1
|
Chen C, Liang Y, Xu S, Yi C, Li Y, Chen B, Yang L, Liu Q, Yao D, Li F, Xu P. The dynamic causality brain network reflects whether the working memory is solidified. Cereb Cortex 2024; 34:bhad467. [PMID: 38061696 DOI: 10.1093/cercor/bhad467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 01/19/2024] Open
Abstract
Working memory, which is foundational to higher cognitive function, is the "sketchpad of volitional control." Successful working memory is the inevitable outcome of the individual's active control and manipulation of thoughts and turning them into internal goals during which the causal brain processes information in real time. However, little is known about the dynamic causality among distributed brain regions behind thought control that underpins successful working memory. In our present study, given that correct responses and incorrect ones did not differ in either contralateral delay activity or alpha suppression, further rooting on the high-temporal-resolution EEG time-varying directed network analysis, we revealed that successful working memory depended on both much stronger top-down connections from the frontal to the temporal lobe and bottom-up linkages from the occipital to the temporal lobe, during the early maintenance period, as well as top-down flows from the frontal lobe to the central areas as the delay behavior approached. Additionally, the correlation between behavioral performance and casual interactions increased over time, especially as memory-guided delayed behavior approached. Notably, when using the network metrics as features, time-resolved multiple linear regression of overall behavioral accuracy was exactly achieved as delayed behavior approached. These results indicate that accurate memory depends on dynamic switching of causal network connections and shifting to more task-related patterns during which the appropriate intervention may help enhance memory.
Collapse
Affiliation(s)
- Chunli Chen
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yi Liang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Shiyun Xu
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chanlin Yi
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yuqin Li
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Baodan Chen
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lei Yang
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qiang Liu
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu 610000, China
| | - Dezhong Yao
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fali Li
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Peng Xu
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
2
|
Rauh J, Müller ASM, Nolte G, Haaf M, Mußmann M, Steinmann S, Mulert C, Leicht G. Comparison of transcranial brain stimulation approaches: prefrontal theta alternating current stimulation enhances working memory performance. Front Psychiatry 2023; 14:1140361. [PMID: 37457770 PMCID: PMC10348840 DOI: 10.3389/fpsyt.2023.1140361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction One of the most important cognitive functions in our everyday life is the working memory (WM). In several neuropsychiatric diseases such as ADHD or schizophrenia WM deficits can be observed, making it an attractive target for non-invasive brain stimulation methods like transcranial electrical stimulation (tES). However, the literature shows rather heterogeneous results of tES effects on WM performance. fMRI meta-analyses have identified a WM network including frontoparietal brain areas such as the dorsolateral prefrontal cortex (DLPFC) and the posterior parietal cortex (PPC). Neurophysiological studies revealed oscillatory activity in the theta band frequency range to be of crucial functional relevance for WM processes. Based on this, transcranial alternating current stimulation (tACS) in the theta frequency range targeting DLPFC and PPC in a spatially optimized way might further improve effects of tES on WM performance. Methods Sixteen healthy subjects were stimulated with varying stimulation settings on four different days in a counterbalanced within-subject design. These setups included the application of (1) tACS with a frequency of 5 Hz (theta frequency range) over the left DLPFC and (2) the right superior parietal cortex, (3) transcranial direct current stimulation (tDCS) of the DLPFC and (4) a sham stimulation condition during the online performance of a visual delayed-match-to-sample task with varying working memory load. We introduce a procedure to calculate an optimal tES model revealing optimized high-density setups for the present study for 3 cathodes and 1 anode and stimulation currents of 1.5 mA. Results A significant interaction effect of stimulation type and load condition on working memory capacity was found. This was reflected by a significant improvement of WM performance in the high load condition during tACS over the left DLPFC compared with sham stimulation, which was not the case for our parietal tACS or tDCS setup. Discussion Working memory performance can be improved with optimized high-definition tACS with a frequency of 5 Hz over the left DLPFC. The conception of different mechanisms underlying transcranial electrical stimulation with alternating and direct currents is supported by these results. Patients suffering from working memory impairments due to neuropsychiatric diseases might potentially benefit from this brain stimulation approach.
