1
|
Kelsey C, Kamenetskiy A, Mulligan K, Tiras C, Kent M, Bayet L, Richards J, Enlow MB, Nelson CA. Forming Connections: Functional Brain Connectivity is Associated With Executive Functioning Abilities in Early Childhood. Dev Sci 2025; 28:e13604. [PMID: 39740229 PMCID: PMC11753531 DOI: 10.1111/desc.13604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 01/02/2025]
Abstract
Functional magnetic resonance imaging (fMRI) studies with adults provide evidence that functional brain networks, including the default mode network and frontoparietal network, underlie executive functioning (EF). However, given the challenges of using fMRI with infants and young children, little work has assessed the developmental trajectories of these networks or their associations with EF at key developmental stages. More recently, functional near-infrared spectroscopy (fNIRS) has emerged as a promising neuroimaging tool which can provide information on cortical functional networks and can be more easily implemented with young children. Children (N = 207; n = 116 male; n = 167 White) had fNIRS data recorded at infancy, 3, 5, and 7 years of age while watching a 2-min nonsocial video. At 3, 5, and 7 years, children completed behavioral assessments and parents completed questionnaires to assess child EF abilities. Results showed that, although early functional brain network connectivity was not associated with later functional brain connectivity, EF was concurrently and longitudinally associated with functional connectivity levels in both networks. Overall, these results inform the understanding of early emerging neural underpinnings of regulatory abilities and point to considerable change in the composition of functional brain networks and a conservation of function across development.
Collapse
Affiliation(s)
- Caroline Kelsey
- Department of Pediatrics, Division of Developmental Medicine, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Adelia Kamenetskiy
- Department of Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Boston, MA, United States
| | - Kaitlin Mulligan
- Department of Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Boston, MA, United States
| | - Carly Tiras
- Department of Pediatrics, Division of Developmental Medicine, Boston Children’s Hospital, Boston, MA, United States
| | - Michaela Kent
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Laurie Bayet
- Department of Neuroscience, American University, Washington, DC, United States
| | - John Richards
- Department of Psychology, University of South Carolina, Columbia, SC, United States
| | - Michelle Bosquet Enlow
- Department of Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Charles A. Nelson
- Department of Pediatrics, Division of Developmental Medicine, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Harvard Graduate School of Education, Cambridge, MA, United States
| |
Collapse
|
2
|
Abstract
In the last decade, advances in neuroimaging technologies have given rise to a large number of research studies that investigate the neural underpinnings of executive function (EF). EF has long been associated with the prefrontal cortex (PFC) and involves both a unified, general element, as well as the distinct, separable elements of working memory, inhibitory control and set shifting. We will highlight the value of utilising advances in neuroimaging techniques to uncover answers to some of the most pressing questions in the field of early EF development. First, this review will explore the development and neural substrates of each element of EF. Second, the structural, anatomical and biochemical changes that occur in the PFC during infancy and throughout childhood will be examined, in order to address the importance of these changes for the development of EF. Third, the importance of connectivity between regions of the PFC and other brain areas in EF development is reviewed. Finally, throughout this review more recent developments in neuroimaging techniques will be addressed, alongside the implications for further elucidating the neural substrates of early EF development in the future.
Collapse
Affiliation(s)
- Abigail Fiske
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Karla Holmboe
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Fitch A, Smith H, Guillory SB, Kaldy Z. Off to a Good Start: The Early Development of the Neural Substrates Underlying Visual Working Memory. Front Syst Neurosci 2016; 10:68. [PMID: 27587999 PMCID: PMC4989029 DOI: 10.3389/fnsys.2016.00068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 08/02/2016] [Indexed: 12/15/2022] Open
Abstract
Current neuroscientific models describe the functional neural architecture of visual working memory (VWM) as an interaction of the frontal-parietal control network and more posterior areas in the ventral visual stream (Jonides et al., 2008; D'Esposito and Postle, 2015; Eriksson et al., 2015). These models are primarily based on adult neuroimaging studies. However, VWM undergoes significant development in infancy and early childhood, and the goal of this mini-review is to examine how recent findings from neuroscientific studies of early VWM development can be reconciled with this model. We surveyed 29 recent empirical reports that present neuroimaging findings in infants, toddlers, and preschoolers (using EEG, fNIRS, rs-fMRI) and neonatal lesion studies in non-human primates. We conclude that (1) both the frontal-parietal control network and the posterior cortical storage areas are active from early infancy; (2) this system undergoes focalization and some reorganization during early development; (3) and the MTL plays a significant role in this process as well. Motivated by both theoretical and methodological considerations, we offer some recommendations for future directions for the field.
Collapse
Affiliation(s)
- Allison Fitch
- Department of Psychology, University of Massachusetts Boston Boston, MA, USA
| | - Hayley Smith
- Department of Psychology, University of Massachusetts Boston Boston, MA, USA
| | - Sylvia B Guillory
- Department of Psychology, University of Massachusetts Boston Boston, MA, USA
| | - Zsuzsa Kaldy
- Department of Psychology, University of Massachusetts Boston Boston, MA, USA
| |
Collapse
|