded signal, to advanced signal processing methods to unravel new neuronal interactions at mesoscopic scale. Only a stronger development of interdisciplinary approaches can bridge micro- to macroscales.
Collapse
Affiliation(s)
- Sandrine Chemla
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), UMR-7289 Institut de Neurosciences de la Timone, Marseille, France
| | - Lyle Muller
- Salk Institute for Biological Studies, Computational Neurobiology Laboratory, La Jolla, California, United States
| | - Alexandre Reynaud
- McGill University, McGill Vision Research, Department of Ophthalmology, Montreal, Quebec, Canada
| | - Sylvain Takerkart
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), UMR-7289 Institut de Neurosciences de la Timone, Marseille, France
| | - Alain Destexhe
- Unit for Neurosciences, Information and Complexity (UNIC), Centre National de la Recherche Scientifique (CNRS), UPR-3293, Gif-sur-Yvette, France
- The European Institute for Theoretical Neuroscience (EITN), Paris, France
| | - Frédéric Chavane
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), UMR-7289 Institut de Neurosciences de la Timone, Marseille, France
| |
Collapse
|
15
|
Huang JY, Wang C, Dreher B. Silencing "Top-Down" Cortical Signals Affects Spike-Responses of Neurons in Cat's "Intermediate" Visual Cortex. Front Neural Circuits 2017; 11:27. [PMID: 28487637 PMCID: PMC5404610 DOI: 10.3389/fncir.2017.00027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 04/04/2017] [Indexed: 11/13/2022] Open
Abstract
We examined the effects of reversible inactivation of a higher-order, pattern/form-processing, postero-temporal visual (PTV) cortex on the background activities and spike-responses of single neurons in the ipsilateral cytoarchitectonic area 19 (putative area V3) of anesthetized domestic cats. Very occasionally (2/28), silencing recurrent “feedback” signals from PTV, resulted in significant and reversible reduction in background activity of area 19 neurons. By contrast, in large proportions of area 19 neurons, PTV inactivation resulted in: (i) significant reversible changes in the peak magnitude of their responses to visual stimuli (35.5%; 10/28); (ii) substantial reversible changes in direction selectivity indices (DSIs; 43%; 12/28); and (iii) reversible, upward shifts in preferred stimulus velocities (37%; 7/19). Substantial (≥20°) shifts in preferred orientation and/or substantial (≥20°) changes in width of orientation-tuning curves of area 19 neurons were however less common (26.5%; 4/15). In a series of experiments conducted earlier, inactivation of PTV also induced upward shifts in the preferred velocities of the ipsilateral cytoarchitectonic area 17 (V1) neurons responding optimally at low velocities. These upward shifts in preferred velocities of areas 19 and 17 neurons were often accompanied by substantial increases in DSIs. Thus, in both the primary visual cortex and the “intermediate” visual cortex (area 19), feedback from PTV plays a modulatory role in relation to stimulus velocity preferences and/or direction selectivity, that is, the properties which are usually believed to be determined by the inputs from the dorsal thalamus and/or feedforward inputs from the primary visual cortices. The apparent specialization of area 19 for processing information about stationary/slowly moving visual stimuli is at least partially determined, by the feedback from the higher-order pattern-processing visual area. Overall, the recurrent signals from the higher-order, pattern/form-processing visual cortex appear to play an important role in determining the magnitude of spike-responses and some “motion-related” receptive field properties of a substantial proportion of neurons in the intermediate form-processing visual area—area 19.
Collapse
Affiliation(s)
- Jin Y Huang
- Discipline of Anatomy and Histology, The University of SydneySydney, NSW, Australia.,Discipline of Biomedical Science, School of Medical Sciences, The University of SydneySydney, NSW, Australia.,The Bosch Institute, The University of SydneySydney, NSW, Australia
| | - Chun Wang
- Discipline of Anatomy and Histology, The University of SydneySydney, NSW, Australia.,The Bosch Institute, The University of SydneySydney, NSW, Australia
| | - Bogdan Dreher
- Discipline of Anatomy and Histology, The University of SydneySydney, NSW, Australia.,The Bosch Institute, The University of SydneySydney, NSW, Australia
| |
Collapse
|
16
|
Roland PE, Bonde LH, Forsberg LE, Harvey MA. Breaking the Excitation-Inhibition Balance Makes the Cortical Network's Space-Time Dynamics Distinguish Simple Visual Scenes. Front Syst Neurosci 2017; 11:14. [PMID: 28377701 PMCID: PMC5360108 DOI: 10.3389/fnsys.2017.00014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/03/2017] [Indexed: 11/21/2022] Open
Abstract
Brain dynamics are often taken to be temporal dynamics of spiking and membrane potentials in a balanced network. Almost all evidence for a balanced network comes from recordings of cell bodies of few single neurons, neglecting more than 99% of the cortical network. We examined the space-time dynamics of excitation and inhibition simultaneously in dendrites and axons over four visual areas of ferrets exposed to visual scenes with stationary and moving objects. The visual stimuli broke the tight balance between excitation and inhibition such that the network exhibited longer episodes of net excitation subsequently balanced by net inhibition, in contrast to a balanced network. Locally in all four areas the amount of net inhibition matched the amount of net excitation with a delay of 125 ms. The space-time dynamics of excitation-inhibition evolved to reduce the complexity of neuron interactions over the whole network to a flow on a low-(3)-dimensional manifold within 80 ms. In contrast to the pure temporal dynamics, the low dimensional flow evolved to distinguish the simple visual scenes.