Collapse
Affiliation(s)
- Jonas Rauh
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne S. M. Müller
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Moritz Haaf
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marius Mußmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Saskia Steinmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center of Psychiatry, Justus-Liebig University, Giessen, Germany
| | - Gregor Leicht
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Redondo-Camós M, Cattaneo G, Alviarez-Schulze V, Delgado-Gallén S, España-Irla G, Solana-Sanchez J, Perellón-Alfonso R, Albu S, Tormos JM, Pascual-Leone A, Bartres-Faz D. Long-interval intracortical inhibition in primary motor cortex related to working memory in middle-aged adults. Front Psychol 2022; 13:998062. [PMID: 36248602 PMCID: PMC9559215 DOI: 10.3389/fpsyg.2022.998062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Excitability of the primary motor cortex measured with TMS has been associated with cognitive dysfunctions in patient populations. However, only a few studies have explored this relationship in healthy adults, and even fewer have considered the role of biological sex. Methods Ninety-seven healthy middle-aged adults (53 male) completed a TMS protocol and a neuropsychological assessment. Resting Motor Threshold (RMT) and Long-Interval Intracortical Inhibition (LICI) were assessed in the left motor cortex and related to attention, episodic memory, working memory, reasoning, and global cognition composite scores to evaluate the relationship between cortical excitability and cognitive functioning. Results In the whole sample, there was a significant association between LICI and cognition; specifically, higher motor inhibition was related to better working memory performance. When the sample was broken down by biological sex, LICI was only associated with working memory, reasoning, and global cognition in men. No associations were found between RMT and cognitive functions. Conclusion Greater intracortical inhibition, measured by LICI, could be a possible marker of working memory in healthy middle-aged adults, and biological sex plays a critical role in this association.
Collapse
Affiliation(s)
- María Redondo-Camós
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Gabriele Cattaneo
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Vanessa Alviarez-Schulze
- Departamento de Ciencias del Comportamiento, Escuela de Psicología, Universidad Metropolitana, Caracas, Venezuela
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, i Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Selma Delgado-Gallén
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Goretti España-Irla
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Javier Solana-Sanchez
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Ruben Perellón-Alfonso
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, i Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sergiu Albu
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - José M. Tormos
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Alvaro Pascual-Leone
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Barcelona, Spain
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
- *Correspondence: Alvaro Pascual-Leone,
| | - David Bartres-Faz
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, i Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- David Bartres-Faz,
| |
Collapse
|
4
|
Dimension of visual information interacts with working memory in monkeys and humans. Sci Rep 2022; 12:5335. [PMID: 35351948 PMCID: PMC8964748 DOI: 10.1038/s41598-022-09367-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/16/2022] [Indexed: 12/16/2022] Open
Abstract
Humans demonstrate behavioural advantages (biases) towards particular dimensions (colour or shape of visual objects), but such biases are significantly altered in neuropsychological disorders. Recent studies have shown that lesions in the prefrontal cortex do not abolish dimensional biases, and therefore suggest that such biases might not depend on top-down prefrontal-mediated attention and instead emerge as bottom-up processing advantages. We hypothesised that if dimensional biases merely emerge from an enhancement of object features, the presence of visual objects would be necessary for the manifestation of dimensional biases. In a specifically-designed working memory task, in which macaque monkeys and humans performed matching based on the object memory rather than the actual object, we found significant dimensional biases in both species, which appeared as a shorter response time and higher accuracy in the preferred dimension (colour and shape dimension in humans and monkeys, respectively). Moreover, the mnemonic demands of the task influenced the magnitude of dimensional bias. Our findings in two primate species indicate that the dichotomy of top-down and bottom-up processing does not fully explain the emergence of dimensional biases. Instead, dimensional biases may emerge when processed information regarding visual object features interact with mnemonic and executive functions to guide goal-directed behaviour.
Collapse
|
5
|
Svaldi DO, Goñi J, Abbas K, Amico E, Clark DG, Muralidharan C, Dzemidzic M, West JD, Risacher SL, Saykin AJ, Apostolova LG. Optimizing differential identifiability improves connectome predictive modeling of cognitive deficits from functional connectivity in Alzheimer's disease. Hum Brain Mapp 2021; 42:3500-3516. [PMID: 33949732 PMCID: PMC8249900 DOI: 10.1002/hbm.25448] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/07/2021] [Accepted: 04/06/2021] [Indexed: 12/29/2022] Open
Abstract
Functional connectivity, as estimated using resting state functional MRI, has shown potential in bridging the gap between pathophysiology and cognition. However, clinical use of functional connectivity biomarkers is impeded by unreliable estimates of individual functional connectomes and lack of generalizability of models predicting cognitive outcomes from connectivity. To address these issues, we combine the frameworks of connectome predictive modeling and differential identifiability. Using the combined framework, we show that enhancing the individual fingerprint of resting state functional connectomes leads to robust identification of functional networks associated to cognitive outcomes and also improves prediction of cognitive outcomes from functional connectomes. Using a comprehensive spectrum of cognitive outcomes associated to Alzheimer's disease (AD), we identify and characterize functional networks associated to specific cognitive deficits exhibited in AD. This combined framework is an important step in making individual level predictions of cognition from resting state functional connectomes and in understanding the relationship between cognition and connectivity.
