1
|
Jaeckel ER, Herrera YN, Schulz S, Birdsong WT. Chronic Morphine Induces Adaptations in Opioid Receptor Signaling in a Thalamostriatal Circuit That Are Location Dependent, Sex Specific, and Regulated by μ-Opioid Receptor Phosphorylation. J Neurosci 2024; 44:e0293232023. [PMID: 37985179 PMCID: PMC10860620 DOI: 10.1523/jneurosci.0293-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023] Open
Abstract
Chronic opioid exposure induces tolerance to the pain-relieving effects of opioids but sensitization to some other effects. While the occurrence of these adaptations is well understood, the underlying cellular mechanisms are less clear. This study aimed to determine how chronic treatment with morphine, a prototypical opioid agonist, induced adaptations to subsequent morphine signaling in different subcellular contexts. Opioids acutely inhibit glutamatergic transmission from medial thalamic (MThal) inputs to the dorsomedial striatum (DMS) via activity at μ-opioid receptors (MORs). MORs are present in somatic and presynaptic compartments of MThal neurons terminating in the DMS. We investigated the effects of chronic morphine treatment on subsequent morphine signaling at MThal-DMS synapses and MThal cell bodies in male and female mice. Surprisingly, chronic morphine treatment increased subsequent morphine inhibition of MThal-DMS synaptic transmission (morphine facilitation) in male, but not female, mice. At MThal cell bodies, chronic morphine treatment decreased subsequent morphine activation of potassium conductance (morphine tolerance) in both male and female mice. In knock-in mice expressing phosphorylation-deficient MORs, chronic morphine treatment resulted in tolerance to, rather than facilitation of, subsequent morphine signaling at MThal-DMS terminals, suggesting phosphorylation deficiency unmasks adaptations that counter the facilitation observed at presynaptic terminals in wild-type mice. The results of this study suggest that the effects of chronic morphine exposure are not ubiquitous; rather adaptations in MOR function may be determined by multiple factors such as subcellular receptor distribution, influence of local circuitry, and sex.
Collapse
Affiliation(s)
- Elizabeth R Jaeckel
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| | - Yoani N Herrera
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller University, D-07747 Jena, Germany
| | - William T Birdsong
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
2
|
Mowery TM, Wackym PA, Nacipucha J, Dangcil E, Stadler RD, Tucker A, Carayannopoulos NL, Beshy MA, Hong SS, Yao JD. Superior semicircular canal dehiscence and subsequent closure induces reversible impaired decision-making. Front Neurol 2023; 14:1259030. [PMID: 37905188 PMCID: PMC10613502 DOI: 10.3389/fneur.2023.1259030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/14/2023] [Indexed: 11/02/2023] Open
Abstract
Background Vestibular loss and dysfunction has been associated with cognitive deficits, decreased spatial navigation, spatial memory, visuospatial ability, attention, executive function, and processing speed among others. Superior semicircular canal dehiscence (SSCD) is a vestibular-cochlear disorder in humans in which a pathological third mobile window of the otic capsule creates changes to the flow of sound pressure energy through the perilymph/endolymph. The primary symptoms include sound-induced dizziness/vertigo, inner ear conductive hearing loss, autophony, headaches, and visual problems; however, individuals also experience measurable deficits in basic decision-making, short-term memory, concentration, spatial cognition, and depression. These suggest central mechanisms of impairment are associated with vestibular disorders; therefore, we directly tested this hypothesis using both an auditory and visual decision-making task of varying difficulty levels in our model of SSCD. Methods Adult Mongolian gerbils (n = 33) were trained on one of four versions of a Go-NoGo stimulus presentation rate discrimination task that included standard ("easy") or more difficult ("hard") auditory and visual stimuli. After 10 days of training, preoperative ABR and c+VEMP testing was followed by a surgical fenestration of the left superior semicircular canal. Animals with persistent circling or head tilt were excluded to minimize effects from acute vestibular injury. Testing recommenced at postoperative day 5 and continued through postoperative day 15 at which point final ABR and c+VEMP testing was carried out. Results Behavioral data (d-primes) were compared between preoperative performance (training day 8-10) and postoperative days 6-8 and 13-15. Behavioral performance was measured during the peak of SSCD induced ABR and c + VEMP impairment and the return towards baseline as the dehiscence began to resurface by osteoneogenesis. There were significant differences in behavioral performance (d-prime) and its behavioral components (Hits, Misses, False Alarms, and Correct Rejections). These changes were highly correlated with persistent deficits in c + VEMPs at the end of training (postoperative day 15). The controls demonstrated additional learning post procedure that was absent in the SSCD group. Conclusion These results suggest that aberrant asymmetric vestibular output results in decision-making impairments in these discrimination tasks and could be associated with the other cognitive impairments resulting from vestibular dysfunction.