Collapse
Affiliation(s)
- Per E Roland
- Faculty of Health Sciences, Center for Neuroscience, University of Copenhagen Copenhagen, Denmark
| | - Lars H Bonde
- Faculty of Health Sciences, Center for Neuroscience, University of Copenhagen Copenhagen, Denmark
| | - Lars E Forsberg
- Faculty of Health Sciences, Center for Neuroscience, University of Copenhagen Copenhagen, Denmark
| | - Michael A Harvey
- Department of Physiology, University of Fribourg Fribourg, Switzerland
| |
Collapse
|
17
|
Mesoscale Architecture Shapes Initiation and Richness of Spontaneous Network Activity. J Neurosci 2017; 37:3972-3987. [PMID: 28292833 DOI: 10.1523/jneurosci.2552-16.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 02/06/2017] [Accepted: 02/11/2017] [Indexed: 11/21/2022] Open
Abstract
Spontaneous activity in the absence of external input, including propagating waves of activity, is a robust feature of neuronal networks in vivo and in vitro The neurophysiological and anatomical requirements for initiation and persistence of such activity, however, are poorly understood, as is their role in the function of neuronal networks. Computational network studies indicate that clustered connectivity may foster the generation, maintenance, and richness of spontaneous activity. Since this mesoscale architecture cannot be systematically modified in intact tissue, testing these predictions is impracticable in vivo Here, we investigate how the mesoscale structure shapes spontaneous activity in generic networks of rat cortical neurons in vitro In these networks, neurons spontaneously arrange into local clusters with high neurite density and form fasciculating long-range axons. We modified this structure by modulation of protein kinase C, an enzyme regulating neurite growth and cell migration. Inhibition of protein kinase C reduced neuronal aggregation and fasciculation of axons, i.e., promoted uniform architecture. Conversely, activation of protein kinase C promoted aggregation of neurons into clusters, local connectivity, and bundling of long-range axons. Supporting predictions from theory, clustered networks were more spontaneously active and generated diverse activity patterns. Neurons within clusters received stronger synaptic inputs and displayed increased membrane potential fluctuations. Intensified clustering promoted the initiation of synchronous bursting events but entailed incomplete network recruitment. Moderately clustered networks appear optimal for initiation and propagation of diverse patterns of activity. Our findings support a crucial role of the mesoscale architectures in the regulation of spontaneous activity dynamics.SIGNIFICANCE STATEMENT Computational studies predict richer and persisting spatiotemporal patterns of spontaneous activity in neuronal networks with neuron clustering. To test this, we created networks of varying architecture in vitro Supporting these predictions, the generation and spatiotemporal patterns of propagation were most variable in networks with intermediate clustering and lowest in uniform networks. Grid-like clustering, on the other hand, facilitated spontaneous activity but led to degenerating patterns of propagation. Neurons outside clusters had weaker synaptic input than neurons within clusters, in which increased membrane potential fluctuations facilitated the initiation of synchronized spike activity. Our results thus show that the intermediate level organization of neuronal networks strongly influences the dynamics of their activity.
Collapse
|
18
|
Abstract
Collinear facilitation is an enhancement in the visibility of a target by laterally placed iso-oriented flankers in a collinear (COL) configuration. Iso-oriented flankers placed in a non-collinear configuration (side-by-side, SBS) produce less facilitation. Surprisingly, presentation of both configurations simultaneously (ISO-CROSS) abolishes the facilitation rather than increases it - a phenomenon that can’t be fully explained by the spatial properties of the target and flankers. Based on our preliminary data and recent studies, we hypothesized that there might be a novel explanation based on the temporal properties of the excitation and inhibition, resulting in asynchrony between the lateral inputs received from COL and SBS, leading to cancelation of the facilitatory component in ISO-CROSS. We explored this effect using a detection task in humans. The results replicated the previous results showing that the preferred facilitation for COL and SBS was abolished for the ISO-CROSS configuration. However, presenting the SBS flankers, but not the COL flankers 20 msec before ISO-CROSS restored the facilitatory effect. We propose a novel explanation that the perceptual advantage of collinear facilitation may be cancelled by the delayed input from the sides; thus, the final perception is determined by the overall spatial-temporal integration of the lateral interactions.
Collapse
|
19
|
Temporal Asymmetry in Dark-Bright Processing Initiates Propagating Activity across Primary Visual Cortex. J Neurosci 2016; 36:1902-13. [PMID: 26865614 DOI: 10.1523/jneurosci.3235-15.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Differences between visual pathways representing darks and lights have been shown to affect spatial resolution and detection timing. Both psychophysical and physiological studies suggest an underlying retinal origin with amplification in primary visual cortex (V1). Here we show that temporal asymmetries in the processing of darks and lights create motion in terms of propagating activity across V1. Exploiting the high spatiotemporal resolution of voltage-sensitive dye imaging, we captured population responses to abrupt local changes of luminance in cat V1. For stimulation we used two neighboring small squares presented on either bright or dark backgrounds. When a single square changed from dark to bright or vice versa, we found coherent population activity emerging at the respective retinal input locations. However, faster rising and decay times were obtained for the bright to dark than the dark to bright changes. When the two squares changed luminance simultaneously in opposite polarities, we detected a propagating wave front of activity that originated at the cortical location representing the darkened square and rapidly expanded toward the region representing the brightened location. Thus, simultaneous input led to sequential activation across cortical retinotopy. Importantly, this effect was independent of the squares' contrast with the background. We suggest imbalance in dark-bright processing as a driving force in the generation of wave-like activity. Such propagation may convey motion signals and influence perception of shape whenever abrupt shifts in visual objects or gaze cause counterchange of luminance at high-contrast borders. SIGNIFICANCE STATEMENT An elementary process in vision is the detection of darks and lights through the retina via ON and OFF channels. Psychophysical and physiological studies suggest that differences between these channels affect spatial resolution and detection thresholds. Here we show that temporal asymmetries in the processing of darks and lights create motion signals across visual cortex. Using two neighboring squares, which simultaneously counterchanged luminance, we discovered propagating activity that was strictly drawn out from cortical regions representing the darkened location. Thus, a synchronous stimulus event translated into sequential wave-like brain activation. Such propagation may convey motion signals accessible in higher brain areas, whenever abrupt shifts in visual objects or gaze cause counterchange of luminance at high-contrast borders.
Collapse
|
20
|
Kremkow J, Perrinet LU, Monier C, Alonso JM, Aertsen A, Frégnac Y, Masson GS. Push-Pull Receptive Field Organization and Synaptic Depression: Mechanisms for Reliably Encoding Naturalistic Stimuli in V1. Front Neural Circuits 2016; 10:37. [PMID: 27242445 PMCID: PMC4862982 DOI: 10.3389/fncir.2016.00037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/25/2016] [Indexed: 11/13/2022] Open
Abstract
Neurons in the primary visual cortex are known for responding vigorously but with high variability to classical stimuli such as drifting bars or gratings. By contrast, natural scenes are encoded more efficiently by sparse and temporal precise spiking responses. We used a conductance-based model of the visual system in higher mammals to investigate how two specific features of the thalamo-cortical pathway, namely push-pull receptive field organization and fast synaptic depression, can contribute to this contextual reshaping of V1 responses. By comparing cortical dynamics evoked respectively by natural vs. artificial stimuli in a comprehensive parametric space analysis, we demonstrate that the reliability and sparseness of the spiking responses during natural vision is not a mere consequence of the increased bandwidth in the sensory input spectrum. Rather, it results from the combined impacts of fast synaptic depression and push-pull inhibition, the later acting for natural scenes as a form of “effective” feed-forward inhibition as demonstrated in other sensory systems. Thus, the combination of feedforward-like inhibition with fast thalamo-cortical synaptic depression by simple cells receiving a direct structured input from thalamus composes a generic computational mechanism for generating a sparse and reliable encoding of natural sensory events.