Collapse
Affiliation(s)
| | - Joaquín Goñi
- School of Industrial EngineeringPurdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Integrative Neuroscience, Purdue UniversityWest LafayetteIndianaUSA
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | - Kausar Abbas
- School of Industrial EngineeringPurdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Integrative Neuroscience, Purdue UniversityWest LafayetteIndianaUSA
| | - Enrico Amico
- School of Industrial EngineeringPurdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Integrative Neuroscience, Purdue UniversityWest LafayetteIndianaUSA
| | - David G. Clark
- Indiana University School of MedicineIndianapolisIndianaUSA
| | | | | | - John D. West
- Indiana University School of MedicineIndianapolisIndianaUSA
| | | | | | | |
Collapse
|
6
|
Haque ZZ, Samandra R, Mansouri FA. Neural substrate and underlying mechanisms of working memory: insights from brain stimulation studies. J Neurophysiol 2021; 125:2038-2053. [PMID: 33881914 DOI: 10.1152/jn.00041.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The concept of working memory refers to a collection of cognitive abilities and processes involved in the short-term storage of task-relevant information to guide the ongoing and upcoming behavior and therefore describes an important aspect of executive control of behavior for achieving goals. Deficits in working memory and related cognitive abilities have been observed in patients with brain damage or neuropsychological disorders and therefore it is important to better understand neural substrate and underlying mechanisms of working memory. Working memory relies on neural mechanisms that enable encoding, maintenance, and manipulation of stored information as well as integrating them with ongoing and future goals. Recently, a surge in brain stimulation studies have led to development of various noninvasive techniques for localized stimulation of prefrontal and other cortical regions in humans. These brain stimulation techniques can potentially be tailored to influence neural activities in particular brain regions and modulate cognitive functions and behavior. Combined use of brain stimulation with neuroimaging and electrophysiological recording have provided a great opportunity to monitor neural activity in various brain regions and noninvasively intervene and modulate cognitive functions in cognitive tasks. These studies have shed more light on the neural substrate and underlying mechanisms of working memory in humans. Here, we review findings and insight from these brain stimulation studies about the contribution of brain regions, and particularly prefrontal cortex, to working memory.
Collapse
Affiliation(s)
- Zakia Z Haque
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ranshikha Samandra
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Farshad Alizadeh Mansouri
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,ARC Centre for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
7
|
Dimensional bias and adaptive adjustments in inhibitory control of monkeys. Anim Cogn 2021; 24:815-828. [PMID: 33554317 DOI: 10.1007/s10071-021-01483-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
Humans and macaque monkeys, performing a Wisconsin Card Sorting Test (WCST), show a significant behavioral bias to a particular sensory dimension (e.g. color or shape); however, lesions in prefrontal cortical regions do not abolish the dimensional biases in monkeys and, therefore, it has been proposed that these biases emerge in earlier stages of visual information processing. It remains unclear whether such dimensional biases are unique to the WCST, in which attention-shifting between dimensions are required, or affect other aspects of executive functions such as 'response inhibition' and 'error-induced behavioral adjustments'. To address this question, we trained six monkeys (Macaca mulatta) to perform a stop-signal task in which they had to inhibit their response when an instruction for inhibition was given by changing the color or shape of a visual stimulus. Stop Signal Reaction Time (SSRT) is an index of inhibitory processes. In all monkeys, SSRT was significantly shorter, and the probability of a successful inhibition was significantly higher, when a change in the shape dimension acted as the stop-cue. Humans show a response slowing following a failure in response inhibition and also adapt a proactive slowing after facing demands for response inhibition. We found such adaptive behavioral adjustments, with the same pattern, in monkeys' behavior; however, the dimensional bias did not modulate them. Our findings, showing dimensional bias in monkey, with the same pattern, in two different executive control tasks support the hypothesis that the bias to shape dimension emerges in early stages of visual information processing.
Collapse
|
8
|
|
9
|
Fehring DJ, Samandra R, Rosa MG, Mansouri FA. Negative Emotional Stimuli Enhance Conflict Resolution Without Altering Arousal. Front Hum Neurosci 2019; 13:282. [PMID: 31456675 PMCID: PMC6700260 DOI: 10.3389/fnhum.2019.00282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/30/2019] [Indexed: 01/19/2023] Open
Abstract
In our daily life, we frequently need to make decisions between competing behavioral options while we are exposed to various contextual factors containing emotional/social information. We examined how changes in emotional/arousal state influence resolving conflict between behavioral rules. Visual stimuli with emotional content (positive, negative and neutral) and music (High/Low tempo), which could potentially alter emotional/arousal states, were included in the task context while participants performed the Wisconsin Card Sorting Test (WCST). The WCST requires the application of abstract matching rules, to resolve conflict between competing behavioral options. We found that conflict influenced both accuracy and response time (RT) in implementing rules. Measuring event-related autonomic responses indicated that these behavioral effects were accompanied by concomitant alterations in arousal levels. Performance in the WCST was modulated by the emotional content of visual stimuli and appeared as a faster response and higher accuracy when trials commenced with negative emotional stimuli. These effects were dependent on the level of conflict but were not accompanied by changes in arousal levels. Here, we report that visual stimuli with emotional content influence conflict processing without trial-by-trial changes in arousal level. Our findings indicate intricate interactions between emotional context and various aspects of executive control such as conflict resolution and suggest that these interactions are not necessarily mediated through alterations in arousal level.
