1
|
Miller WB, Baluška F, Reber AS, Slijepčević P. Biological mechanisms contradict AI consciousness: The spaces between the notes. Biosystems 2025; 247:105387. [PMID: 39736318 DOI: 10.1016/j.biosystems.2024.105387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
The presumption that experiential consciousness requires a nervous system and brain has been central to the debate on the possibility of developing a conscious form of artificial intelligence (AI). The likelihood of future AI consciousness or devising tools to assess its presence has focused on how AI might mimic brain-centered activities. Currently, dual general assumptions prevail: AI consciousness is primarily an issue of functional information density and integration, and no substantive technical barriers exist to prevent its achievement. When the cognitive process that underpins consciousness is stipulated as a cellular attribute, these premises are directly contradicted. The innate characteristics of biological information and how that information is managed by individual cells have no parallels within machine-based AI systems. Any assertion of computer-based AI consciousness represents a fundamental misapprehension of these crucial differences.
Collapse
Affiliation(s)
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Germany.
| | - Arthur S Reber
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | - Predrag Slijepčević
- Department of Life Sciences, College of Health, Medicine and Life Sciences, University of Brunel, UK.
| |
Collapse
|
2
|
Mougkogiannis P, Adamatzky A. On Effect of Chloroform on Electrical Activity of Proteinoids. Biomimetics (Basel) 2024; 9:380. [PMID: 39056821 PMCID: PMC11275190 DOI: 10.3390/biomimetics9070380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Proteinoids, or thermal proteins, produce hollow microspheres in aqueous solutions. Ensembles of the microspheres produce endogenous spikes of electrical activity, similar to that of neurons. To make the first step toward the evaluation of the mechanisms of such electrical behaviour, we decided to expose proteinoids to chloroform. We found that while chloroform does not inhibit the electrical oscillations of proteinoids, it causes substantial changes in the patterns of electrical activity. Namely, incremental chloroform exposure strongly affects proteinoid microsphere electrical activity across multiple metrics. As chloroform levels rise, the spike potential drops from 0.9 mV under control conditions to 0.1 mV at 25 mg/mL. This progressive spike potential decrease suggests chloroform suppresses proteinoid electrical activity. The time between spikes, the interspike period, follows a similar pattern. Minimal chloroform exposure does not change the average interspike period, while higher exposures do. It drops from 23.2 min under control experiments to 3.8 min at 25 mg/mL chloroform, indicating increased frequency of the electrical activity. These findings might lead to a deeper understanding of the electrical activity of proteinoids and their potential application in the domain of bioelectronics.
Collapse
|
3
|
Pio-Lopez L, Bischof J, LaPalme JV, Levin M. The scaling of goals from cellular to anatomical homeostasis: an evolutionary simulation, experiment and analysis. Interface Focus 2023; 13:20220072. [PMID: 37065270 PMCID: PMC10102734 DOI: 10.1098/rsfs.2022.0072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/02/2023] [Indexed: 04/18/2023] Open
Abstract
Complex living agents consist of cells, which are themselves competent sub-agents navigating physiological and metabolic spaces. Behaviour science, evolutionary developmental biology and the field of machine intelligence all seek to understand the scaling of biological cognition: what enables individual cells to integrate their activities to result in the emergence of a novel, higher-level intelligence with large-scale goals and competencies that belong to it and not to its parts? Here, we report the results of simulations based on the TAME framework, which proposes that evolution pivoted the collective intelligence of cells during morphogenesis of the body into traditional behavioural intelligence by scaling up homeostatic competencies of cells in metabolic space. In this article, we created a minimal in silico system (two-dimensional neural cellular automata) and tested the hypothesis that evolutionary dynamics are sufficient for low-level setpoints of metabolic homeostasis in individual cells to scale up to tissue-level emergent behaviour. Our system showed the evolution of the much more complex setpoints of cell collectives (tissues) that solve a problem in morphospace: the organization of a body-wide positional information axis (the classic French flag problem in developmental biology). We found that these emergent morphogenetic agents exhibit a number of predicted features, including the use of stress propagation dynamics to achieve the target morphology as well as the ability to recover from perturbation (robustness) and long-term stability (even though neither of these was directly selected for). Moreover, we observed an unexpected behaviour of sudden remodelling long after the system stabilizes. We tested this prediction in a biological system-regenerating planaria-and observed a very similar phenomenon. We propose that this system is a first step towards a quantitative understanding of how evolution scales minimal goal-directed behaviour (homeostatic loops) into higher-level problem-solving agents in morphogenetic and other spaces.
