1
|
Yang Y, Ling W. Health Benefits and Future Research of Phytochemicals: A Literature Review. J Nutr 2025; 155:87-101. [PMID: 39536969 DOI: 10.1016/j.tjnut.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Phytochemicals are nonnutritive substances found in plant foods that contribute significantly to the flavor and color of foods. These substances are usually classified as polyphenols, terpenes, sulfur-containing compounds, nitrogen-containing compounds, and others. Numerous studies over the last decades have demonstrated these substances play an immeasurable role in physiological regulation, health care, and disease prevention through their actions in antioxidation, anti-inflammation, antiaging, antivirus, anticancer, antithrombosis, lipid profile regulation, cardiovascular protection, neuroprotection, immunity regulation, and improvement of metabolic functions. This article reviews the chemistry and biochemistry of phytochemicals, their classification and chemical structure, occurrence and biosynthesis in plants, and biological activities and implications for human health and various diseases. The discussions are focused on the most recent important advances in these phytochemical researches. In addition, some future research directions of phytochemicals are set forth regarding dose-response, their mechanism and targets, interactions with gut microbiota, and impact on human health and different stages of chronic diseases.
Collapse
Affiliation(s)
- Yan Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Guangdong Province, China; Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Shenzhen, Guangdong Province, China; Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Shenzhen, Guangdong Province, China; Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
2
|
Gorrepati K, Krishna R, Singh S, Shirsat DV, Soumia P, Mahajan V. Harnessing the nutraceutical and therapeutic potential of Allium spp.: current insights and future directions. Front Nutr 2024; 11:1497953. [PMID: 39610875 PMCID: PMC11602312 DOI: 10.3389/fnut.2024.1497953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024] Open
Abstract
Apart from the culinary usage, Alliums are known for their therapeutic potential since antiquity. Alliums contain diverse bioactive compounds such as, sulfur-containing compounds (allicin, diallyl sulfides), flavonoids, and saponins. These compounds have demonstrated a wide range of pharmacological actions, including antioxidant, anticancer, anti-inflammatory, antimicrobial, neuroprotective, cardioprotective activities and treatment of metabolic disorders such as diabetes and hyperlipidemia. Despite encouraging preclinical results, translating these findings into clinical practice remains difficult, necessitating more rigorous human trials and molecular research. One of the major constrain in enhancing the therapeutic efficacy of these bioactive compound is to develop large-scale extraction techniques besides improving their stability, solubility, and bioavailability. The current scenario urges to focus research on optimizing the bioavailability of these compounds, evaluate their synergistic effects with existing therapies, as well as their long-term safety. This perspective article provides a comprehensive overview of the therapeutic potential of Allium spp. and suggests the key avenues for future research aiming at realising their full clinical potential.
Collapse
Affiliation(s)
- Kalyani Gorrepati
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| | - Ram Krishna
- ICAR-Indian Institute of Vegetable Research, Varanasi, India
| | - Saurabh Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | | | - P.S. Soumia
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| | - Vijay Mahajan
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| |
Collapse
|
3
|
El-Saadony MT, Saad AM, Korma SA, Salem HM, Abd El-Mageed TA, Alkafaas SS, Elsalahaty MI, Elkafas SS, Mosa WFA, Ahmed AE, Mathew BT, Albastaki NA, Alkuwaiti AA, El-Tarabily MK, AbuQamar SF, El-Tarabily KA, Ibrahim SA. Garlic bioactive substances and their therapeutic applications for improving human health: a comprehensive review. Front Immunol 2024; 15:1277074. [PMID: 38915405 PMCID: PMC11194342 DOI: 10.3389/fimmu.2024.1277074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 05/06/2024] [Indexed: 06/26/2024] Open
Abstract
Garlic (Allium sativum L.) is a widely abundant spice, known for its aroma and pungent flavor. It contains several bioactive compounds and offers a wide range of health benefits to humans, including those pertaining to nutrition, physiology, and medicine. Therefore, garlic is considered as one of the most effective disease-preventive diets. Many in vitro and in vivo studies have reported the sulfur-containing compounds, allicin and ajoene, for their effective anticancer, anti-diabetic, anti-inflammatory, antioxidant, antimicrobial, immune-boosting, and cardioprotective properties. As a rich natural source of bioactive compounds, including polysaccharides, saponins, tannins, linalool, geraniol, phellandrene, β-phellandrene, ajoene, alliin, S-allyl-mercapto cysteine, and β-phellandrene, garlic has many therapeutic applications and may play a role in drug development against various human diseases. In the current review, garlic and its major bioactive components along with their biological function and mechanisms of action for their role in disease prevention and therapy are discussed.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Taia A. Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed I. Elsalahaty
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
- Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics (ITMO) University, Saint-Petersburg, Russia
| | - Walid F. A. Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Betty T. Mathew
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Noor A. Albastaki
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Aysha A. Alkuwaiti
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Perth, WA, Australia
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, Food and Nutritional Science Program, North Carolina A&T State University, Greensboro, NC, United States
| |
Collapse
|
4
|
Odabaş T, Harorlı OT. Dental restorative materials and halitosis: a preliminary in-vitrostudy. J Breath Res 2024; 18:036005. [PMID: 38744271 DOI: 10.1088/1752-7163/ad4b57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Despite the widespread use of dental restorative materials, little information exists in the literature regarding their potential impact on bad breath. This in vitro study aims to fill this gap by investigating the influence of different restorative materials on the release of hydrogen sulfide (H2S). Thirteen diverse dental restorative materials, including composites, flowable composites, glass ionomer restorative materials, high-copper amalgam, and CAD-CAM blocks, were examined. Cellulose Sponge models were used as negative and positive control. All samples were prepared with a diameter of 5 mm and a height of 2 mm. Except for the negative control group, all samples were embedded into Allium cepa L., and the emitted H2S was measured using the Wintact W8802 hydrogen sulfide monitor. Surface roughness's effect on emission was explored by roughening the surfaces of CAD-CAM material samples, and gas emission was measured again. The data were statistically analyzed using the Kruskal-Wallis test and DSCF pairwise comparison tests. Fiber-reinforced flowable composite (EverX Flow), amalgam (Nova 70-caps), and certain composite materials (IPS Empress Direct, Tetric Evoceram, Admira Fusion X-tra) released higher H2S concentrations compared to the negative control. The H2S release period lasted longer in the same materials mentioned above, along with G-aenial Universal Injectable. Indirectly used materials, such as GC Cerasmart, Vita Enamic, and Vita YZ HT, demonstrated significantly lower emissions compared to other direct restoratives. Importantly, the surface roughness of indirect materials did not significantly affect peak H2S concentrations or release times. The study reveals variations in H2S release among restorative materials, suggesting potential advantages of indirect restorative materials in reducing H2S-induced halitosis. This comprehensive understanding of the relationship between restorative materials and halitosis can empower both dental professionals and patients to make well-informed treatment choices. Notably, there is evidence supporting the enhanced performance of indirect restorative materials for individuals affected by halitosis.