Collapse
Affiliation(s)
- Daniel J Fehring
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC, Australia
| | - Ranshikha Samandra
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Marcello G Rosa
- ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC, Australia.,Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, VIC, Australia
| | - Farshad A Mansouri
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC, Australia
| |
Collapse
|
10
|
Compared to outcome pressure, observation pressure produces differences in performance of N-back tasks: an ERP study. Neuroreport 2019; 30:771-775. [PMID: 31261239 DOI: 10.1097/wnr.0000000000001276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous studies have reported that observation pressure and outcome pressure impact working memory, but have not investigated whether they exert different effects on working memory. The neuronal activity in some brain areas encodes task-related information corresponding to working memory across delay periods. Therefore, changes in working memory under pressure can be further verified by exploring neuronal activity changes in brain areas under pressure. In this study, we used an N-back task and event-related potentials to explore whether the two types of pressure exert different effects on working memory. The electrophysiological results revealed that observation pressure-induced P1, P2 and late positive component amplitudes are significantly larger than corresponding outcome pressure-induced amplitudes, and the P3 amplitude induced by low-load working memory is significantly larger than that in the high-load condition. A possible explanation is that observation pressure increases attention focus, whereas outcome pressure increases attention dispersion, and a greater memory load results in more information that must be maintained and updated in working memory. These findings indicate that observation pressure and outcome pressure exert different effects on working memory.
Collapse
|
11
|
Zarei SA, Sheibani V, Mansouri FA. Interaction of music and emotional stimuli in modulating working memory in macaque monkeys. Am J Primatol 2019; 81:e22999. [DOI: 10.1002/ajp.22999] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/25/2019] [Accepted: 05/12/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Shahab A. Zarei
- Cognitive Neuroscience Laboratory, Kerman Neuroscience Research CenterInstitute of Neuropharmacology, Kerman University of Medical SciencesKerman Iran
| | - Vahid Sheibani
- Cognitive Neuroscience Laboratory, Kerman Neuroscience Research CenterInstitute of Neuropharmacology, Kerman University of Medical SciencesKerman Iran
- Cognitive Neuroscience Laboratory, Cognitive Neuroscience Research CentreKerman University of Medical SciencesKerman Iran
| | - Farshad A. Mansouri
- Cognitive Neuroscience Laboratory, Cognitive Neuroscience Research CentreKerman University of Medical SciencesKerman Iran
- Cognitive Neuroscience Laboratory, ARC Center of Excellence for Integrative Brain FunctionMonash UniversityClayton VIC Australia
| |
Collapse
|
12
|
Mansouri FA, Buckley MJ. Context-Dependent Adjustments in Executive Control of Goal-Directed Behaviour: Contribution of Frontal Brain Areas to Conflict-Induced Behavioural Adjustments in Primates. ADVANCES IN NEUROBIOLOGY 2019; 21:71-83. [PMID: 30334220 DOI: 10.1007/978-3-319-94593-4_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Psychophysical studies in humans indicate that the performance in various tasks is affected by contextual factors such as conflict level and error commission. It is generally believed that contextual factors influence the executive control processes and consequently modulate ongoing behaviour. Imaging studies suggest that dorsolateral prefrontal cortex and anterior cingulate cortex play crucial roles in mediating these context-dependent adjustments in executive control of behaviour. However, the underlying neuronal processes are to a great extent unknown. Recent studies in non-human primates indicate great similarities in conflict-induced behavioural adjustments between humans and macaque monkeys. Animal models have provided the opportunity to conduct various detailed neurobiological techniques to reveal the neural underpinning of conflict-induced behavioural modulations. In this chapter, we review the latest findings in humans and non-human primate models regarding the neural substrate and underlying mechanisms of conflict-dependent executive control adjustments.