Collapse
Affiliation(s)
- Jens Kremkow
- Institut de Neurosciences de la Timone, UMR 7289, Centre National de la Recherche Scientifique - Aix-Marseille UniversitéMarseille, France; Neurobiology and Biophysics, Faculty of Biology, University of FreiburgFreiburg, Germany; Bernstein Center Freiburg, University of FreiburgFreiburg, Germany; Department of Biological Sciences, State University of New York (SUNY-Optometry)New York, NY, USA
| | - Laurent U Perrinet
- Institut de Neurosciences de la Timone, UMR 7289, Centre National de la Recherche Scientifique - Aix-Marseille Université Marseille, France
| | - Cyril Monier
- Unité de Neurosciences, Information et Complexité, UPR Centre National de la Recherche Scientifique 3293 Gif-sur-Yvette, France
| | - Jose-Manuel Alonso
- Department of Biological Sciences, State University of New York (SUNY-Optometry) New York, NY, USA
| | - Ad Aertsen
- Neurobiology and Biophysics, Faculty of Biology, University of FreiburgFreiburg, Germany; Bernstein Center Freiburg, University of FreiburgFreiburg, Germany
| | - Yves Frégnac
- Unité de Neurosciences, Information et Complexité, UPR Centre National de la Recherche Scientifique 3293 Gif-sur-Yvette, France
| | - Guillaume S Masson
- Institut de Neurosciences de la Timone, UMR 7289, Centre National de la Recherche Scientifique - Aix-Marseille Université Marseille, France
| |
Collapse
|
21
|
Gerard-Mercier F, Carelli PV, Pananceau M, Troncoso XG, Frégnac Y. Synaptic Correlates of Low-Level Perception in V1. J Neurosci 2016; 36:3925-42. [PMID: 27053201 PMCID: PMC6705520 DOI: 10.1523/jneurosci.4492-15.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/26/2016] [Accepted: 02/13/2016] [Indexed: 11/21/2022] Open
Abstract
The computational role of primary visual cortex (V1) in low-level perception remains largely debated. A dominant view assumes the prevalence of higher cortical areas and top-down processes in binding information across the visual field. Here, we investigated the role of long-distance intracortical connections in form and motion processing by measuring, with intracellular recordings, their synaptic impact on neurons in area 17 (V1) of the anesthetized cat. By systematically mapping synaptic responses to stimuli presented in the nonspiking surround of V1 receptive fields, we provide the first quantitative characterization of the lateral functional connectivity kernel of V1 neurons. Our results revealed at the population level two structural-functional biases in the synaptic integration and dynamic association properties of V1 neurons. First, subthreshold responses to oriented stimuli flashed in isolation in the nonspiking surround exhibited a geometric organization around the preferred orientation axis mirroring the psychophysical "association field" for collinear contour perception. Second, apparent motion stimuli, for which horizontal and feedforward synaptic inputs summed in-phase, evoked dominantly facilitatory nonlinear interactions, specifically during centripetal collinear activation along the preferred orientation axis, at saccadic-like speeds. This spatiotemporal integration property, which could constitute the neural correlate of a human perceptual bias in speed detection, suggests that local (orientation) and global (motion) information is already linked within V1. We propose the existence of a "dynamic association field" in V1 neurons, whose spatial extent and anisotropy are transiently updated and reshaped as a function of changes in the retinal flow statistics imposed during natural oculomotor exploration. SIGNIFICANCE STATEMENT The computational role of primary visual cortex in low-level perception remains debated. The expression of this "pop-out" perception is often assumed to require attention-related processes, such as top-down feedback from higher cortical areas. Using intracellular techniques in the anesthetized cat and novel analysis methods, we reveal unexpected structural-functional biases in the synaptic integration and dynamic association properties of V1 neurons. These structural-functional biases provide a substrate, within V1, for contour detection and, more unexpectedly, global motion flow sensitivity at saccadic speed, even in the absence of attentional processes. We argue for the concept of a "dynamic association field" in V1 neurons, whose spatial extent and anisotropy changes with retinal flow statistics, and more generally for a renewed focus on intracortical computation.
Collapse
Affiliation(s)
- Florian Gerard-Mercier
- Unité de Neuroscience Information et Complexité (UNIC), Centre National de la Recherche Scientifique UPR-3293, 91198 Gif-sur-Yvette, France, Graduate School of the École Polytechnique, École Polytechnique, 91128 Palaiseau, France, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama-shi, 338-8570, Japan, and
| | - Pedro V Carelli
- Unité de Neuroscience Information et Complexité (UNIC), Centre National de la Recherche Scientifique UPR-3293, 91198 Gif-sur-Yvette, France
| | - Marc Pananceau
- Unité de Neuroscience Information et Complexité (UNIC), Centre National de la Recherche Scientifique UPR-3293, 91198 Gif-sur-Yvette, France, Université Paris-Sud, 91405 Orsay, France
| | - Xoana G Troncoso
- Unité de Neuroscience Information et Complexité (UNIC), Centre National de la Recherche Scientifique UPR-3293, 91198 Gif-sur-Yvette, France
| | - Yves Frégnac
- Unité de Neuroscience Information et Complexité (UNIC), Centre National de la Recherche Scientifique UPR-3293, 91198 Gif-sur-Yvette, France, Graduate School of the École Polytechnique, École Polytechnique, 91128 Palaiseau, France,
| |
Collapse
|
22
|
Chemla S, Chavane F. Effects of GABAA kinetics on cortical population activity: computational studies and physiological confirmations. J Neurophysiol 2016; 115:2867-79. [PMID: 26912588 DOI: 10.1152/jn.00352.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 02/22/2016] [Indexed: 11/22/2022] Open
Abstract
Voltage-sensitive dye (VSD) imaging produces an unprecedented real-time and high-resolution mesoscopic signal to measure the cortical population activity. We have previously shown that the neuronal compartments contributions to the signal are dynamic and stimulus-dependent (Chemla S, Chavane F. Neuroimage 53: 420-438, 2010). Moreover, the VSD signal can also be strongly affected by the network state, such as in anesthetized vs. awake preparations. Here, we investigated the impact of the network state, through GABAA receptors modulation, on the VSD signal using a computational approach. We therefore systematically measured the effect of the GABAA-mediated inhibitory postsynaptic potentials (IPSPs) decay time constant (τG) on our modeled VSD response to an input stimulus of increasing strength. Our simulations suggest that τG strongly modulates the dynamics of the VSD signal, affecting the amplitude, input response function, and the transient balance of excitation and inhibition. We confirmed these predictions experimentally on awake and anesthetized monkeys, comparing VSD responses to drifting gratings stimuli of various contrasts. Lastly, one in vitro study has suggested that GABAA receptors may also be directly affected by the VSDs themselves (Mennerick S, Chisari M, Shu H, Taylor A, Vasek M, Eisenman L, Zorumski C. J Neurosci 30: 2871-2879, 2010). Our modeling approach suggests that the type of modulation described in this study would actually have a negligible influence on the population response. This study highlights that functional results acquired with different techniques and network states must be compared with caution. Biophysical models are proposed here as an adequate tool to delineate the domain of VSD data interpretation.