Collapse
Affiliation(s)
- Tuğçe Odabaş
- Department of Restorative Dentistry Faculty of Dentistry, Akdeniz University, Antalya, Turkey
| | - Osman Tolga Harorlı
- Department of Restorative Dentistry Faculty of Dentistry, Akdeniz University, Antalya, Turkey
| |
Collapse
|
5
|
Sodum N, Mattila O, Sharma R, Kamakura R, Lehto VP, Walkowiak J, Herzig KH, Raza GS. Nutrient Combinations Sensed by L-Cell Receptors Potentiate GLP-1 Secretion. Int J Mol Sci 2024; 25:1087. [PMID: 38256160 PMCID: PMC10816371 DOI: 10.3390/ijms25021087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Obesity is a risk factor for cardiometabolic diseases. Nutrients stimulate GLP-1 release; however, GLP-1 has a short half-life (<2 min), and only <10-15% reaches the systemic circulation. Human L-cells are localized in the distal ileum and colon, while most nutrients are absorbed in the proximal intestine. We hypothesized that combinations of amino acids and fatty acids potentiate GLP-1 release via different L-cell receptors. GLP-1 secretion was studied in the mouse enteroendocrine STC-1 cells. Cells were pre-incubated with buffer for 1 h and treated with nutrients: alpha-linolenic acid (αLA), phenylalanine (Phe), tryptophan (Trp), and their combinations αLA+Phe and αLA+Trp with dipeptidyl peptidase-4 (DPP4) inhibitor. After 1 h GLP-1 in supernatants was measured and cell lysates taken for qPCR. αLA (12.5 µM) significantly stimulated GLP-1 secretion compared with the control. Phe (6.25-25 mM) and Trp (2.5-10 mM) showed a clear dose response for GLP-1 secretion. The combination of αLA (6.25 µM) and either Phe (12.5 mM) or Trp (5 mM) significantly increased GLP-1 secretion compared with αLA, Phe, or Trp individually. The combination of αLA and Trp upregulated GPR120 expression and potentiated GLP-1 secretion. These nutrient combinations could be used in sustained-delivery formulations to the colon to prolong GLP-1 release for diminishing appetite and preventing obesity.
Collapse
Affiliation(s)
- Nalini Sodum
- Research Unit of Biomedicine and Internal Medicine, Biocentre of Oulu, Medical Research Center, University of Oulu, Oulu University Hospital, Aapistie 5, 90220 Oulu, Finland; (N.S.); (O.M.); (R.S.); (K.-H.H.)
| | - Orvokki Mattila
- Research Unit of Biomedicine and Internal Medicine, Biocentre of Oulu, Medical Research Center, University of Oulu, Oulu University Hospital, Aapistie 5, 90220 Oulu, Finland; (N.S.); (O.M.); (R.S.); (K.-H.H.)
| | - Ravikant Sharma
- Research Unit of Biomedicine and Internal Medicine, Biocentre of Oulu, Medical Research Center, University of Oulu, Oulu University Hospital, Aapistie 5, 90220 Oulu, Finland; (N.S.); (O.M.); (R.S.); (K.-H.H.)
| | - Remi Kamakura
- Research Unit of Biomedicine and Internal Medicine, Biocentre of Oulu, Medical Research Center, University of Oulu, Oulu University Hospital, Aapistie 5, 90220 Oulu, Finland; (N.S.); (O.M.); (R.S.); (K.-H.H.)
| | - Vesa-Pekka Lehto
- Department of Technical Physics, Faculty of Science, Forestry and Technology, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Jaroslaw Walkowiak
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, 60572 Poznań, Poland;
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine and Internal Medicine, Biocentre of Oulu, Medical Research Center, University of Oulu, Oulu University Hospital, Aapistie 5, 90220 Oulu, Finland; (N.S.); (O.M.); (R.S.); (K.-H.H.)
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, 60572 Poznań, Poland;
| | - Ghulam Shere Raza
- Research Unit of Biomedicine and Internal Medicine, Biocentre of Oulu, Medical Research Center, University of Oulu, Oulu University Hospital, Aapistie 5, 90220 Oulu, Finland; (N.S.); (O.M.); (R.S.); (K.-H.H.)