Collapse
Affiliation(s)
- Farshad A Mansouri
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| | - Mark J Buckley
- Department of Experimental Psychology, Oxford University, Oxford, UK
| |
Collapse
|
13
|
Rosa MGP, Soares JGM, Chaplin TA, Majka P, Bakola S, Phillips KA, Reser DH, Gattass R. Cortical Afferents of Area 10 in Cebus Monkeys: Implications for the Evolution of the Frontal Pole. Cereb Cortex 2019; 29:1473-1495. [PMID: 29697775 PMCID: PMC6676977 DOI: 10.1093/cercor/bhy044] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/12/2018] [Accepted: 02/07/2018] [Indexed: 01/26/2023] Open
Abstract
Area 10, located in the frontal pole, is a unique specialization of the primate cortex. We studied the cortical connections of area 10 in the New World Cebus monkey, using injections of retrograde tracers in different parts of this area. We found that injections throughout area 10 labeled neurons in a consistent set of areas in the dorsolateral, ventrolateral, orbital, and medial parts of the frontal cortex, superior temporal association cortex, and posterior cingulate/retrosplenial region. However, sites on the midline surface of area 10 received more substantial projections from the temporal lobe, including clear auditory connections, whereas those in more lateral parts received >90% of their afferents from other frontal areas. This difference in anatomical connectivity reflects functional connectivity findings in the human brain. The pattern of connections in Cebus is very similar to that observed in the Old World macaque monkey, despite >40 million years of evolutionary separation, but lacks some of the connections reported in the more closely related but smaller marmoset monkey. These findings suggest that the clearer segregation observed in the human frontal pole reflects regional differences already present in early simian primates, and that overall brain mass influences the pattern of cortico-cortical connectivity.
Collapse
Affiliation(s)
- Marcello G P Rosa
- Department of Physiology, Monash University, Clayton, VIC, Australia
- Neuroscience Program, Biomedicine Research Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| | - Juliana G M Soares
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tristan A Chaplin
- Department of Physiology, Monash University, Clayton, VIC, Australia
- Neuroscience Program, Biomedicine Research Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| | - Piotr Majka
- Department of Physiology, Monash University, Clayton, VIC, Australia
- Neuroscience Program, Biomedicine Research Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
- Laboratory of Neuroinformatics, Department of Neurophysiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, Warsaw, Poland
| | - Sophia Bakola
- Department of Physiology, Monash University, Clayton, VIC, Australia
- Neuroscience Program, Biomedicine Research Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Kimberley A Phillips
- Department of Psychology, Trinity University, San Antonio, TX, USA
- USA Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - David H Reser
- Department of Physiology, Monash University, Clayton, VIC, Australia
- Neuroscience Program, Biomedicine Research Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
- Monash Rural Health, Monash University, Churchill, VIC, Australia
| | - Ricardo Gattass
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Abstract
In addition to the role of left frontotemporal areas in language processing, there is increasing evidence that language comprehension and production require cognitive control and working memory resources involving the left dorsolateral prefrontal cortex (DLPFC). The aim of this study was to investigate the role of the left DLPFC in both language comprehension and production. In a double-blind, sham-controlled crossover experiment, thirty-two participants received cathodal or sham transcranial direct current stimulation (tDCS) to the left DLPFC while performing a language comprehension and a language production task. Results showed that cathodal tDCS increases reaction times in the language comprehension task, but decreases naming latencies in the language production task. However, additional analyses revealed that the polarity of tDCS effects was highly correlated across tasks, implying differential individual susceptibility to the effect of tDCS within participants. Overall, our findings demonstrate that left DLPFC is part of the complex cortical network associated with language processing.
Collapse
Affiliation(s)
- Jana Klaus
- Radboud University, Nijmegen, The Netherlands.
| | | |
Collapse
|
15
|
Mansouri FA, Acevedo N, Illipparampil R, Fehring DJ, Fitzgerald PB, Jaberzadeh S. Interactive effects of music and prefrontal cortex stimulation in modulating response inhibition. Sci Rep 2017; 7:18096. [PMID: 29273796 PMCID: PMC5741740 DOI: 10.1038/s41598-017-18119-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 12/06/2017] [Indexed: 12/30/2022] Open
Abstract
Influential hypotheses propose that alterations in emotional state influence decision processes and executive control of behavior. Both music and transcranial direct current stimulation (tDCS) of prefrontal cortex affect emotional state, however interactive effects of music and tDCS on executive functions remain unknown. Learning to inhibit inappropriate responses is an important aspect of executive control which is guided by assessing the decision outcomes such as errors. We found that high-tempo music, but not low-tempo music or low-level noise, significantly influenced learning and implementation of inhibitory control. In addition, a brief period of tDCS over prefrontal cortex specifically interacted with high-tempo music and altered its effects on executive functions. Measuring event-related autonomic and arousal response of participants indicated that exposure to task demands and practice led to a decline in arousal response to the decision outcome and high-tempo music enhanced such practice-related processes. However, tDCS specifically moderated the high-tempo music effect on the arousal response to errors and concomitantly restored learning and improvement in executive functions. Here, we show that tDCS and music interactively influence the learning and implementation of inhibitory control. Our findings indicate that alterations in the arousal-emotional response to the decision outcome might underlie these interactive effects.
