1
|
Homma NY, Hullett PW, Atencio CA, Schreiner CE. Auditory Cortical Plasticity Dependent on Environmental Noise Statistics. Cell Rep 2021; 30:4445-4458.e5. [PMID: 32234479 PMCID: PMC7326484 DOI: 10.1016/j.celrep.2020.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/07/2019] [Accepted: 03/05/2020] [Indexed: 01/14/2023] Open
Abstract
During critical periods, neural circuits develop to form receptive fields that adapt to the sensory environment and enable optimal performance of relevant tasks. We hypothesized that early exposure to background noise can improve signal-in-noise processing, and the resulting receptive field plasticity in the primary auditory cortex can reveal functional principles guiding that important task. We raised rat pups in different spectro-temporal noise statistics during their auditory critical period. As adults, they showed enhanced behavioral performance in detecting vocalizations in noise. Concomitantly, encoding of vocalizations in noise in the primary auditory cortex improves with noise-rearing. Significantly, spectro-temporal modulation plasticity shifts cortical preferences away from the exposed noise statistics, thus reducing noise interference with the foreground sound representation. Auditory cortical plasticity shapes receptive field preferences to optimally extract foreground information in noisy environments during noise-rearing. Early noise exposure induces cortical circuits to implement efficient coding in the joint spectral and temporal modulation domain. After rearing rats in moderately loud spectro-temporally modulated background noise, Homma et al. investigated signal-in-noise processing in the primary auditory cortex. Noise-rearing improved vocalization-in-noise performance in both behavioral testing and neural decoding. Cortical plasticity shifted neuronal spectro-temporal modulation preferences away from the exposed noise statistics.
Collapse
Affiliation(s)
- Natsumi Y Homma
- Coleman Memorial Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Patrick W Hullett
- Coleman Memorial Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Craig A Atencio
- Coleman Memorial Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christoph E Schreiner
- Coleman Memorial Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
2
|
Modifying the Adult Rat Tonotopic Map with Sound Exposure Produces Frequency Discrimination Deficits That Are Recovered with Training. J Neurosci 2020; 40:2259-2268. [PMID: 32024780 DOI: 10.1523/jneurosci.1445-19.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 11/21/2022] Open
Abstract
Frequency discrimination learning is often accompanied by an expansion of the functional region corresponding to the target frequency within the auditory cortex. Although the perceptual significance of this plastic functional reorganization remains debated, greater cortical representation is generally thought to improve perception for a stimulus. Recently, the ability to expand functional representations through passive sound experience has been demonstrated in adult rats, suggesting that it may be possible to design passive sound exposures to enhance specific perceptual abilities in adulthood. To test this hypothesis, we exposed adult female Long-Evans rats to 2 weeks of moderate-intensity broadband white noise followed by 1 week of 7 kHz tone pips, a paradigm that results in the functional over-representation of 7 kHz within the adult tonotopic map. We then tested the ability of exposed rats to identify 7 kHz among distractor tones on an adaptive tone discrimination task. Contrary to our expectations, we found that map expansion impaired frequency discrimination and delayed perceptual learning. Rats exposed to noise followed by 15 kHz tone pips were not impaired at the same task. Exposed rats also exhibited changes in auditory cortical responses consistent with reduced discriminability of the exposure tone. Encouragingly, these deficits were completely recovered with training. Our results provide strong evidence that map expansion alone does not imply improved perception. Rather, plastic changes in frequency representation induced by bottom-up processes can worsen perceptual faculties, but because of the very nature of plasticity these changes are inherently reversible.SIGNIFICANCE STATEMENT The potent ability of our acoustic environment to shape cortical sensory representations throughout life has led to a growing interest in harnessing both passive sound experience and operant perceptual learning to enhance mature cortical function. We use sound exposure to induce targeted expansions in the adult rat tonotopic map and find that these bottom-up changes unexpectedly impair performance on an adaptive tone discrimination task. Encouragingly, however, we also show that training promotes the recovery of electrophysiological measures of reduced neural discriminability following sound exposure. These results provide support for future neuroplasticity-based treatments that take into account both the sensory statistics of our external environment and perceptual training strategies to improve learning and memory in the adult auditory system.