| |
Collapse
|
6
|
Kasamatsu S, Owaki T, Komae S, Kinno A, Ida T, Akaike T, Ihara H. Untargeted polysulfide omics analysis of alternations in polysulfide production during the germination of broccoli sprouts. Redox Biol 2023; 67:102875. [PMID: 37699321 PMCID: PMC10500461 DOI: 10.1016/j.redox.2023.102875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/23/2023] [Accepted: 09/02/2023] [Indexed: 09/14/2023] Open
Abstract
Higher consumption of broccoli (Brassica oleracea var. italica) is associated with a reduced risk of cardiometabolic diseases, neurological disorders, diabetes, and cancer. Broccoli is rich in various phytochemicals, including glucosinolates, and isothiocyanates. Moreover, it has recently reported the endogenous production of polysulfides, such as cysteine hydropersulfide (CysS2H) and glutathione hydropersulfide (GS2H), in mammals including humans, and that these bioactive substances function as potent antioxidants and important regulators of redox signaling in vivo. However, few studies have focused on the endogenous polysulfide content of broccoli and the impact of germination on the polysulfide content and composition in broccoli. In this study, we investigated the alternations in polysulfide biosynthesis in broccoli during germination by performing untargeted polysulfide omics analysis and quantitative targeted polysulfide metabolomics through liquid chromatography-electrospray ionization-tandem mass spectrometry. We also performed 2,2-diphenyl-1-picrylhydrazyl radical-scavenging assay to determine the antioxidant properties of the polysulfides. The results revealed that the total polysulfide content of broccoli sprouts significantly increased during germination and growth; CysS2H and cysteine hydrotrisulfide were the predominant organic polysulfide metabolites. Furthermore, we determined that novel sulforaphane (SFN) derivatives conjugated with CysS2H and GS2H were endogenously produced in the broccoli sprouts, and the novel SFN conjugated with CysS2H exhibited a greater radical scavenging capacity than SFN and cysteine. These results suggest that the abundance of polysulfides in broccoli sprouts contribute to their health-promoting properties. Our findings have important biological implications for the development of novel pharmacological targets for the health-promoting effects of broccoli sprouts in humans.
Collapse
Affiliation(s)
- Shingo Kasamatsu
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, 599-8531, Japan; Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, 599-8531, Japan
| | - Takuma Owaki
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, 599-8531, Japan
| | - Somei Komae
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, 599-8531, Japan
| | - Ayaka Kinno
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, 599-8531, Japan
| | - Tomoaki Ida
- Organization for Research Promotion, Osaka Metropolitan University, Sakai, 599-8531, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Hideshi Ihara
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, 599-8531, Japan; Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, 599-8531, Japan.
| |
Collapse
|
7
|
Xie T, Wu Q, Lu H, Hu Z, Luo Y, Chu Z, Luo F. Functional Perspective of Leeks: Active Components, Health Benefits and Action Mechanisms. Foods 2023; 12:3225. [PMID: 37685158 PMCID: PMC10486880 DOI: 10.3390/foods12173225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Leek (Allium fistulosum L.), a common and widely used food ingredient, is a traditional medicine used in Asia to treat a variety of diseases. Leeks contain a variety of bioactive substances, including sulfur compounds, dietary fiber, steroid compounds and flavonoid compounds. Many studies have shown that these active ingredients produce the following effects: promotion of blood circulation, lowering of cholesterol, relief of fatigue, anti-inflammation, anti-bacteria, regulation of cell metabolism, anti-cancer, anti-oxidation, and the lowering of fat and blood sugar levels. In this paper, the main bioactive components and biological functions of leeks were systemically reviewed, and the action mechanisms of bioactive components were discussed. As a common food, the health benefits of leeks are not well known, and there is no systematic summary of leek investigations. In light of this, it is valuable to review the recent progress and provide reference to investigators in the field, which will promote future applications and investigations of leeks.
Collapse
Affiliation(s)
- Tiantian Xie
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (T.X.); (Q.W.); (H.L.); (Z.H.); (Z.C.)
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qi Wu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (T.X.); (Q.W.); (H.L.); (Z.H.); (Z.C.)
| | - Han Lu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (T.X.); (Q.W.); (H.L.); (Z.H.); (Z.C.)
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (T.X.); (Q.W.); (H.L.); (Z.H.); (Z.C.)
| | - Yi Luo
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Zhongxing Chu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (T.X.); (Q.W.); (H.L.); (Z.H.); (Z.C.)
| | - Feijun Luo
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (T.X.); (Q.W.); (H.L.); (Z.H.); (Z.C.)
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
8
|
Garcia AR, Amorim MMB, Amaral ACF, da Cruz JD, Vermelho AB, Nico D, Rodrigues IA. Anti- Leishmania amazonensis Activity, Cytotoxic Features, and Chemical Profile of Allium sativum (Garlic) Essential Oil. Trop Med Infect Dis 2023; 8:375. [PMID: 37505671 PMCID: PMC10384145 DOI: 10.3390/tropicalmed8070375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
Human tegumentary leishmaniasis (HTL) is a serious tropical disease caused by Leishmania amazonensis. Developing new leishmanicidal agents can help overcome current treatment challenges, such as drug resistance and toxicity. Essential oils are a source of lipophilic substances with diverse therapeutic properties. This study aimed to determine the anti-L. amazonensis activity, cytotoxicity, and chemical profile of Allium sativum essential oil (ASEO). The effect of ASEO on parasite and mammalian cells viability was evaluated using resazurin and MTT assays, respectively. The oil's effect against intracellular amastigotes was also determined. Transmission electron microscopy was used to assess the ultrastructural changes induced by ASEO. In addition, the chemical constituents of ASEO were identified by gas chromatography-mass spectrometry (GC-MS). The cytotoxic potential was evaluated in vitro and in silico. The oil displayed IC50 of 1.76, 3.46, and 3.77 µg/mL against promastigotes, axenic, and intracellular amastigotes, respectively. Photomicrographs of treated parasites showed plasma membrane disruption, increased lipid bodies, and autophagic-like structures. ASEO chemical profiling revealed 1,2,4,6-tetrathiepane (24.84%) and diallyl disulfide (16.75%) as major components. Computational pharmacokinetics and toxicological analysis of ASEO's major components demonstrated good oral bioavailability and better toxicological endpoints than the reference drugs. Altogether, the results suggest that ASEO could be an alternative drug candidate against HTL.