Collapse
Affiliation(s)
- Farshad Alizadeh Mansouri
- Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia. .,ARC Centre of Excellence in Integrative Brain Function, Monash University, Victoria, Australia.
| | - Nicola Acevedo
- Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia
| | - Rosin Illipparampil
- Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia
| | - Daniel J Fehring
- Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia.,ARC Centre of Excellence in Integrative Brain Function, Monash University, Victoria, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and the Alfred Hospital, Victoria, Australia
| | - Shapour Jaberzadeh
- Department of Physiotherapy, Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Monash University, Victoria, 3199, Australia
| |
Collapse
|
16
|
Mansouri FA, Koechlin E, Rosa MGP, Buckley MJ. Managing competing goals — a key role for the frontopolar cortex. Nat Rev Neurosci 2017; 18:645-657. [DOI: 10.1038/nrn.2017.111] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Anhydroecgonine Methyl Ester (AEME), a Product of Cocaine Pyrolysis, Impairs Spatial Working Memory and Induces Striatal Oxidative Stress in Rats. Neurotox Res 2017; 34:834-847. [DOI: 10.1007/s12640-017-9813-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/29/2017] [Accepted: 09/03/2017] [Indexed: 12/17/2022]
|
18
|
Funahashi S. Prefrontal Contribution to Decision-Making under Free-Choice Conditions. Front Neurosci 2017; 11:431. [PMID: 28798662 PMCID: PMC5526964 DOI: 10.3389/fnins.2017.00431] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/12/2017] [Indexed: 12/02/2022] Open
Abstract
Executive function is thought to be the coordinated operation of multiple neural processes and allows to accomplish a current goal flexibly. The most important function of the prefrontal cortex is the executive function. Among a variety of executive functions in which the prefrontal cortex participates, decision-making is one of the most important. Although the prefrontal contribution to decision-making has been examined using a variety of behavioral tasks, recent studies using fMRI have shown that the prefrontal cortex participates in decision-making under free-choice conditions. Since decision-making under free-choice conditions represents the very first stage for any kind of decision-making process, it is important that we understand its neural mechanism. Although few studies have examined this issue while a monkey performed a free-choice task, those studies showed that, when the monkey made a decision to subsequently choose one particular option, prefrontal neurons showing selectivity to that option exhibited transient activation just before presentation of the imperative cue. Further studies have suggested that this transient increase is caused by the irregular fluctuation of spontaneous firing just before cue presentation, which enhances the response to the cue and biases the strength of the neuron's selectivity to the option. In addition, this biasing effect was observed only in neurons that exhibited sustained delay-period activity, indicating that this biasing effect not only influences the animal's decision for an upcoming choice, but also is linked to working memory mechanisms in the prefrontal cortex.
Collapse
|
19
|
Christophel TB, Klink PC, Spitzer B, Roelfsema PR, Haynes JD. The Distributed Nature of Working Memory. Trends Cogn Sci 2017; 21:111-124. [PMID: 28063661 DOI: 10.1016/j.tics.2016.12.007] [Citation(s) in RCA: 443] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/03/2016] [Accepted: 12/07/2016] [Indexed: 12/25/2022]
Abstract
Studies in humans and non-human primates have provided evidence for storage of working memory contents in multiple regions ranging from sensory to parietal and prefrontal cortex. We discuss potential explanations for these distributed representations: (i) features in sensory regions versus prefrontal cortex differ in the level of abstractness and generalizability; and (ii) features in prefrontal cortex reflect representations that are transformed for guidance of upcoming behavioral actions. We propose that the propensity to produce persistent activity is a general feature of cortical networks. Future studies may have to shift focus from asking where working memory can be observed in the brain to how a range of specialized brain areas together transform sensory information into a delayed behavioral response.