Collapse
|
3
|
Preserving Inhibition during Developmental Hearing Loss Rescues Auditory Learning and Perception. J Neurosci 2019; 39:8347-8361. [PMID: 31451577 DOI: 10.1523/jneurosci.0749-19.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
Transient periods of childhood hearing loss can induce deficits in aural communication that persist long after auditory thresholds have returned to normal, reflecting long-lasting impairments to the auditory CNS. Here, we asked whether these behavioral deficits could be reversed by treating one of the central impairments: reduction of inhibitory strength. Male and female gerbils received bilateral earplugs to induce a mild, reversible hearing loss during the critical period of auditory cortex development. After earplug removal and the return of normal auditory thresholds, we trained and tested animals on an amplitude modulation detection task. Transient developmental hearing loss induced both learning and perceptual deficits, which were entirely corrected by treatment with a selective GABA reuptake inhibitor (SGRI). To explore the mechanistic basis for these behavioral findings, we recorded the amplitudes of GABAA and GABAB receptor-mediated IPSPs in auditory cortical and thalamic brain slices. In hearing loss-reared animals, cortical IPSP amplitudes were significantly reduced within a few days of hearing loss onset, and this reduction persisted into adulthood. SGRI treatment during the critical period prevented the hearing loss-induced reduction of IPSP amplitudes; but when administered after the critical period, it only restored GABAB receptor-mediated IPSP amplitudes. These effects were driven, in part, by the ability of SGRI to upregulate α1 subunit-dependent GABAA responses. Similarly, SGRI prevented the hearing loss-induced reduction of GABAA and GABAB IPSPs in the ventral nucleus of the medial geniculate body. Thus, by maintaining, or subsequently rescuing, GABAergic transmission in the central auditory thalamocortical pathway, some perceptual and cognitive deficits induced by developmental hearing loss can be prevented.SIGNIFICANCE STATEMENT Even a temporary period of childhood hearing loss can induce communication deficits that persist long after auditory thresholds return to normal. These deficits may arise from long-lasting central impairments, including the loss of synaptic inhibition. Here, we asked whether hearing loss-induced behavioral deficits could be reversed by reinstating normal inhibitory strength. Gerbils reared with transient hearing loss displayed both learning and perceptual deficits. However, when animals were treated with a selective GABA reuptake inhibitor during or after hearing loss, behavioral deficits were entirely corrected. This behavioral recovery was correlated with the return of normal thalamic and cortical inhibitory function. Thus, some perceptual and cognitive deficits induced by developmental hearing loss were prevented with a treatment that rescues a central synaptic property.
Collapse
|
4
|
Bajo VM, Nodal FR, Korn C, Constantinescu AO, Mann EO, Boyden ES, King AJ. Silencing cortical activity during sound-localization training impairs auditory perceptual learning. Nat Commun 2019; 10:3075. [PMID: 31300665 PMCID: PMC6625986 DOI: 10.1038/s41467-019-10770-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/28/2019] [Indexed: 11/09/2022] Open
Abstract
The brain has a remarkable capacity to adapt to changes in sensory inputs and to learn from experience. However, the neural circuits responsible for this flexible processing remain poorly understood. Using optogenetic silencing of ArchT-expressing neurons in adult ferrets, we show that within-trial activity in primary auditory cortex (A1) is required for training-dependent recovery in sound-localization accuracy following monaural deprivation. Because localization accuracy under normal-hearing conditions was unaffected, this highlights a specific role for cortical activity in learning. A1-dependent plasticity appears to leave a memory trace that can be retrieved, facilitating adaptation during a second period of monaural deprivation. However, in ferrets in which learning was initially disrupted by perturbing A1 activity, subsequent optogenetic suppression during training no longer affected localization accuracy when one ear was occluded. After the initial learning phase, the reweighting of spatial cues that primarily underpins this plasticity may therefore occur in A1 target neurons.