Collapse
Affiliation(s)
- Andreza R Garcia
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Mariana M B Amorim
- Instituto Municipal de Vigilância Sanitária, Vigilância de Zoonoses e de Inspeção Agropecuária, Rio de Janeiro 22290-240, Brazil
| | - Ana Claudia F Amaral
- Departamento de Produtos Naturais, Farmanguinhos Fiocruz, Manguinhos, Rio de Janeiro 21041-250, Brazil
| | - Jefferson D da Cruz
- Departamento de Produtos Naturais, Farmanguinhos Fiocruz, Manguinhos, Rio de Janeiro 21041-250, Brazil
| | - Alane B Vermelho
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Dirlei Nico
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Igor A Rodrigues
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
9
|
Kasamatsu S, Kinno A, Hishiyama JI, Akaike T, Ihara H. Development of methods for quantitative determination of the total and reactive polysulfides: Reactive polysulfide profiling in vegetables. Food Chem 2023; 413:135610. [PMID: 36774840 DOI: 10.1016/j.foodchem.2023.135610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/19/2022] [Accepted: 01/29/2023] [Indexed: 02/06/2023]
Abstract
Alliaceous and cruciferous vegetables are rich in bioactive organosulfur compounds, including polysulfides, which exhibit a broad spectrum of potential health benefits. Here, we developed novel, accurate, and reproducible methods to quantify the total polysulfide content (TPsC) and the reactive polysulfide content (RPsC) using liquid chromatography-electrospray ionization-tandem mass spectrometry, and analyzed the reactive polysulfide profiles of 22 types of fresh vegetables, including onions, garlic, and broccoli. Quantitative analyses revealed that onions contained the largest amounts of polysulfides, followed by broccoli, Chinese chive, and garlic. A strong positive correlation was observed between the TPsC and RPsC, whereas only a moderate positive correlation was found between the total sulfur content and TPsC. These results suggest that reactive polysulfide profiling can be a novel criterion for evaluating the beneficial functions of vegetables and their derivatives, which may lead to an understanding of the detailed mechanisms underlying their bioactivities.
Collapse
Affiliation(s)
- Shingo Kasamatsu
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai 599-8531, Japan; Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai 599-8531, Japan
| | - Ayaka Kinno
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai 599-8531, Japan
| | - Jun-Ichi Hishiyama
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai 599-8531, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Hideshi Ihara
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai 599-8531, Japan; Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai 599-8531, Japan.
| |
Collapse
|
10
|
V González-de-Peredo A, Vázquez-Espinosa M, Espada-Bellido E, Ferreiro-González M, Carrera C, Palma M, F Barbero G. Application of Direct Thermal Desorption-Gas Chromatography-Mass Spectrometry for Determination of Volatile and Semi-Volatile Organosulfur Compounds in Onions: A Novel Analytical Approach. Pharmaceuticals (Basel) 2023; 16:ph16050715. [PMID: 37242498 DOI: 10.3390/ph16050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The population is now more aware of their diets due to the connection between food and general health. Onions (Allium cepa L.), common vegetables that are minimally processed and grown locally, are known for their health-promoting properties. The organosulfur compounds present in onions have powerful antioxidant properties and may decrease the likelihood of developing certain disorders. It is vital to employ an optimum approach with the best qualities for studying the target compounds to undertake a thorough analysis of these compounds. In this study, the use of a direct thermal desorption-gas chromatography-mass spectrometry method with a Box-Behnken design and multi-response optimization is proposed. Direct thermal desorption is an environmentally friendly technique that eliminates the use of solvents and requires no prior preparation of the sample. To the author's knowledge, this methodology has not been previously used to study the organosulfur compounds in onions. Likewise, the optimal conditions for pre-extraction and post-analysis of organosulfur compounds were as follows: 46 mg of onion in the tube, a desorption heat of 205 °C for 960 s, and a trap heat of 267 °C for 180 s. The repeatability and intermediate precision of the method were evaluated by conducting 27 tests over three consecutive days. The results obtained for all compounds studied revealed CV values ranging from 1.8% to 9.9%. The major compound reported in onions was 2,4-dimethyl-thiophene, representing 19.4% of the total area of sulfur compounds. The propanethial S-oxide, the principal compound responsible for the tear factor, accounted for 4.5% of the total area.
Collapse
Affiliation(s)
- Ana V González-de-Peredo
- Department of Analytical Chemistry, Faculty of Sciences, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Agrifood Campus of International Excellence (ceiA3), 11510 Puerto Real, Spain
| | - Mercedes Vázquez-Espinosa
- Department of Analytical Chemistry, Faculty of Sciences, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Agrifood Campus of International Excellence (ceiA3), 11510 Puerto Real, Spain
| | - Estrella Espada-Bellido
- Department of Analytical Chemistry, Faculty of Sciences, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Agrifood Campus of International Excellence (ceiA3), 11510 Puerto Real, Spain
| | - Marta Ferreiro-González
- Department of Analytical Chemistry, Faculty of Sciences, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Agrifood Campus of International Excellence (ceiA3), 11510 Puerto Real, Spain
| | - Ceferino Carrera
- Department of Analytical Chemistry, Faculty of Sciences, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Agrifood Campus of International Excellence (ceiA3), 11510 Puerto Real, Spain
| | - Miguel Palma
- Department of Analytical Chemistry, Faculty of Sciences, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Agrifood Campus of International Excellence (ceiA3), 11510 Puerto Real, Spain
| | - Gerardo F Barbero
- Department of Analytical Chemistry, Faculty of Sciences, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Agrifood Campus of International Excellence (ceiA3), 11510 Puerto Real, Spain
| |
Collapse
|
11
|
Beneficial Effect of H 2S-Releasing Molecules in an In Vitro Model of Sarcopenia: Relevance of Glucoraphanin. Int J Mol Sci 2022; 23:ijms23115955. [PMID: 35682634 PMCID: PMC9180606 DOI: 10.3390/ijms23115955] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Sarcopenia is a gradual and generalized skeletal muscle (SKM) syndrome, characterized by the impairment of muscle components and functionality. Hydrogen sulfide (H2S), endogenously formed within the body from the activity of cystathionine-γ-lyase (CSE), cystathionine- β-synthase (CBS), and mercaptopyruvate sulfurtransferase, is involved in SKM function. Here, in an in vitro model of sarcopenia based on damage induced by dexamethasone (DEX, 1 μM, 48 h treatment) in C2C12-derived myotubes, we investigated the protective potential of exogenous and endogenous sources of H2S, i.e., glucoraphanin (30 μM), L-cysteine (150 μM), and 3-mercaptopyruvate (150 μM). DEX impaired the H2S signalling in terms of a reduction in CBS and CSE expression and H2S biosynthesis. Glucoraphanin and 3-mercaptopyruvate but not L-cysteine prevented the apoptotic process induced by DEX. In parallel, the H2S-releasing molecules reduced the oxidative unbalance evoked by DEX, reducing catalase activity, O2− levels, and protein carbonylation. Glucoraphanin, 3-mercaptopyruvate, and L-cysteine avoided the changes in myotubes morphology and morphometrics after DEX treatment. In conclusion, in an in vitro model of sarcopenia, an impairment in CBS/CSE/H2S signalling occurs, whereas glucoraphanin, a natural H2S-releasing molecule, appears more effective for preventing the SKM damage. Therefore, glucoraphanin supplementation could be an innovative therapeutic approach in the management of sarcopenia.