Collapse
Affiliation(s)
- Todd M. Mowery
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
- Rutgers Brain Health Institute, New Brunswick, NJ, United States
| | - P. Ashley Wackym
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
- Rutgers Brain Health Institute, New Brunswick, NJ, United States
| | - Jacqueline Nacipucha
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Evelynne Dangcil
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Ryan D. Stadler
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Aaron Tucker
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Nicolas L. Carayannopoulos
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Mina A. Beshy
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Sean S. Hong
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Justin D. Yao
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
- Rutgers Brain Health Institute, New Brunswick, NJ, United States
| |
Collapse
|
3
|
Tran H, Sawatari A, Leamey CA. Ten-m3 plays a role in the formation of thalamostriatal projections. Dev Neurobiol 2023; 83:255-267. [PMID: 37700636 DOI: 10.1002/dneu.22927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/28/2023] [Accepted: 08/25/2023] [Indexed: 09/14/2023]
Abstract
The importance of the thalamostriatal pathway for a myriad of brain functions is becoming increasingly apparent. Little is known about the formation of this pathway in mice. Further, while Ten-m3, a member of the Ten-m/teneurin/Odz family, is implicated in the proper wiring of mature thalamostriatal projections, its developmental time course is unknown. Here, we describe the normal development of thalamostriatal projections arising from the parafascicular nucleus (PFN) and show a role for Ten-m3 in its formation. Ten-m3 is expressed in both the PFN and the striatum by embryonic day 17 (E17). By postnatal day 3 (P3), it had a patchy appearance in the striatum, overlaid on a high dorsal-low ventral expression gradient in both structures. In wild-type mice, axons from the PFN begin to innervate the striatum by E17. By P3, terminals had ramified but were not confined to any striatal subregion. By P7, the axons had begun to avoid striosomes. The first indication of clustering of thalamic terminals within the striatal matrix was also seen at this time point. The compartmental targeting and clustering of PFN projections became more apparent by P10. Analysis of Ten-m3 knockout mice showed that while the early developmental progression of the thalamostriatal pathway is conserved, by P10 differences emerged, with a loss of topographic precision and the absence of terminal clustering. No evidence of the involvement of EphA7 downstream of Ten-m3 was found. Overall, our results suggest that Ten-m3 plays a role in the consolidation and refinement of thalamic axons to a specific subregion of the striatal matrix.
Collapse
Affiliation(s)
- Heidi Tran
- School of Medical Science, FMH, University of Sydney, Sydney, New South Wales, Australia
| | - Atomu Sawatari
- School of Medical Science, FMH, University of Sydney, Sydney, New South Wales, Australia
| | - Catherine A Leamey
- School of Medical Science, FMH, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Martel AC, Galvan A. Connectivity of the corticostriatal and thalamostriatal systems in normal and parkinsonian states: An update. Neurobiol Dis 2022; 174:105878. [PMID: 36183947 PMCID: PMC9976706 DOI: 10.1016/j.nbd.2022.105878] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 02/06/2023] Open
Abstract
The striatum receives abundant glutamatergic afferents from the cortex and thalamus. These inputs play a major role in the functions of the striatal neurons in normal conditions, and are significantly altered in pathological states, such as Parkinson's disease. This review summarizes the current knowledge of the connectivity of the corticostriatal and thalamostriatal pathways, with emphasis on the most recent advances in the field. We also discuss novel findings regarding structural changes in cortico- and thalamostriatal connections that occur in these connections as a consequence of striatal loss of dopamine in parkinsonism.
Collapse
Affiliation(s)
- Anne-Caroline Martel
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA, USA
| | - Adriana Galvan
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA, USA; Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|