Collapse
Affiliation(s)
- Victoria M Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| | - Fernando R Nodal
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Clio Korn
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.,UCSF School of Medicine, San Francisco, CA, 94143-0410, USA
| | - Alexandra O Constantinescu
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.,Institute of Cognitive Neuroscience, University College London, London, WC1N 3AR, UK
| | - Edward O Mann
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Edward S Boyden
- Departments of Biological Engineering and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Andrew J King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
5
|
Huyck JJ, Rosen MJ. Development of perception and perceptual learning for multi-timescale filtered speech. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:667. [PMID: 30180675 DOI: 10.1121/1.5049369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
The perception of temporally changing auditory signals has a gradual developmental trajectory. Speech is a time-varying signal, and slow changes in speech (filtered at 0-4 Hz) are preferentially processed by the right hemisphere, while the left extracts faster changes (filtered at 22-40 Hz). This work examined the ability of 8- to 19-year-olds to both perceive and learn to perceive filtered speech presented diotically for each filter type (low vs high) and dichotically for preferred or non-preferred laterality. Across conditions, performance improved with increasing age, indicating that the ability to perceive filtered speech continues to develop into adolescence. Across age, performance was best when both bands were presented dichotically, but with no benefit for presentation to the preferred hemisphere. Listeners thus integrated slow and fast transitions between the two ears, benefitting from more signal information, but not in a hemisphere-specific manner. After accounting for potential ceiling effects, learning was greatest when both bands were presented dichotically. These results do not support the idea that cochlear implants could be improved by providing differentially filtered information to each ear. Listeners who started with poorer performance learned more, a factor which could contribute to the positive cochlear implant outcomes typically seen in younger children.
Collapse
Affiliation(s)
- Julia Jones Huyck
- Speech Pathology and Audiology Program, Kent State University, 1325 Theatre Drive, Kent, Ohio 44242, USA
| | - Merri J Rosen
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| |
Collapse
|
6
|
Abstract
UNLABELLED Sensory pathways display heightened plasticity during development, yet the perceptual consequences of early experience are generally assessed in adulthood. This approach does not allow one to identify transient perceptual changes that may be linked to the central plasticity observed in juvenile animals. Here, we determined whether a brief period of bilateral auditory deprivation affects sound perception in developing and adult gerbils. Animals were reared with bilateral earplugs, either from postnatal day 11 (P11) to postnatal day 23 (P23) (a manipulation previously found to disrupt gerbil cortical properties), or from P23-P35. Fifteen days after earplug removal and restoration of normal thresholds, animals were tested on their ability to detect the presence of amplitude modulation (AM), a temporal cue that supports vocal communication. Animals reared with earplugs from P11-P23 displayed elevated AM detection thresholds, compared with age-matched controls. In contrast, an identical period of earplug rearing at a later age (P23-P35) did not impair auditory perception. Although the AM thresholds of earplug-reared juveniles improved during a week of repeated testing, a subset of juveniles continued to display a perceptual deficit. Furthermore, although the perceptual deficits induced by transient earplug rearing had resolved for most animals by adulthood, a subset of adults displayed impaired performance. Control experiments indicated that earplugging did not disrupt the integrity of the auditory periphery. Together, our results suggest that P11-P23 encompasses a critical period during which sensory deprivation disrupts central mechanisms that support auditory perceptual skills. SIGNIFICANCE STATEMENT Sensory systems are particularly malleable during development. This heightened degree of plasticity is beneficial because it enables the acquisition of complex skills, such as music or language. However, this plasticity comes with a cost: nervous system development displays an increased vulnerability to the sensory environment. Here, we identify a precise developmental window during which mild hearing loss affects the maturation of an auditory perceptual cue that is known to support animal communication, including human speech. Furthermore, animals reared with transient hearing loss display deficits in perceptual learning. Our results suggest that speech and language delays associated with transient or permanent childhood hearing loss may be accounted for, in part, by deficits in central auditory processing mechanisms.