Collapse
|
12
|
Lu Y, Zhang M, Huang D. Dietary Organosulfur-Containing Compounds and Their Health-Promotion Mechanisms. Annu Rev Food Sci Technol 2022; 13:287-313. [DOI: 10.1146/annurev-food-052720-010127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dietary organosulfur-containing compounds (DOSCs) in fruits, vegetables, and edible mushrooms may hold the key to the health-promotion benefits of these foods. Yet their action mechanisms are not clear, partially due to their high reactivity, which leads to the formation of complex compounds during postharvest processing. Among postharvest processing methods, thermal treatment is the most common way to process these edible plants rich in DOSCs, which undergo complex degradation pathways with the generation of numerous derivatives over a short time. At low temperatures, DOSCs are biotransformed slowly during fermentation to different metabolites (e.g., thiols, sulfides, peptides), whose distinctive biological activity remains largely unexplored. In this review, we discuss the bioavailability of DOSCs in human digestion before illustrating their potential mechanisms for health promotion related to cardiovascular health, cancer chemoprevention, and anti-inflammatory and antimicrobial activities. In particular, it is interesting that different DOSCs react with glutathione or cysteine, leading to the slow release of hydrogen sulfide (H2S), which has broad bioactivity in chronic disease prevention. In addition, DOSCs may interact with protein thiol groups of different protein targets of importance related to inflammation and phase II enzyme upregulation, among other action pathways critical for health promotion. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yuyun Lu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
| | - Molan Zhang
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
| | - Dejian Huang
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
- National University of Singapore (Suzhou) Research Institute, Jiangsu, China
| |
Collapse
|
13
|
The aroma profile and aroma-active compounds of Brassica oleracea (kale) tea. Food Sci Biotechnol 2021; 30:1205-1211. [PMID: 34603820 DOI: 10.1007/s10068-021-00962-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022] Open
Abstract
This study was to understand characteristic aroma properties of kale tea made by roasting kale leaves by profiling its aroma composition and screening its aroma-active compounds. Secondary metabolites of glucosinolates such as ally isothiocyanate, 3-butenyl isothiocyanate, 3-methylthiopropyl isothiocyanate, and 5-methylthiazole were the primary aroma compounds of raw kale but were less abundant in kale tea. Dimethyl trisulfide, cyclohex-2-en-1-ol, benzeneacetaldehyde, and 4-vinylguaiacol were quantitatively major aroma compounds in kale tea. Pyrazines, aldehydes, sulfides, and 4-vinylguaiacol were newly produced only in kale tea. In particular, 2-ethyl-6-methylpyrazine exhibiting the highest flavor dilution factor was the most potent aroma-active compound of kale tea, followed by methional, 2-ethyl-5-methylpyrazine, 2,5-dimethylpyrazine, 2,6-dimethylpyrazine, two unknown compounds, dimethyl disulfide, furfural, benzaldehyde, and dimethyl trisulfide. These compounds contributed to roasted, sulfur-like/pungent, and sweet aroma characteristics, which were main aroma properties of kale tea. In addition, (E)-hex-2-enal and (Z)-hex-3-en-1-ol contributed to the green and grassy aromas of kale tea.
Collapse
|
14
|
Rose P, Moore PK, Whiteman M, Kirk C, Zhu YZ. Diet and Hydrogen Sulfide Production in Mammals. Antioxid Redox Signal 2021; 34:1378-1393. [PMID: 33372834 DOI: 10.1089/ars.2020.8217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: In recent times, it has emerged that some dietary sulfur compounds can act on mammalian cell signaling systems via their propensity to release hydrogen sulfide (H2S). H2S plays important biochemical and physiological roles in the heart, gastrointestinal tract, brain, kidney, and immune systems of mammals. Reduced levels of H2S in cells and tissues correlate with a spectrum of pathophysiological conditions, including heart disease, diabetes, obesity, and altered immune function. Recent Advances: In the last decade, researchers have now begun to explore the mechanisms by which dietary-derived sulfur compounds, in addition to cysteine, can act as sources of H2S. This research has led to the identified several compounds, organic sulfides, isothiocyanates, and inorganic sulfur species including sulfate that can act as potential sources of H2S in mammalian cells and tissues. Critical Issues: We have summarised progress made in the identification of dietary factors that can impact on endogenous H2S levels in mammals. We also describe current research focused on how some sulfur molecules present in dietary plants, and associated chemical analogues, act as sources of H2S, and discuss the biological properties of these molecules as studied in a range of in vitro and in vivo systems. Future Directions: The identification of sulfur compounds in edible plants that can act as novel H2S releasing molecules is intriguing. Research in this area could inform future studies exploring the impact of diet on H2S levels in mammalian systems. Despite recent progress, additional work is needed to determine the mechanisms by which H2S is released from these molecules following ingestions of dietary plants in humans, whether the amounts of H2S produced is of physiological significance following the metabolism of these compounds in vivo, and if diet could be used to manipulated H2S levels in humans. Importantly, this will lead to a better understanding of the biological significance of H2S generated from dietary sources, and this information could be used in the development of plant breeding initiatives to increase the levels of H2S releasing sulfur compounds in crops, or inform dietary intervention strategies that could be used to alter the levels of H2S in humans.