Collapse
Affiliation(s)
- Sandrine Chemla
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada; and
| | - Frédéric Chavane
- Institut de Neurosciences de la Timone, UMR 7289 Centre National de la Recherche Scientifique and Aix-Marseille Université, Marseille, France
| |
Collapse
|
23
|
Grinvald A, Omer DB, Sharon D, Vanzetta I, Hildesheim R. Voltage-Sensitive Dye Imaging of Neocortical Activity. Cold Spring Harb Protoc 2016; 2016:pdb.top089367. [PMID: 26729915 DOI: 10.1101/pdb.top089367] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neural computations underlying sensory perception, cognition, and motor control are performed by populations of neurons at different anatomical and temporal scales. Few techniques are currently available for exploring the dynamics of local and large range populations. Voltage-sensitive dye imaging (VSDI), based on organic voltage probes, reveals neural population activity in areas ranging from a few tens of micrometers to a couple of centimeters, or two areas up to ~10 cm apart. VSDI provides a submillisecond temporal resolution and a spatial resolution of ~50 µm. The dye signal emphasizes subthreshold synaptic potentials. VSDI has been applied in the mouse, rat, gerbil, ferret, tree shrew, cat, and monkey cortices to explore the lateral spread of retinotopic or somatotopic activation; the dynamic spatiotemporal pattern resulting from sensory activation, including the somatosensory, olfactory, auditory, and visual modalities; and motor preparation and the properties of spontaneously occurring population activity. In this introduction, we focus on VSDI in vivo and review results obtained mostly in the visual system in our laboratory.
Collapse
|
24
|
Reconstructing representations of dynamic visual objects in early visual cortex. Proc Natl Acad Sci U S A 2015; 113:1453-8. [PMID: 26712004 DOI: 10.1073/pnas.1512144113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As raw sensory data are partial, our visual system extensively fills in missing details, creating enriched percepts based on incomplete bottom-up information. Despite evidence for internally generated representations at early stages of cortical processing, it is not known whether these representations include missing information of dynamically transforming objects. Long-range apparent motion (AM) provides a unique test case because objects in AM can undergo changes both in position and in features. Using fMRI and encoding methods, we found that the "intermediate" orientation of an apparently rotating grating, never presented in the retinal input but interpolated during AM, is reconstructed in population-level, feature-selective tuning responses in the region of early visual cortex (V1) that corresponds to the retinotopic location of the AM path. This neural representation is absent when AM inducers are presented simultaneously and when AM is visually imagined. Our results demonstrate dynamic filling-in in V1 for object features that are interpolated during kinetic transformations.
Collapse
|
25
|
Vladimirskiy B, Urbanczik R, Senn W. Hierarchical Novelty-Familiarity Representation in the Visual System by Modular Predictive Coding. PLoS One 2015; 10:e0144636. [PMID: 26670700 PMCID: PMC4682867 DOI: 10.1371/journal.pone.0144636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 11/22/2015] [Indexed: 11/18/2022] Open
Abstract
Predictive coding has been previously introduced as a hierarchical coding framework for the visual system. At each level, activity predicted by the higher level is dynamically subtracted from the input, while the difference in activity continuously propagates further. Here we introduce modular predictive coding as a feedforward hierarchy of prediction modules without back-projections from higher to lower levels. Within each level, recurrent dynamics optimally segregates the input into novelty and familiarity components. Although the anatomical feedforward connectivity passes through the novelty-representing neurons, it is nevertheless the familiarity information which is propagated to higher levels. This modularity results in a twofold advantage compared to the original predictive coding scheme: the familiarity-novelty representation forms quickly, and at each level the full representational power is exploited for an optimized readout. As we show, natural images are successfully compressed and can be reconstructed by the familiarity neurons at each level. Missing information on different spatial scales is identified by novelty neurons and complements the familiarity representation. Furthermore, by virtue of the recurrent connectivity within each level, non-classical receptive field properties still emerge. Hence, modular predictive coding is a biologically realistic metaphor for the visual system that dynamically extracts novelty at various scales while propagating the familiarity information.
Collapse
Affiliation(s)
- Boris Vladimirskiy
- Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Robert Urbanczik
- Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Walter Senn
- Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
- * E-mail:
| |
Collapse
|
26
|
Bressloff PC, Carroll SR. Laminar Neural Field Model of Laterally Propagating Waves of Orientation Selectivity. PLoS Comput Biol 2015; 11:e1004545. [PMID: 26491877 PMCID: PMC4619632 DOI: 10.1371/journal.pcbi.1004545] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/08/2015] [Indexed: 01/06/2023] Open
Abstract
We construct a laminar neural-field model of primary visual cortex (V1) consisting of a superficial layer of neurons that encode the spatial location and orientation of a local visual stimulus coupled to a deep layer of neurons that only encode spatial location. The spatially-structured connections in the deep layer support the propagation of a traveling front, which then drives propagating orientation-dependent activity in the superficial layer. Using a combination of mathematical analysis and numerical simulations, we establish that the existence of a coherent orientation-selective wave relies on the presence of weak, long-range connections in the superficial layer that couple cells of similar orientation preference. Moreover, the wave persists in the presence of feedback from the superficial layer to the deep layer. Our results are consistent with recent experimental studies that indicate that deep and superficial layers work in tandem to determine the patterns of cortical activity observed in vivo.
Collapse
Affiliation(s)
- Paul C. Bressloff
- Department of Mathematics, University of Utah, Salt Lake City, Utah, United States of America
| | - Samuel R. Carroll
- Department of Mathematics, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
27
|
Fehérvári TD, Okazaki Y, Sawai H, Yagi T. In Vivo Voltage-Sensitive Dye Study of Lateral Spreading of Cortical Activity in Mouse Primary Visual Cortex Induced by a Current Impulse. PLoS One 2015; 10:e0133853. [PMID: 26230520 PMCID: PMC4521781 DOI: 10.1371/journal.pone.0133853] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/03/2015] [Indexed: 11/18/2022] Open
Abstract
In the mammalian primary visual cortex (V1), lateral spreading of excitatory potentials is believed to be involved in spatial integrative functions, but the underlying cortical mechanism is not well understood. Visually-evoked population-level responses have been shown to propagate beyond the V1 initial activation site in mouse, similar to higher mammals. Visually-evoked responses are, however, affected by neuronal circuits prior to V1 (retina, LGN), making the separate analysis of V1 difficult. Intracortical stimulation eliminates these initial processing steps. We used in vivo RH1691 voltage-sensitive dye (VSD) imaging and intracortical microstimulation in adult C57BL/6 mice to elucidate the spatiotemporal properties of population-level signal spreading in V1 cortical circuits. The evoked response was qualitatively similar to that measured in single-cell electrophysiological experiments in rodents: a fast transient fluorescence peak followed by a fast and a slow decrease or hyperpolarization, similar to EPSP and fast and slow IPSPs in single cells. The early cortical response expanded at speeds commensurate with long horizontal projections (at 5% of the peak maximum, 0.08–0.15 m/s) however, the bulk of the VSD signal propagated slowly (at half-peak maximum, 0.05–0.08 m/s) suggesting an important role of regenerative multisynaptic transmission through short horizontal connections in V1 spatial integrative functions. We also found a tendency for a widespread and fast cortical response suppression in V1, which was eliminated by GABAA-antagonists gabazine and bicuculline methiodide. Our results help understand the neuronal circuitry involved in lateral spreading in V1.