Collapse
Affiliation(s)
- Thomas B Christophel
- Bernstein Center for Computational Neuroscience, Charité Universitätsmedizin, Berlin, Germany; Berlin Center for Advanced Neuroimaging, Charité Universitätsmedizin, Berlin, Germany; Clinic for Neurology, Charité Universitätsmedizin, Berlin, Germany.
| | - P Christiaan Klink
- Department of Neuromodulation & Behaviour, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Department of Vision & Cognition, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bernhard Spitzer
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Pieter R Roelfsema
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
| | - John-Dylan Haynes
- Bernstein Center for Computational Neuroscience, Charité Universitätsmedizin, Berlin, Germany; Berlin Center for Advanced Neuroimaging, Charité Universitätsmedizin, Berlin, Germany; Clinic for Neurology, Charité Universitätsmedizin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt Universität, Berlin, Germany; Cluster of Excellence NeuroCure, Charité Universitätsmedizin, Berlin, Germany; Department of Psychology, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
20
|
Mansouri FA, Egner T, Buckley MJ. Monitoring Demands for Executive Control: Shared Functions between Human and Nonhuman Primates. Trends Neurosci 2017; 40:15-27. [DOI: 10.1016/j.tins.2016.11.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/02/2016] [Accepted: 11/09/2016] [Indexed: 12/30/2022]
|
21
|
Kang J, Shin JW, Kim YR, Swanberg KM, Kim Y, Bae JR, Kim YK, Lee J, Kim SY, Sohn NW, Maeng S. Nobiletin improves emotional and novelty recognition memory but not spatial referential memory. J Nat Med 2016; 71:181-189. [DOI: 10.1007/s11418-016-1047-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/19/2016] [Indexed: 12/28/2022]
|
22
|
Overdrinking, swallowing inhibition, and regional brain responses prior to swallowing. Proc Natl Acad Sci U S A 2016; 113:12274-12279. [PMID: 27791015 DOI: 10.1073/pnas.1613929113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In humans, drinking replenishes fluid loss and satiates the sensation of thirst that accompanies dehydration. Typically, the volume of water drunk in response to thirst matches the deficit. Exactly how this accurate metering is achieved is unknown; recent evidence implicates swallowing inhibition as a potential factor. Using fMRI, this study investigated whether swallowing inhibition is present after more water has been drunk than is necessary to restore fluid balance within the body. This proposal was tested using ratings of swallowing effort and measuring regional brain responses as participants prepared to swallow small volumes of liquid while they were thirsty and after they had overdrunk. Effort ratings provided unequivocal support for swallowing inhibition, with a threefold increase in effort after overdrinking, whereas addition of 8% (wt/vol) sucrose to water had minimal effect on effort before or after overdrinking. Regional brain responses when participants prepared to swallow showed increases in the motor cortex, prefrontal cortices, posterior parietal cortex, striatum, and thalamus after overdrinking, relative to thirst. Ratings of swallowing effort were correlated with activity in the right prefrontal cortex and pontine regions in the brainstem; no brain regions showed correlated activity with pleasantness ratings. These findings are all consistent with the presence of swallowing inhibition after excess water has been drunk. We conclude that swallowing inhibition is an important mechanism in the overall regulation of fluid intake in humans.
Collapse
|
23
|
Mansouri FA, Fehring DJ, Feizpour A, Gaillard A, Rosa MG, Rajan R, Jaberzadeh S. Direct current stimulation of prefrontal cortex modulates error-induced behavioral adjustments. Eur J Neurosci 2016; 44:1856-69. [DOI: 10.1111/ejn.13281] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/11/2016] [Accepted: 05/17/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Farshad A. Mansouri
- Department of Physiology and Biomedicine Discovery Institute; Monash University; Clayton Melbourne Vic. 3800 Australia
- ARC Centre of Excellence in Integrative Brain Function; Monash University; Clayton, Melbourne Vic. Australia
| | - Daniel J. Fehring
- Department of Physiology and Biomedicine Discovery Institute; Monash University; Clayton Melbourne Vic. 3800 Australia
| | - Azadeh Feizpour
- Department of Physiology and Biomedicine Discovery Institute; Monash University; Clayton Melbourne Vic. 3800 Australia
| | - Alexandra Gaillard
- Department of Physiology and Biomedicine Discovery Institute; Monash University; Clayton Melbourne Vic. 3800 Australia
| | - Marcello G.P. Rosa
- Department of Physiology and Biomedicine Discovery Institute; Monash University; Clayton Melbourne Vic. 3800 Australia
- ARC Centre of Excellence in Integrative Brain Function; Monash University; Clayton, Melbourne Vic. Australia
| | - Ramesh Rajan
- Department of Physiology and Biomedicine Discovery Institute; Monash University; Clayton Melbourne Vic. 3800 Australia
- ARC Centre of Excellence in Integrative Brain Function; Monash University; Clayton, Melbourne Vic. Australia
| | - Shapour Jaberzadeh
- Non-invasive Brain Stimulation & Neuroplasticity Laboratory; Department of Physiotherapy; Monash University; Clayton, Melbourne Vic. Australia
| |
Collapse
|
24
|
Meister H, Schreitmüller S, Ortmann M, Rählmann S, Walger M. Effects of Hearing Loss and Cognitive Load on Speech Recognition with Competing Talkers. Front Psychol 2016; 7:301. [PMID: 26973585 PMCID: PMC4777916 DOI: 10.3389/fpsyg.2016.00301] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/16/2016] [Indexed: 12/30/2022] Open