Collapse
Affiliation(s)
- Peter Rose
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom.,State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Philip Keith Moore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Matthew Whiteman
- College of Medicine and Health, University of Exeter Medical School, Exeter, United Kingdom
| | - Charlotte Kirk
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Yi-Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| |
Collapse
|
15
|
Vidović S, Tomšik A, Vladić J, Jokić S, Aladić K, Pastor K, Jerković I. Supercritical Carbon Dioxide Extraction of Allium ursinum: Impact of Temperature and Pressure on the Extracts Chemical Profile. Chem Biodivers 2021; 18:e2100058. [PMID: 33660411 DOI: 10.1002/cbdv.202100058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022]
Abstract
The aim of this study was to extract Allium ursinum L. for the first time by supercritical carbon dioxide (SC-CO2 ) as green sustainable method. The impact of temperature in the range from 40 to 60 °C and pressure between 150 and 400 bar on the quality of the obtained extracts and efficiency of the extraction was investigated. The highest extraction yield (3.43 %) was achieved by applying the extraction conditions of 400 bar and 60 °C. The analysis of the extracts was performed by gas chromatography and mass spectrometry (GC/MS). The most dominant sulfur-containing constituent of the extracts was allyl methyl trisulfide with the highest abundance at 350 bar and 50 °C. In addition, the presence of other pharmacologically potent sulfur compounds was recorded including S-methyl methanethiosulfinate, diallyl trisulfide, S-methyl methylthiosulfonate, and dimethyl trisulfide. Multivariate data analysis tool was utilized to investigate distributions of the identified compounds among the extracts obtained under various extraction conditions and yields. It was determined that the SC-CO2 extraction can by efficiently used for A. ursinum.
Collapse
Affiliation(s)
- Senka Vidović
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Alena Tomšik
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Jelena Vladić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Stela Jokić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000, Osijek, Croatia
| | - Krunoslav Aladić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000, Osijek, Croatia
| | - Kristian Pastor
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Igor Jerković
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000, Split, Croatia
| |
Collapse
|
16
|
Torres-Palazzolo CA, Ramírez DA, Beretta VH, Camargo AB. Matrix effect on phytochemical bioaccessibility. The case of organosulfur compounds in garlic preparations. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Arifah SN, Atho'illah MF, Lukiati B, Lestari SR. Herbal Medicine from Single Clove Garlic Oil Extract Ameliorates Hepatic Steatosis and Oxidative Status in High Fat Diet Mice. Malays J Med Sci 2020; 27:46-56. [PMID: 32158344 PMCID: PMC7053541 DOI: 10.21315/mjms2020.27.1.5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 01/05/2020] [Indexed: 01/16/2023] Open
Abstract
Introduction High fat diet (HFD) can cause lipid accumulation and contribute to various metabolic disorders. Single clove garlic oil (SCGO) has advantages over regular garlic due to its higher amounts of organosulfide compounds in particular. This study aimed to determine the ability of SCGO extract to ameliorate hepatic steatosis and improve oxidative status by modulating expression of tumour necrosis factor α and superoxide dismutase in mice fed a HFD. Methods Twenty-four adult male Balb/C mice were divided into six groups: i) normal diet; ii) positive control diet; iii) negative control diet; and iv) HFD with SCGO at 12.5 mg/kg body weight (mg/kg BW); v) HFD with SCGO at 25 mg/kg BW, vi) HFD with SCGO at 50 mg/kg BW. Liver weight and morphology, spleen weight, serum levels of superoxide dismutase (SOD) and tumour necrosis factor α (TNF-α), TNF-α expression in the aorta and lipid profiles were assessed at the end of the experimental period. Results SCGO treatment was associated with significant decreases in liver and spleen weight as well as amelioration of hepatic steatosis. SCGO treatment also decreased TNF-α levels and expression. Serum levels of SOD in the SCGO groups were significantly increased compared with the negative control group. Lipid profiles were improved in the SCGO treatment groups compared with the negative control group. Conclusion SCGO as an herbal medicine could be an effective treatment for degenerative disorders caused by HFD.
Collapse
Affiliation(s)
- Siti Nur Arifah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, East Java, Indonesia
| | - Mochammad Fitri Atho'illah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, East Java, Indonesia
| | - Betty Lukiati
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, East Java, Indonesia
| | - Sri Rahayu Lestari
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, East Java, Indonesia
| |
Collapse
|
18
|
An Appraisal of Developments in Allium Sulfur Chemistry: Expanding the Pharmacopeia of Garlic. Molecules 2019; 24:molecules24214006. [PMID: 31694287 PMCID: PMC6864437 DOI: 10.3390/molecules24214006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/26/2022] Open
Abstract
Alliums and allied plant species are rich sources of sulfur compounds that have effects on vascular homeostasis and the control of metabolic systems linked to nutrient metabolism in mammals. In view of the multiple biological effects ascribed to these sulfur molecules, researchers are now using these compounds as inspiration for the synthesis and development of novel sulfur-based therapeutics. This research has led to the chemical synthesis and biological assessment of a diverse array of sulfur compounds representative of derivatives of S-alkenyl-l-cysteine sulfoxides, thiosulfinates, ajoene molecules, sulfides, and S-allylcysteine. Many of these synthetic derivatives have potent antimicrobial and anticancer properties when tested in preclinical models of disease. Therefore, the current review provides an overview of advances in the development and biological assessment of synthetic analogs of allium-derived sulfur compounds.