Collapse
Affiliation(s)
- Tamás Dávid Fehérvári
- Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Yuka Okazaki
- Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Center for Advanced Medical Engineering and Informatics, Osaka University, Suita, Osaka, Japan
| | - Hajime Sawai
- Division of Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tetsuya Yagi
- Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
28
|
Grinvald A, Omer D, Naaman S, Sharon D. Imaging the Dynamics of Mammalian Neocortical Population Activity In-Vivo. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 859:243-71. [PMID: 26238056 DOI: 10.1007/978-3-319-17641-3_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Neural computations underlying sensory perception, cognition and motor control are performed by populations of neurons at different anatomical and temporal scales. Few techniques are currently available for exploring dynamics of local and large range populations. Voltage-sensitive dye imaging (VSDI) reveals neural population activity in areas ranging from a few tens of microns to a couple of centimeters, or two areas up to ~10 cm apart. VSDI provides a sub-millisecond temporal resolution, and a spatial resolution of about 50 μm. The dye signal emphasizes subthreshold synaptic potentials. VSDI has been applied in the mouse, rat, gerbil, ferret, tree shrew, cat and monkey cortices, in order to explore lateral spread of retinotopic or somatotopic activation, the dynamic spatiotemporal pattern resulting from sensory activation, including the somatosensory, olfactory, auditory, and visual modalities, as well as motor preparation and the properties of spontaneously-occurring population activity. In this chapter we focus on VSDI in-vivo and review results obtained mostly in the visual system in our laboratory.
Collapse
Affiliation(s)
- Amiram Grinvald
- Department of Neurobiology, Weizmann Institute of Science, 26, Rehovot, 76100, Israel,
| | | | | | | |
Collapse
|
29
|
Superficial layer pyramidal cells communicate heterogeneously between multiple functional domains of cat primary visual cortex. Nat Commun 2014; 5:5252. [PMID: 25341917 PMCID: PMC4354012 DOI: 10.1038/ncomms6252] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/11/2014] [Indexed: 11/08/2022] Open
Abstract
The axons of pyramidal neurons in the superficial layers of the neocortex of higher mammals form lateral networks of discrete clusters of synaptic boutons. In primary visual cortex the clusters are reported to link domains that share the same orientation preferences, but how individual neurons contribute to this network is unknown. Here we performed optical imaging to record the intrinsic signal, which is an indirect measure of neuronal firing, and determined the global map of orientation preferences in the cat primary visual system. In the same experiment, single cells were recorded and labelled intracellularly. We found that individual axons arborise within the retinotopic representation of the classical receptive field, but their bouton clusters were not aligned along their preferred axis of orientation along the retinotopic map. Axon clusters formed in a variety of different orientation domains, not just the like-orientation domains. This topography and heterogeneity of single-cell connectivity provides circuits for normalization and context-dependent feature processing of visual scenes.
Collapse
|
30
|
Roland PE, Hilgetag CC, Deco G. Cortico-cortical communication dynamics. Front Syst Neurosci 2014; 8:19. [PMID: 24847217 PMCID: PMC4017159 DOI: 10.3389/fnsys.2014.00019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/25/2014] [Indexed: 11/13/2022] Open
Abstract
In principle, cortico-cortical communication dynamics is simple: neurons in one cortical area communicate by sending action potentials that release glutamate and excite their target neurons in other cortical areas. In practice, knowledge about cortico-cortical communication dynamics is minute. One reason is that no current technique can capture the fast spatio-temporal cortico-cortical evolution of action potential transmission and membrane conductances with sufficient spatial resolution. A combination of optogenetics and monosynaptic tracing with virus can reveal the spatio-temporal cortico-cortical dynamics of specific neurons and their targets, but does not reveal how the dynamics evolves under natural conditions. Spontaneous ongoing action potentials also spread across cortical areas and are difficult to separate from structured evoked and intrinsic brain activity such as thinking. At a certain state of evolution, the dynamics may engage larger populations of neurons to drive the brain to decisions, percepts and behaviors. For example, successfully evolving dynamics to sensory transients can appear at the mesoscopic scale revealing how the transient is perceived. As a consequence of these methodological and conceptual difficulties, studies in this field comprise a wide range of computational models, large-scale measurements (e.g., by MEG, EEG), and a combination of invasive measurements in animal experiments. Further obstacles and challenges of studying cortico-cortical communication dynamics are outlined in this critical review.
Collapse
Affiliation(s)
- Per E Roland
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen Copenhagen, Denmark
| | - Claus C Hilgetag
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; Department of Health Sciences, Boston University Boston, MA, USA
| | - Gustavo Deco
- Department of Technology, University of Pompeu Fabra Barcelona, Spain
| |
Collapse
|
31
|
Samonds JM, Potetz BR, Lee TS. Sample skewness as a statistical measurement of neuronal tuning sharpness. Neural Comput 2014; 26:860-906. [PMID: 24555451 DOI: 10.1162/neco_a_00582] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We propose using the statistical measurement of the sample skewness of the distribution of mean firing rates of a tuning curve to quantify sharpness of tuning. For some features, like binocular disparity, tuning curves are best described by relatively complex and sometimes diverse functions, making it difficult to quantify sharpness with a single function and parameter. Skewness provides a robust nonparametric measure of tuning curve sharpness that is invariant with respect to the mean and variance of the tuning curve and is straightforward to apply to a wide range of tuning, including simple orientation tuning curves and complex object tuning curves that often cannot even be described parametrically. Because skewness does not depend on a specific model or function of tuning, it is especially appealing to cases of sharpening where recurrent interactions among neurons produce sharper tuning curves that deviate in a complex manner from the feedforward function of tuning. Since tuning curves for all neurons are not typically well described by a single parametric function, this model independence additionally allows skewness to be applied to all recorded neurons, maximizing the statistical power of a set of data. We also compare skewness with other nonparametric measures of tuning curve sharpness and selectivity. Compared to these other nonparametric measures tested, skewness is best used for capturing the sharpness of multimodal tuning curves defined by narrow peaks (maximum) and broad valleys (minima). Finally, we provide a more formal definition of sharpness using a shape-based information gain measure and derive and show that skewness is correlated with this definition.