Collapse
Affiliation(s)
- Léo Pio-Lopez
- Allen Discovery Center, Tufts University, Medford, MA, USA
| | | | | | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
4
|
Yurchenko SB. A systematic approach to brain dynamics: cognitive evolution theory of consciousness. Cogn Neurodyn 2023; 17:575-603. [PMID: 37265655 PMCID: PMC10229528 DOI: 10.1007/s11571-022-09863-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 12/18/2022] Open
Abstract
The brain integrates volition, cognition, and consciousness seamlessly over three hierarchical (scale-dependent) levels of neural activity for their emergence: a causal or 'hard' level, a computational (unconscious) or 'soft' level, and a phenomenal (conscious) or 'psyche' level respectively. The cognitive evolution theory (CET) is based on three general prerequisites: physicalism, dynamism, and emergentism, which entail five consequences about the nature of consciousness: discreteness, passivity, uniqueness, integrity, and graduation. CET starts from the assumption that brains should have primarily evolved as volitional subsystems of organisms, not as prediction machines. This emphasizes the dynamical nature of consciousness in terms of critical dynamics to account for metastability, avalanches, and self-organized criticality of brain processes, then coupling it with volition and cognition in a framework unified over the levels. Consciousness emerges near critical points, and unfolds as a discrete stream of momentary states, each volitionally driven from oldest subcortical arousal systems. The stream is the brain's way of making a difference via predictive (Bayesian) processing. Its objective observables could be complexity measures reflecting levels of consciousness and its dynamical coherency to reveal how much knowledge (information gain) the brain acquires over the stream. CET also proposes a quantitative classification of both disorders of consciousness and mental disorders within that unified framework.
Collapse
|
5
|
Torday JS. Cellular evolution of language. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 167:140-146. [PMID: 34102232 DOI: 10.1016/j.pbiomolbio.2021.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 05/22/2021] [Accepted: 05/31/2021] [Indexed: 11/26/2022]
Abstract
The evolutionary origin of language remains unknown despite many efforts to determine the origin of this signature human trait. Based on epigenetic inheritance, the current article hypothesizes that language evolved from cell-cell communication as the basis for generating structure and function embryologically and phylogenetically, as did all physiologic traits. Beginning with lipids forming the first micelle, a vertical integration of the evolved properties of the cell, from multicellular organisms to the introduction of cholesterol into the cell membrane, to the evolution of the peroxisome, the water-land transition and duplication of the βAdrenergic Receptor, the evolution of endothermy, leading to bipedalism, freeing the forelimbs for toolmaking and language, selection pressure for myelinization of the central nervous system to facilitate calcium flux, bespeaks human expression, culminating in the evolution of civilization. This process is epitomized by the Area of Broca as the structural-functional site for both motor control and language formation. The mechanistic interrelationship between motor control and language formation is underscored by the role of FoxP2 gene expression in both bipedalism and language. The effect of endothermy on bipedalism, freeing the forelimbs for toolmaking and language as the vertical integration from Cosmology to Physiology as the basis for language bespeaks human expression.