Collapse
|
19
|
Effects of heat and shallot ( Allium ascalonicum L.) supplementation on nutritional quality and enzymatic browning of apple juice. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2019; 56:4121-4128. [PMID: 31477983 DOI: 10.1007/s13197-019-03882-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/27/2019] [Accepted: 06/19/2019] [Indexed: 10/26/2022]
Abstract
This study investigated the effects of shallot (Allium ascalonicum L.) supplementation on improved nutritional quality and browning index of apple juice, specifically by comparing between heated (96 °C, 30 min) and unheated apple juice. The results showed that total soluble solid, phenolic content, flavonoid content, as well as antioxidant activities of heated and unheated apple juice, significantly (p < 0.05) increased with the increase in shallot supplementation (0.5%, 1.0%, 1.5%, and 2.0%). The outcomes indicated that the nutritional parameters values for heated apple juice supplemented with shallot were greater than those of unheated apple juice. The unheated and heated apple juice supplemented with shallot showed inhibition of browning, while shallot supplementation exhibited higher functionality upon being heated. The heated apple juice appeared to be an efficient way to reduce browning and to increase antioxidant activities, irrespective of shallot supplementation. Shallot supplementation inhibited browning and improved the nutritional quality of unheated apple juice. These results proved that heated apple juice supplemented with shallot exhibited maximum inhibition of browning and increased nutritional quality. Therefore, heating and shallot supplementation can massively improve the quality of apple juice.
Collapse
|
20
|
Saiwal N, Dahiya M, Dureja H. Nutraceutical Insight into Vegetables and their Potential for Nutrition Mediated Healthcare. CURRENT NUTRITION & FOOD SCIENCE 2019. [DOI: 10.2174/1573401314666180115151107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background:
The connection between food and good health is not a new concept. Vegetables
are being used as a source of nutrition since long. Dietary active components are essential for the
normal functioning of the human body.
Methods:
The study basically involves all the three categories of research methodologies, including
analytic, descriptive and historical. It involves secondary data from scientific reports, books, and
journals.
Results:
Vegetables can be considered as nutraceuticals since they supply bioactive compounds effective
in decreasing the risk of many diseases. Vegetables are considered to be protective foods since
they contain low calories and higher vitamins and minerals. Vegetables are potentially suitable against
civilization diseases, which are caused by the lack of nutrients such as omega-3 fatty acids, antioxidants
(vitamin E, vitamin C, β-carotene, selenium, zinc, cryptoxanthin, lycopene etc), and other micronutrients.
Conclusion:
The presence of bioactive compounds like phytochemicals offers nutraceutical values to
vegetables. Nutraceutical rich vegetables have been established to have a role in gastrointestinal disorders,
cardiovascular diseases, cancer, diabetes and other diseases. Vegetables and fruits not only
have the potential to stop the growth of disease but also can cure many diseases and boost the immune
system.
Collapse
Affiliation(s)
- Nidhi Saiwal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak - 124001, India
| | - Mandeep Dahiya
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak - 124001, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak - 124001, India
| |
Collapse
|
21
|
An overview of organosulfur compounds from Allium spp.: From processing and preservation to evaluation of their bioavailability, antimicrobial, and anti-inflammatory properties. Food Chem 2019; 276:680-691. [DOI: 10.1016/j.foodchem.2018.10.068] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 01/01/2023]
|
22
|
Zeng Y, Li Y, Yang J, Pu X, Du J, Yang X, Yang T, Yang S. Therapeutic Role of Functional Components in Alliums for Preventive Chronic Disease in Human Being. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:9402849. [PMID: 28261311 PMCID: PMC5316450 DOI: 10.1155/2017/9402849] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/11/2017] [Indexed: 12/13/2022]
Abstract
Objectives. Functional components in alliums have long been maintained to play a key role in modifying the major risk factors for chronic disease. To obtain a better understanding of alliums for chronic disease prevention, we conducted a systematic review for risk factors and prevention strategies for chronic disease of functional components in alliums, based on a comprehensive English literature search that was conducted using various electronic search databases, especially the PubMed, ISI Web of Science, and CNKI for the period 2007-2016. Allium genus especially garlic, onion, and Chinese chive is rich in organosulfur compounds, quercetin, flavonoids, saponins, and others, which have anticancer, preventive cardiovascular and heart diseases, anti-inflammation, antiobesity, antidiabetes, antioxidants, antimicrobial activity, neuroprotective and immunological effects, and so on. These results support Allium genus; garlic and onion especially may be the promising dietotherapeutic vegetables and organopolysulfides as well as quercetin mechanism in the treatment of chronic diseases. This review may be used as scientific basis for the development of functional food, nutraceuticals, and alternative drugs to improve the chronic diseases.
Collapse
Affiliation(s)
- Yawen Zeng
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Yuping Li
- Yuxi Agriculture Vocation-Technical College, Yunnan, Yuxi 653106, China
| | - Jiazhen Yang
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
- Kunming Tiankang Science & Technology Limited Company, Yunnan, Kunming 650231, China
| | - Xiaoying Pu
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Juan Du
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Xiaomeng Yang
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Tao Yang
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Shuming Yang
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| |
Collapse
|
23
|
Oueslati Y, Abidi A, Sbihi HM, Rezgui F. A direct synthetic route to allyl sulfides from cyclic Morita–Baylis–Hillman alcohols. J Sulphur Chem 2016. [DOI: 10.1080/17415993.2016.1255742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yosra Oueslati
- Laboratoire de Chimie Organique Structurale et Macromoléculaire, Faculté des Sciences, Université de Tunis El Manar, Tunis, Tunisie
| | - Ahlem Abidi
- Laboratoire de Chimie Organique Structurale et Macromoléculaire, Faculté des Sciences, Université de Tunis El Manar, Tunis, Tunisie
| | - Hassen Mohamed Sbihi
- College of Science, Chemistry Department, King Saud University, Riyadh, Saudi Arabia
| | - Farhat Rezgui
- Laboratoire de Chimie Organique Structurale et Macromoléculaire, Faculté des Sciences, Université de Tunis El Manar, Tunis, Tunisie
| |
Collapse
|
24
|
Rose P, Moore PK, Zhu YZ. H 2S biosynthesis and catabolism: new insights from molecular studies. Cell Mol Life Sci 2016; 74:1391-1412. [PMID: 27844098 PMCID: PMC5357297 DOI: 10.1007/s00018-016-2406-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/07/2016] [Accepted: 11/01/2016] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide (H2S) has profound biological effects within living organisms and is now increasingly being considered alongside other gaseous signalling molecules, such as nitric oxide (NO) and carbon monoxide (CO). Conventional use of pharmacological and molecular approaches has spawned a rapidly growing research field that has identified H2S as playing a functional role in cell-signalling and post-translational modifications. Recently, a number of laboratories have reported the use of siRNA methodologies and genetic mouse models to mimic the loss of function of genes involved in the biosynthesis and degradation of H2S within tissues. Studies utilising these systems are revealing new insights into the biology of H2S within the cardiovascular system, inflammatory disease, and in cell signalling. In light of this work, the current review will describe recent advances in H2S research made possible by the use of molecular approaches and genetic mouse models with perturbed capacities to generate or detoxify physiological levels of H2S gas within tissues.