Collapse
|
7
|
Sound localization in a changing world. Curr Opin Neurobiol 2015; 35:35-43. [PMID: 26126152 DOI: 10.1016/j.conb.2015.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/04/2015] [Accepted: 06/15/2015] [Indexed: 12/11/2022]
Abstract
In natural environments, neural systems must be continuously updated to reflect changes in sensory inputs and behavioral goals. Recent studies of sound localization have shown that adaptation and learning involve multiple mechanisms that operate at different timescales and stages of processing, with other sensory and motor-related inputs playing a key role. We are only just beginning to understand, however, how these processes interact with one another to produce adaptive changes at the level of neuronal populations and behavior. Because there is no explicit map of auditory space in the cortex, studies of sound localization may also provide much broader insight into the plasticity of complex neural representations that are not topographically organized.
Collapse
|
8
|
Wingfield A, Peelle JE. The effects of hearing loss on neural processing and plasticity. Front Syst Neurosci 2015; 9:35. [PMID: 25798095 PMCID: PMC4351590 DOI: 10.3389/fnsys.2015.00035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/19/2015] [Indexed: 11/28/2022] Open
Affiliation(s)
- Arthur Wingfield
- Volen National Center for Complex Systems, Brandeis University Waltham, MA, USA
| | - Jonathan E Peelle
- Department of Otolaryngology, Washington University in St. Louis St. Louis, MO, USA
| |
Collapse
|
9
|
Skoe E, Kraus N. Auditory reserve and the legacy of auditory experience. Brain Sci 2014; 4:575-93. [PMID: 25405381 PMCID: PMC4279143 DOI: 10.3390/brainsci4040575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 10/20/2014] [Accepted: 10/28/2014] [Indexed: 12/04/2022] Open
Abstract
Musical training during childhood has been linked to more robust encoding of sound later in life. We take this as evidence for an auditory reserve: a mechanism by which individuals capitalize on earlier life experiences to promote auditory processing. We assert that early auditory experiences guide how the reserve develops and is maintained over the lifetime. Experiences that occur after childhood, or which are limited in nature, are theorized to affect the reserve, although their influence on sensory processing may be less long-lasting and may potentially fade over time if not repeated. This auditory reserve may help to explain individual differences in how individuals cope with auditory impoverishment or loss of sensorineural function.
Collapse
Affiliation(s)
- Erika Skoe
- Department of Speech, Language, and Hearing Sciences, Department of Psychology Affiliate, Cognitive Science Program Affiliate, University of Connecticut, 850 Bolton Street, Storrs, CT 06105, USA.
| | - Nina Kraus
- Auditory Neuroscience Laboratory, Department of Communication Sciences, Institute for Neuroscience, Department of Neurobiology and Physiology, Department of Otolaryngology, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, USA.
| |
Collapse
|
10
|
Swartz L. Five challenges for disability-related research in sub-Saharan Africa. Afr J Disabil 2014; 3:149. [PMID: 28730014 PMCID: PMC5442506 DOI: 10.4102/ajod.v3i2.149] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/18/2014] [Indexed: 11/16/2022] Open
Abstract
Disability research in contemporary sub-Saharan Africa is developing rapidly, and this is something to be celebrated. This article reviews some contemporary developments and suggests that there are five central, and interrelated, challenges for the field. These challenges – experience, expertise, enumeration, evidence, and expectations – go to the heart of thinking about disability research in sub-Saharan Africa. An optimistic but appropriately critical approach to addressing these issues is suggested.
Collapse
Affiliation(s)
- Leslie Swartz
- Department of Psychology, Stellenbosch University, South Africa
| |
Collapse
|