Collapse
Affiliation(s)
- John S Torday
- Pediatrics, Obstetrics and Gynecology, Evolutionary Medicine, David Geffen School of Medicine, University of California, Los Angeles, Westwood, CA, USA.
| |
Collapse
|
6
|
Life, death, and self: Fundamental questions of primitive cognition viewed through the lens of body plasticity and synthetic organisms. Biochem Biophys Res Commun 2020; 564:114-133. [PMID: 33162026 DOI: 10.1016/j.bbrc.2020.10.077] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022]
Abstract
Central to the study of cognition is being able to specify the Subject that is making decisions and owning memories and preferences. However, all real cognitive agents are made of parts (such as brains made of cells). The integration of many active subunits into a coherent Self appearing at a larger scale of organization is one of the fundamental questions of evolutionary cognitive science. Typical biological model systems, whether basal or advanced, have a static anatomical structure which obscures important aspects of the mind-body relationship. Recent advances in bioengineering now make it possible to assemble, disassemble, and recombine biological structures at the cell, organ, and whole organism levels. Regenerative biology and controlled chimerism reveal that studies of cognition in intact, "standard", evolved animal bodies are just a narrow slice of a much bigger and as-yet largely unexplored reality: the incredible plasticity of dynamic morphogenesis of biological forms that house and support diverse types of cognition. The ability to produce living organisms in novel configurations makes clear that traditional concepts, such as body, organism, genetic lineage, death, and memory are not as well-defined as commonly thought, and need considerable revision to account for the possible spectrum of living entities. Here, I review fascinating examples of experimental biology illustrating that the boundaries demarcating somatic and cognitive Selves are fluid, providing an opportunity to sharpen inquiries about how evolution exploits physical forces for multi-scale cognition. Developmental (pre-neural) bioelectricity contributes a novel perspective on how the dynamic control of growth and form of the body evolved into sophisticated cognitive capabilities. Most importantly, the development of functional biobots - synthetic living machines with behavioral capacity - provides a roadmap for greatly expanding our understanding of the origin and capacities of cognition in all of its possible material implementations, especially those that emerge de novo, with no lengthy evolutionary history of matching behavioral programs to bodyplan. Viewing fundamental questions through the lens of new, constructed living forms will have diverse impacts, not only in basic evolutionary biology and cognitive science, but also in regenerative medicine of the brain and in artificial intelligence.
Collapse
|
7
|
Perez Velazquez JL, Mateos DM, Guevara Erra R. On a Simple General Principle of Brain Organization. Front Neurosci 2019; 13:1106. [PMID: 31680839 PMCID: PMC6804438 DOI: 10.3389/fnins.2019.01106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/01/2019] [Indexed: 12/27/2022] Open
Abstract
A possible framework to characterize nervous system dynamics and its organization in conscious and unconscious states is introduced, derived from a high level perspective on the coordinated activity of brain cell ensembles. Some questions are best addressable in a global framework and here we build on past observations about the structure of configurations of brain networks in conscious and unconscious states and about neurophysiological results. Aiming to bind some results together into some sort of coherence with a central theme, the scenario that emerges underscores the crucial importance of the creation and dissipation of energy gradients in brain cellular ensembles resulting in maximization of the configurations in the functional connectivity among those networks that favor conscious awareness and healthy conditions. These considerations are then applied to indicate approaches that can be used to improve neuropathological syndromes.
Collapse
Affiliation(s)
| | - Diego M. Mateos
- Instituto de Matemática Aplicada del Litoral–CONICET–UNL, CCT CONICET, Santa Fe, Argentina
- Facultad de Ciencia y Tecnología, Universidad Autónoma de Entre Ríos, Entre Ríos, Argentina
| | - Ramon Guevara Erra
- Laboratoire Psychologie de la Perception, CNRS and Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
8
|
Torday JS. The Singularity of nature. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 142:23-31. [DOI: 10.1016/j.pbiomolbio.2018.07.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022]
|
9
|
Biological evolution as defense of 'self'. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 142:54-74. [PMID: 30336184 DOI: 10.1016/j.pbiomolbio.2018.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/27/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023]
Abstract
Although the origin of self-referential consciousness is unknown, it can be argued that the instantiation of self-reference was the commencement of the living state as phenomenal experientiality. As self-referential cognition is demonstrated by all living organisms, life can be equated with the sustenance of cellular homeostasis in the continuous defense of 'self'. It is proposed that the epicenter of 'self' is perpetually embodied within the basic cellular form in which it was instantiated. Cognition-Based Evolution argues that all of biological and evolutionary development represents the perpetual autopoietic defense of self-referential basal cellular states of homeostatic preference. The means by which these states are attained and maintained is through self-referential measurement of information and its communication. The multicellular forms, either as biofilms or holobionts, represent the cellular attempt to achieve maximum states of informational distinction and energy efficiency through individual and collective means. In this frame, consciousness, self-consciousness and intelligence can be identified as forms of collective cellular phenotype directed towards the defense of fundamental cellular self-reference.