Collapse
Affiliation(s)
- Jason M Samonds
- Center for the Neural Basis of Cognition and Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.
| | | | | |
Collapse
|
32
|
Pinotsis DA, Brunet N, Bastos A, Bosman CA, Litvak V, Fries P, Friston KJ. Contrast gain control and horizontal interactions in V1: a DCM study. Neuroimage 2014; 92:143-55. [PMID: 24495812 PMCID: PMC4010674 DOI: 10.1016/j.neuroimage.2014.01.047] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 11/04/2013] [Accepted: 01/16/2014] [Indexed: 11/05/2022] Open
Abstract
Using high-density electrocorticographic recordings – from awake-behaving monkeys – and dynamic causal modelling, we characterised contrast dependent gain control in visual cortex, in terms of synaptic rate constants and intrinsic connectivity. Specifically, we used neural field models to quantify the balance of excitatory and inhibitory influences; both in terms of the strength and spatial dispersion of horizontal intrinsic connections. Our results allow us to infer that increasing contrast increases the sensitivity or gain of superficial pyramidal cells to inputs from spiny stellate populations. Furthermore, changes in the effective spatial extent of horizontal coupling nuance the spatiotemporal filtering properties of cortical laminae in V1 — effectively preserving higher spatial frequencies. These results are consistent with recent non-invasive human studies of contrast dependent changes in the gain of pyramidal cells elaborating forward connections — studies designed to test specific hypotheses about precision and gain control based on predictive coding. Furthermore, they are consistent with established results showing that the receptive fields of V1 units shrink with increasing visual contrast. A new observation model suitable for ECoG recordings. An canonical microcircuit field model. A DCM treatment of multiple experimental conditions and trial-specific effects. Excitation-inhibition balance in terms of strength and dispersion.
Collapse
Affiliation(s)
- D A Pinotsis
- The Wellcome Trust Centre for Neuroimaging, University College London, Queen Square, London WC1N 3BG, UK.
| | - N Brunet
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, Netherlands; Department of Neurological Surgery, University of Pittsburgh, PA 15213, USA
| | - A Bastos
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany; Center for Neuroscience and Center for Mind and Brain, University of California-Davis, Davis, CA 95618, USA
| | - C A Bosman
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, Netherlands; Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, Netherlands
| | - V Litvak
- The Wellcome Trust Centre for Neuroimaging, University College London, Queen Square, London WC1N 3BG, UK
| | - P Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany; Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, Netherlands
| | - K J Friston
- The Wellcome Trust Centre for Neuroimaging, University College London, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
33
|
Kaplan BA, Lansner A, Masson GS, Perrinet LU. Anisotropic connectivity implements motion-based prediction in a spiking neural network. Front Comput Neurosci 2013; 7:112. [PMID: 24062680 PMCID: PMC3775506 DOI: 10.3389/fncom.2013.00112] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 07/25/2013] [Indexed: 12/28/2022] Open
Abstract
Predictive coding hypothesizes that the brain explicitly infers upcoming sensory input to establish a coherent representation of the world. Although it is becoming generally accepted, it is not clear on which level spiking neural networks may implement predictive coding and what function their connectivity may have. We present a network model of conductance-based integrate-and-fire neurons inspired by the architecture of retinotopic cortical areas that assumes predictive coding is implemented through network connectivity, namely in the connection delays and in selectiveness for the tuning properties of source and target cells. We show that the applied connection pattern leads to motion-based prediction in an experiment tracking a moving dot. In contrast to our proposed model, a network with random or isotropic connectivity fails to predict the path when the moving dot disappears. Furthermore, we show that a simple linear decoding approach is sufficient to transform neuronal spiking activity into a probabilistic estimate for reading out the target trajectory.
Collapse
Affiliation(s)
- Bernhard A. Kaplan
- Department of Computational Biology, Royal Institute of TechnologyStockholm, Sweden
- Stockholm Brain Institute, Karolinska InstituteStockholm, Sweden
| | - Anders Lansner
- Department of Computational Biology, Royal Institute of TechnologyStockholm, Sweden
- Stockholm Brain Institute, Karolinska InstituteStockholm, Sweden
- Department of Numerical Analysis and Computer Science, Stockholm UniversityStockholm, Sweden
| | - Guillaume S. Masson
- Institut de Neurosciences de la Timone, UMR7289, Centre National de la Recherche Scientifique & Aix-Marseille UniversitéMarseille, France
| | - Laurent U. Perrinet
- Institut de Neurosciences de la Timone, UMR7289, Centre National de la Recherche Scientifique & Aix-Marseille UniversitéMarseille, France
| |
Collapse
|
34
|
Chizhov AV. Conductance-based refractory density model of primary visual cortex. J Comput Neurosci 2013; 36:297-319. [PMID: 23888313 DOI: 10.1007/s10827-013-0473-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 06/17/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
Abstract
A layered continual population model of primary visual cortex has been constructed, which reproduces a set of experimental data, including postsynaptic responses of single neurons on extracellular electric stimulation and spatially distributed activity patterns in response to visual stimulation. In the model, synaptically interacting excitatory and inhibitory neuronal populations are described by a conductance-based refractory density approach. Populations of two-compartment excitatory and inhibitory neurons in cortical layers 2/3 and 4 are distributed in the 2-d cortical space and connected by AMPA, NMDA and GABA type synapses. The external connections are pinwheel-like, according to the orientation of a stimulus. Intracortical connections are isotropic local and patchy between neurons with similar orientations. The model proposes better temporal resolution and more detailed elaboration than conventional mean-field models. In comparison to large network simulations, it excludes a posteriori statistical data manipulation and provides better computational efficiency and minimal parametrization.
Collapse
Affiliation(s)
- Anton V Chizhov
- A.F. Ioffe Physical-Technical Institute of RAS, Politekhnicheskaya str., 26, 194021, St.-Petersburg, Russia,
| |
Collapse
|
35
|
The visual callosal connection: a connection like any other? Neural Plast 2013; 2013:397176. [PMID: 23634306 PMCID: PMC3619632 DOI: 10.1155/2013/397176] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/27/2013] [Indexed: 11/23/2022] Open
Abstract
Recent work about the role of visual callosal connections in ferrets and cats is reviewed, and morphological and functional homologies between the lateral intrinsic and callosal network in early visual areas are discussed. Both networks selectively link distributed neuronal groups with similar response properties, and the actions exerted by callosal input reflect the functional topography of those networks. This supports the notion that callosal connections perpetuate the function of the lateral intrahemispheric circuit onto the other hemisphere. Reversible deactivation studies indicate that the main action of visual callosal input is a multiplicative shift of responses rather than a changing response selectivity. Both the gain of that action and its excitatory-inhibitory balance seem to be dynamically adapted to the feedforward drive by the visual stimulus onto primary visual cortex. Taken together anatomical and functional evidence from corticocortical and lateral circuits further leads to the conclusion that visual callosal connections share more features with lateral intrahemispheric connections on the same hierarchical level and less with feedback connections. I propose that experimental results about the callosal circuit in early visual areas can be interpreted with respect to lateral connectivity in general.