Collapse
Affiliation(s)
- Peter Rose
- School of Life Science, University of Lincoln, Brayford Pool, Lincoln, Lincolnshire, LN6 7TS, UK. .,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China.
| | - Philip K Moore
- Department of Pharmacology, National University of Singapore, Lee Kong Chian Wing, UHL #05-02R, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| |
Collapse
|
25
|
DeLeon ER, Gao Y, Huang E, Olson KR. Garlic oil polysulfides: H2S- and O2-independent prooxidants in buffer and antioxidants in cells. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1212-25. [PMID: 27101293 PMCID: PMC4935497 DOI: 10.1152/ajpregu.00061.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/07/2016] [Indexed: 12/21/2022]
Abstract
The health benefits of garlic and other organosulfur-containing foods are well recognized and have been attributed to both prooxidant and antioxidant activities. The effects of garlic are surprisingly similar to those of hydrogen sulfide (H2S), which is also known to be released from garlic under certain conditions. However, recent evidence suggests that polysulfides, not H2S, may be the actual mediator of physiological signaling. In this study, we monitored formation of H2S and polysulfides from garlic oil in buffer and in human embryonic kidney (HEK) 293 cells with fluorescent dyes, 7-azido-4-methylcoumarin and SSP4, respectively and redox activity with two redox indicators redox-sensitive green fluorescent protein (roGFP) and DCF. Our results show that H2S release from garlic oil in buffer requires other low-molecular-weight thiols, such as cysteine (Cys) or glutathione (GSH), whereas polysulfides are readily detected in garlic oil alone. Administration of garlic oil to cells rapidly increases intracellular polysulfide but has minimal effects on H2S unless Cys or GSH are also present in the extracellular medium. We also observed that garlic oil and diallyltrisulfide (DATS) potently oxidized roGFP in buffer but did not affect DCF. This appears to be a direct polysulfide-mediated oxidation that does not require a reactive oxygen species intermediate. Conversely, when applied to cells, garlic oil became a significant intracellular reductant independent of extracellular Cys or GSH. This suggests that intracellular metabolism and further processing of the sulfur moieties are necessary to confer antioxidant properties to garlic oil in vivo.
Collapse
Affiliation(s)
- Eric R DeLeon
- Indiana University School of Medicine-South Bend Center, South Bend, Indiana; and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Yan Gao
- Indiana University School of Medicine-South Bend Center, South Bend, Indiana; and
| | - Evelyn Huang
- Indiana University School of Medicine-South Bend Center, South Bend, Indiana; and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Kenneth R Olson
- Indiana University School of Medicine-South Bend Center, South Bend, Indiana; and
| |
Collapse
|
26
|
Yamaguchi T, Hanabusa M, Hosoya N, Chiba T, Yoshida T, Morito A. Enamel surface changes caused by hydrogen sulfide. J Conserv Dent 2016; 18:427-30. [PMID: 26752833 PMCID: PMC4693311 DOI: 10.4103/0972-0707.168794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Volatile sulfur compounds (VSCs) produced inside the mouth are a well-known cause of halitosis. Recent studies have suggested that VSCs modify the pathology of periodontitis by encouraging the migration of bacterial toxins associated with increased permeability of gingival epithelia, and enhancing the production of matrix metalloproteinases in gingival connective tissue. Nonetheless, the effects on the enamel of direct exposure to VSCs within the oral cavity remain unclear. In the present study, we observed the effects of VSCs in the form of hydrogen sulfide (H2S) on enamel surfaces and determined their effects on restorations. MATERIALS AND METHODS Extracted human tooth and bovine tooth samples were divided into the H2S experimental side and the control side. We observed the effects of H2S on enamel surfaces using electron microscopy and conducted a shear test. RESULTS We found that exposure to H2S obscured the enamel surface's crystal structure. The surface also exhibited coarseness and reticular changes. Shear testing did not reveal any differences in bond strength. CONCLUSIONS Our findings suggested that H2S occurring inside the mouth causes changes to the crystal structure of the enamel surface that can lead to tooth wear, but that it does not diminish the effects of dental bonding in adhesive restorations.
Collapse
Affiliation(s)
- Takao Yamaguchi
- Department of Endodontology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Masao Hanabusa
- Department of Operative Dentistry, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Noriyasu Hosoya
- Department of Endodontology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Toshie Chiba
- Department of Oral Anatomy, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Takumasa Yoshida
- Department of Endodontology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Akiyuki Morito
- Department of Endodontology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| |
Collapse
|
27
|
Liang D, Wang C, Tocmo R, Wu H, Deng LW, Huang D. Hydrogen sulphide (H2S) releasing capacity of essential oils isolated from organosulphur rich fruits and vegetables. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|