Collapse
|
10
|
Torday J. Quantum Mechanics predicts evolutionary biology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 135:11-15. [DOI: 10.1016/j.pbiomolbio.2018.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 01/14/2023]
|
11
|
Four domains: The fundamental unicell and Post-Darwinian Cognition-Based Evolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 140:49-73. [PMID: 29685747 DOI: 10.1016/j.pbiomolbio.2018.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023]
Abstract
Contemporary research supports the viewpoint that self-referential cognition is the proper definition of life. From that initiating platform, a cohesive alternative evolutionary narrative distinct from standard Neodarwinism can be presented. Cognition-Based Evolution contends that biological variation is a product of a self-reinforcing information cycle that derives from self-referential attachment to biological information space-time with its attendant ambiguities. That information cycle is embodied through obligatory linkages among energy, biological information, and communication. Successive reiterations of the information cycle enact the informational architectures of the basic unicellular forms. From that base, inter-domain and cell-cell communications enable genetic and cellular variations through self-referential natural informational engineering and cellular niche construction. Holobionts are the exclusive endpoints of that self-referential cellular engineering as obligatory multicellular combinations of the essential Four Domains: Prokaryota, Archaea, Eukaryota and the Virome. Therefore, it is advocated that these Four Domains represent the perpetual object of the living circumstance rather than the visible macroorganic forms. In consequence, biology and its evolutionary development can be appraised as the continual defense of instantiated cellular self-reference. As the survival of cells is as dependent upon limitations and boundaries as upon any freedom of action, it is proposed that selection represents only one of many forms of cellular constraint that sustain self-referential integrity.
Collapse
|
12
|
Abstract
The common relationships among a great variety of biological phenomena seem enigmatic when considered solely at the level of the phenotype. The deep connections in physiology, for example, between the effects of maternal food restriction in utero and the subsequent incidence of metabolic syndrome in offspring, the effects of microgravity on cell polarity and reproduction in yeast, stress effects on jellyfish, and their endless longevity, or the relationship between nutrient abundance and the colonial form in slime molds, are not apparent by phenotypic observation. Yet all of these phenomena are ultimately determined by the Target of Rapamycin (TOR) gene and its associated signaling complexes. In the same manner, the unfolding of evolutionary physiology can be explained by a comparable application of the common principle of cell-cell signaling extending across complex developmental and phylogenetic traits. It is asserted that a critical set of physiologic and phenotypic adaptations emanated from a few crucial, ancestral receptor gene duplications that enabled the successful terrestrial transition of vertebrates from water to land. In combination, mTor and its cognate receptors and a few crucial genetic duplications provide a mechanistic common denominator across a diverse spectrum of biological responses. The proper understanding of their purpose yields a unified concept of physiology and its evolutionary development. © 2018 American Physiological Society. Compr Physiol 8:761-771, 2018.
Collapse
Affiliation(s)
- John S Torday
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California, USA
| | | |
Collapse
|
13
|
Torday JS. From cholesterol to consciousness. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 132:52-56. [PMID: 28830682 DOI: 10.1016/j.pbiomolbio.2017.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 11/29/2022]
Abstract
The nature of consciousness has been debated for centuries. It can be understood as part and parcel of the natural progression of life from unicellular to multicellular, calcium fluxes mediating communication within and between cells. Consciousness is the vertical integration of calcium fluxes, mediated by the Target of Rapamycin gene integrated with the cytoskeleton. The premise of this paper is that there is a fundamental physiologic integration of the organism with the environment that constitutes consciousness.