Abstract
Everyday communication frequently comprises situations with more than one talker speaking at a time. These situations are challenging since they pose high attentional and memory demands placing cognitive load on the listener. Hearing impairment additionally exacerbates communication problems under these circumstances. We examined the effects of hearing loss and attention tasks on speech recognition with competing talkers in older adults with and without hearing impairment. We hypothesized that hearing loss would affect word identification, talker separation and word recall and that the difficulties experienced by the hearing impaired listeners would be especially pronounced in a task with high attentional and memory demands. Two listener groups closely matched for their age and neuropsychological profile but differing in hearing acuity were examined regarding their speech recognition with competing talkers in two different tasks. One task required repeating back words from one target talker (1TT) while ignoring the competing talker whereas the other required repeating back words from both talkers (2TT). The competing talkers differed with respect to their voice characteristics. Moreover, sentences either with low or high context were used in order to consider linguistic properties. Compared to their normal hearing peers, listeners with hearing loss revealed limited speech recognition in both tasks. Their difficulties were especially pronounced in the more demanding 2TT task. In order to shed light on the underlying mechanisms, different error sources, namely having misunderstood, confused, or omitted words were investigated. Misunderstanding and omitting words were more frequently observed in the hearing impaired than in the normal hearing listeners. In line with common speech perception models, it is suggested that these effects are related to impaired object formation and taxed working memory capacity (WMC). In a post-hoc analysis, the listeners were further separated with respect to their WMC. It appeared that higher capacity could be used in the sense of a compensatory mechanism with respect to the adverse effects of hearing loss, especially with low context speech.
Collapse
Affiliation(s)
- Hartmut Meister
- Jean-Uhrmacher-Institute for Clinical ENT-Research, University of Cologne Cologne, Germany
| | - Stefan Schreitmüller
- Jean-Uhrmacher-Institute for Clinical ENT-Research, University of Cologne Cologne, Germany
| | - Magdalene Ortmann
- Jean-Uhrmacher-Institute for Clinical ENT-Research, University of Cologne Cologne, Germany
| | - Sebastian Rählmann
- Jean-Uhrmacher-Institute for Clinical ENT-Research, University of Cologne Cologne, Germany
| | - Martin Walger
- Clinic of Otorhinolaryngology, Head and Neck Surgery, University of Cologne Cologne, Germany
| |
Collapse
|
25
|
Mansouri FA, Fehring DJ, Gaillard A, Jaberzadeh S, Parkington H. Sex dependency of inhibitory control functions. Biol Sex Differ 2016; 7:11. [PMID: 26862388 PMCID: PMC4746892 DOI: 10.1186/s13293-016-0065-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/03/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Inhibition of irrelevant responses is an important aspect of cognitive control of a goal-directed behavior. Females and males show different levels of susceptibility to neuropsychological disorders such as impulsive behavior and addiction, which might be related to differences in inhibitory brain functions. METHODS We examined the effects of 'practice to inhibit', as a model of rehabilitation approach, and 'music', as a salient contextual factor in influencing cognition, on the ability of females and males to perform a stop-signal task that required inhibition of initiated or planned responses. In go trials, the participants had to rapidly respond to a directional go cue within a limited time window. In stop trials, which were presented less frequently, a stop signal appeared immediately after the go-direction cue and the participants had to stop their responses. RESULTS We found a significant difference between females and males in benefiting from practice in the stop-signal task: the percentage of correct responses in the go trials increased, and the ability to inhibit responses significantly improved, after practice in females. While listening to music, females became faster but males became slower in responding to the go trials. Both females and males became slower in performing the go trials following an error in the stop trials; however, music significantly affected this post-error slowing depending on the sex. Listening to music decreased post-error slowing in females but had an opposite effect in males. CONCLUSIONC Here, we show a significant difference in executive control functions and their modulation by contextual factors between females and males that might have implications for the differences in their propensity for particular neuropsychological disorders and related rehabilitation approaches.
Collapse
Affiliation(s)
- Farshad A. Mansouri
- />Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Victoria, 3800 Australia
- />ARC Centre of Excellence in Integrative Brain Function, Monash University, Victoria, Australia
| | - Daniel J. Fehring
- />Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Victoria, 3800 Australia
| | - Alexandra Gaillard
- />Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Victoria, 3800 Australia
| | - Shapour Jaberzadeh
- />Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Department of Physiotherapy, Monash University, Victoria, 3800 Australia
| | - Helena Parkington
- />Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Victoria, 3800 Australia
| |
Collapse
|