Collapse
|
36
|
Onat S, Jancke D, König P. Cortical long-range interactions embed statistical knowledge of natural sensory input: a voltage-sensitive dye imaging study. F1000Res 2013; 2:51. [PMID: 24358899 PMCID: PMC3829195 DOI: 10.12688/f1000research.2-51.v2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2013] [Indexed: 12/30/2022] Open
Abstract
How is contextual processing as demonstrated with simplified stimuli, cortically enacted in response to ecologically relevant complex and dynamic stimuli? Using voltage-sensitive dye imaging, we captured mesoscopic population dynamics across several square millimeters of cat primary visual cortex. By presenting natural movies locally through either one or two adjacent apertures, we show that simultaneous presentation leads to mutual facilitation of activity. These synergistic effects were most effective when both movie patches originated from the same natural movie, thus forming a coherent stimulus in which the inherent spatio-temporal structure of natural movies were preserved in accord with Gestalt principles of perceptual organization. These results suggest that natural sensory input triggers cooperative mechanisms that are imprinted into the cortical functional architecture as early as in primary visual cortex.
Collapse
Affiliation(s)
- Selim Onat
- Institute of Cognitive Science, Department of Neurobiopsychology, University of Osnabrück, Osnabrück, 49069, Germany
| | - Dirk Jancke
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr-University Bochum, Bochum, Germany ; Cognitive Neurobiology, Bernstein Group for Computational Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | - Peter König
- Institute of Cognitive Science, Department of Neurobiopsychology, University of Osnabrück, Osnabrück, 49069, Germany
| |
Collapse
|
37
|
Visual search and line bisection in hemianopia: computational modelling of cortical compensatory mechanisms and comparison with hemineglect. PLoS One 2013; 8:e54919. [PMID: 23390506 PMCID: PMC3563648 DOI: 10.1371/journal.pone.0054919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 12/20/2012] [Indexed: 11/23/2022] Open
Abstract
Hemianopia patients have lost vision from the contralateral hemifield, but make behavioural adjustments to compensate for this field loss. As a result, their visual performance and behaviour contrast with those of hemineglect patients who fail to attend to objects contralateral to their lesion. These conditions differ in their ocular fixations and perceptual judgments. During visual search, hemianopic patients make more fixations in contralesional space while hemineglect patients make fewer. During line bisection, hemianopic patients fixate the contralesional line segment more and make a small contralesional bisection error, while hemineglect patients make few contralesional fixations and a larger ipsilesional bisection error. Hence, there is an attentional failure for contralesional space in hemineglect but a compensatory adaptation to attend more to the blind side in hemianopia. A challenge for models of visual attentional processes is to show how compensation is achieved in hemianopia, and why such processes are hindered or inaccessible in hemineglect. We used a neurophysiology-derived computational model to examine possible cortical compensatory processes in simulated hemianopia from a V1 lesion and compared results with those obtained with the same processes under conditions of simulated hemineglect from a parietal lesion. A spatial compensatory bias to increase attention contralesionally replicated hemianopic scanning patterns during visual search but not during line bisection. To reproduce the latter required a second process, an extrastriate lateral connectivity facilitating form completion into the blind field: this allowed accurate placement of fixations on contralesional stimuli and reproduced fixation patterns and the contralesional bisection error of hemianopia. Neither of these two cortical compensatory processes was effective in ameliorating the ipsilesional bias in the hemineglect model. Our results replicate normal and pathological patterns of visual scanning, line bisection, and differences between hemianopia and hemineglect, and may explain why compensatory processes that counter the effects of hemianopia are ineffective in hemineglect.
Collapse
|
38
|
Paradis AL, Morel S, Seriès P, Lorenceau J. Speeding up the brain: when spatial facilitation translates into latency shortening. Front Hum Neurosci 2012; 6:330. [PMID: 23267321 PMCID: PMC3525934 DOI: 10.3389/fnhum.2012.00330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 11/28/2012] [Indexed: 11/24/2022] Open
Abstract
Waves of activity following a focal stimulation are reliably observed to spread across the cortical tissue. The origin of these waves remains unclear and the underlying mechanisms and function are still debated. In this study, we ask whether waves of activity modulate the magnetoencephalography (MEG) signals recorded in humans during visual stimulation with Gabor patches sequentially flashed along a vertical path, eliciting a perception of vertical apparent motion. Building upon the functional properties of long-rang horizontal connections, proposed to contribute to spreading activity, we specifically probe the amplitude and latency of MEG responses as a function of Gabor contrast and orientation. The results indicate that in the left hemisphere the response amplitude is enhanced and the half height response latency is shortened for co-aligned Gabor as compared to misaligned Gabor patches at a low but not at a high contrast. Building upon these findings, we develop a biologically plausible computational model that performs a “spike time alignment” of the responses to elongated contours with varying contrast, endowing them with a phase advance relative to misaligned contours.
Collapse
Affiliation(s)
- Anne-Lise Paradis
- UPMC Univ Paris 06, UMR-S975 UMR 7225, Centre de Recherche en Neuroscience Equipe Cogimage, Paris, France ; Inserm U 975, Centre de Recherche en Neuroscience Equipe Cogimage, Paris, France ; CNRS UMR 7225, Centre de Recherche en Neuroscience Equipe Cogimage, Paris, France ; ICM Equipe Cogimage, Paris, France
| | | | | | | |
Collapse
|
39
|
Dynamics of local input normalization result from balanced short- and long-range intracortical interactions in area V1. J Neurosci 2012; 32:12558-69. [PMID: 22956845 DOI: 10.1523/jneurosci.1618-12.2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To efficiently drive many behaviors, sensory systems have to integrate the activity of large neuronal populations within a limited time window. These populations need to rapidly achieve a robust representation of the input image, probably through canonical computations such as divisive normalization. However, little is known about the dynamics of the corticocortical interactions implementing these rapid and robust computations. Here, we measured the real-time activity of a large neuronal population in V1 using voltage-sensitive dye imaging in behaving monkeys. We found that contrast gain of the population increases over time with a time constant of ~30 ms and propagates laterally over the cortical surface. This dynamic is well accounted for by a divisive normalization achieved through a recurrent network that transiently increases in size after response onset with a slow swelling speed of 0.007-0.014 m/s, suggesting a polysynaptic intracortical origin. In the presence of a surround, this normalization pool is gradually balanced by lateral inputs propagating from distant cortical locations. This results in a centripetal propagation of surround suppression at a speed of 0.1-0.3 m/s, congruent with horizontal intracortical axons speed. We propose that a simple generalized normalization scheme can account for both the dynamical contrast response function through recurrent polysynaptic intracortical loops and for the surround suppression through long-range monosynaptic horizontal spread. Our results demonstrate that V1 achieves a rapid and robust context-dependent input normalization through a timely push-pull between local and lateral networks. We suggest that divisive normalization, a fundamental canonical computation, should be considered as a dynamic process.