Collapse
Affiliation(s)
- John S Torday
- Department of Pediatrics, Harbor-UCLA Medical Center, 1124 W.Carson Street, Torrance, CA 90502-2006, United States.
| |
Collapse
|
14
|
Torday JS, Miller WB. The resolution of ambiguity as the basis for life: A cellular bridge between Western reductionism and Eastern holism. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 131:288-297. [PMID: 28743585 DOI: 10.1016/j.pbiomolbio.2017.07.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/12/2017] [Accepted: 07/21/2017] [Indexed: 01/08/2023]
Abstract
Boundary conditions enable cellular life through negentropy, chemiosmosis, and homeostasis as identifiable First Principles of Physiology. Self-referential awareness of status arises from this organized state to sustain homeostatic imperatives. Preferred homeostatic status is dependent upon the appraisal of information and its communication. However, among living entities, sources of information and their dissemination are always imprecise. Consequently, living systems exist within an innate state of ambiguity. It is presented that cellular life and evolutionary development are a self-organizing cellular response to uncertainty in iterative conformity with its basal initiating parameters. Viewing the life circumstance in this manner permits a reasoned unification between Western rational reductionism and Eastern holism.
Collapse
Affiliation(s)
- John S Torday
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA 90502, USA.
| | | |
Collapse
|
15
|
Torday JS, Miller WB. A systems approach to physiologic evolution: From micelles to consciousness. J Cell Physiol 2017; 233:162-167. [PMID: 28112403 DOI: 10.1002/jcp.25820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 01/08/2023]
Abstract
A systems approach to evolutionary biology offers the promise of an improved understanding of the fundamental principles of life through the effective integration of many biologic disciplines. It is presented that any critical integrative approach to evolutionary development involves a paradigmatic shift in perspective, more than just the engagement of a large number of disciplines. Critical to this differing viewpoint is the recognition that all biological processes originate from the unicellular state and remain permanently anchored to that phase throughout evolutionary development despite their macroscopic appearances. Multicellular eukaryotic development can, therefore, be viewed as a series of connected responses to epiphenomena that proceeds from that base in continuous iterative maintenance of collective cellular homeostatic equipoise juxtaposed against an ever-changing and challenging environment. By following this trajectory of multicellular eukaryotic evolution from within unicellular First Principles of Physiology forward, the mechanistic nature of complex physiology can be identified through a step-wise analysis of a continuous arc of vertebrate evolution based upon serial exaptations.
Collapse
Affiliation(s)
- John S Torday
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California
| | | |
Collapse
|
16
|
Miller WB, Torday JS. A systematic approach to cancer: evolution beyond selection. Clin Transl Med 2017; 6:2. [PMID: 28050778 PMCID: PMC5209328 DOI: 10.1186/s40169-016-0131-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/12/2016] [Indexed: 12/20/2022] Open
Abstract
Cancer is typically scrutinized as a pathological process characterized by chromosomal aberrations and clonal expansion subject to stochastic Darwinian selection within adaptive cellular ecosystems. Cognition based evolution is suggested as an alternative approach to cancer development and progression in which neoplastic cells of differing karyotypes and cellular lineages are assessed as self-referential agencies with purposive participation within tissue microenvironments. As distinct self-aware entities, neoplastic cells occupy unique participant/observer status within tissue ecologies. In consequence, neoplastic proliferation by clonal lineages is enhanced by the advantaged utilization of ecological resources through flexible re-connection with progenitor evolutionary stages.
Collapse
Affiliation(s)
| | - John S Torday
- Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| |
Collapse
|
17
|
Abstract
This article reviews thermodynamic relationships in the brain in an attempt to consolidate current research in systems neuroscience. The present synthesis supports proposals that thermodynamic information in the brain can be quantified to an appreciable degree of objectivity, that many qualitative properties of information in systems of the brain can be inferred by observing changes in thermodynamic quantities, and that many features of the brain's anatomy and architecture illustrate relatively simple information-energy relationships. The brain may provide a unique window into the relationship between energy and information.
Collapse
Affiliation(s)
- Sterling Street
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of Georgia, AthensGA, USA
| |
Collapse
|