Collapse
|
40
|
Long-range parallel processing and local recurrent activity in the visual cortex of the mouse. J Neurosci 2012; 32:11120-31. [PMID: 22875943 DOI: 10.1523/jneurosci.6304-11.2012] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The transfer of visual information from the primary visual cortex (V1) to higher order visual cortices is an essential step in visual processing. However, the dynamics of activation of visual cortices is poorly understood. In mice, several extrastriate areas surrounding V1 have been described. Using voltage-sensitive dye imaging in vivo, we determined the spatiotemporal dynamics of the activity evoked in the visual cortex by simple stimuli. Independently of precise areal boundaries, we found that V1 activation is rapidly followed by the depolarization of three functional groups of higher order visual areas organized retinotopically. After this sequential activation, all four regions were simultaneously active for most of the response. Concomitantly with the parallel processing of the visual input, the activity initiated retinotopically and propagated quickly and isotropically within each region. The size of this activation by local recurrent activity, which extended beyond the initial retinotopic response, was dependent on the intensity of the stimulus. Moreover the difference in the spatiotemporal dynamic of the response to dark and bright stimuli suggested the dominance in the mouse of the ON pathway. Our results suggest that the cortex integrates visual information simultaneously through across-area parallel and within-area serial processing.
Collapse
|
41
|
Eriksson D, Wunderle T, Schmidt K. Visual cortex combines a stimulus and an error-like signal with a proportion that is dependent on time, space, and stimulus contrast. Front Syst Neurosci 2012; 6:26. [PMID: 22539918 PMCID: PMC3336196 DOI: 10.3389/fnsys.2012.00026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/31/2012] [Indexed: 11/13/2022] Open
Abstract
Even though the visual cortex is one of the most studied brain areas, the neuronal code in this area is still not fully understood. In the literature, two codes are commonly hypothesized, namely stimulus and predictive (error) codes. Here, we examined whether and how these two codes can coexist in a neuron. To this end, we assumed that neurons could predict a constant stimulus across time or space, since this is the most fundamental type of prediction. Prediction was examined in time using electrophysiology and voltage-sensitive dye imaging in the supragranular layers in area 18 of the anesthetized cat, and in space using a computer model. The distinction into stimulus and error code was made by means of the orientation tuning of the recorded unit. The stimulus was constructed as such that a maximum response to the non-preferred orientation indicated an error signal, and the maximum response to the preferred orientation indicated a stimulus signal. We demonstrate that a single neuron combines stimulus and error-like coding. In addition, we observed that the duration of the error coding varies as a function of stimulus contrast. For low contrast the error-like coding was prolonged by around 60-100%. Finally, the combination of stimulus and error leads to a suboptimal free energy in a recent predictive coding model. We therefore suggest a straightforward modification that can be applied to the free energy model and other predictive coding models. Combining stimulus and error might be advantageous because the stimulus code enables a direct stimulus recognition that is free of assumptions whereas the error code enables an experience dependent inference of ambiguous and non-salient stimuli.
Collapse
Affiliation(s)
- David Eriksson
- Cortical Function and Dynamics, Max Planck Institute for Brain Research Frankfurt, Germany
| | | | | |
Collapse
|
42
|
Civillico EF, Contreras D. Spatiotemporal properties of sensory responses in vivo are strongly dependent on network context. Front Syst Neurosci 2012; 6:25. [PMID: 22509158 PMCID: PMC3325540 DOI: 10.3389/fnsys.2012.00025] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 03/26/2012] [Indexed: 11/13/2022] Open
Abstract
Sensory responses in neocortex are strongly modulated by changes in brain state, such as those observed between sleep stages or attentional levels. However, the specific effects of network state changes on the spatiotemporal properties of sensory responses are poorly understood. The slow oscillation, which is observed in neocortex under ketamine-xylazine anesthesia and is characterized by alternating depolarizing (up-states) and hyperpolarizing (down-states) phases, provides an opportunity to study the state-dependence of primary sensory responses in large networks. Here we used voltage sensitive dye (VSD) imaging to record the spatiotemporal properties of sensory responses and local field potential (LFP) and multiunit activity (MUA) recordings to monitor the ongoing brain state in which the sensory responses occurred. Despite a rich variability of slow oscillation patterns, sensory responses showed a consistent relationship with the ongoing oscillation and triggered a new up-state only after the termination of the refractory period that followed the preceding oscillatory cycle. We show that spatiotemporal properties of whisker-evoked responses are highly dependent on their timing with regard to the ongoing oscillation. In both the up- and down-states, responses spread across large portions of the barrel field, although the up-state responses were reduced in total area due to their sparseness. The depolarizing response in the up-state showed a tendency to propagate along the rows, with an amplitude and slope favoring the higher-numbered arcs. In the up-state, but not in the down-state, the depolarizing response was followed by a hyperpolarizing wave with a consistent spatial structure. We measured the suppression of whisker-evoked responses by a preceding response at 100 ms, and found that suppression showed the same spatial asymmetry as the depolarization. Because the resting level of cells in the up-state is likely to be closer to that in the awake animal, we suggest that the polarities in signal propagation which we observed in the up-state could be used as computational mechanisms in the behaving animal. These results demonstrate the critical importance of ongoing network activity on the dynamics of sensory responses and their integration.
Collapse
Affiliation(s)
- Eugene F Civillico
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia PA, USA
| | | |
Collapse
|
43
|
Is there a path beyond BOLD? Molecular imaging of brain function. Neuroimage 2012; 62:1208-15. [PMID: 22406355 DOI: 10.1016/j.neuroimage.2012.02.076] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/18/2012] [Accepted: 02/27/2012] [Indexed: 12/20/2022] Open
Abstract
The dependence of BOLD on neuro-vascular coupling leaves it many biological steps removed from direct monitoring of neural function. MRI based approaches have been developed aimed at reporting more directly on brain function. These include: manganese enhanced MRI as a surrogate for calcium ion influx; agents responsive to calcium concentrations; approaches to measure membrane potential; agents to measure neurotransmitters; and strategies to measure gene expression. This work has led to clever design of molecular imaging tools and many contributions to studies of brain function in animal models. However, a robust approach that has potential to get MRI closer to neurons in the human brain has not yet emerged.
Collapse
|
44
|
Frégnac Y. Reading Out the Synaptic Echoes of Low-Level Perception in V1. COMPUTER VISION – ECCV 2012. WORKSHOPS AND DEMONSTRATIONS 2012. [DOI: 10.1007/978-3-642-33863-2_50] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|