1
|
Chen M, Cheng C, Peng H, Qi Y, Liu X, Cheng G, Zou C. Fatty Acids Composition of the Sacroiliac Joint in Axial Spondyloarthritis: Analysis Using 3.0 T Chemical Shift-Encoded MRI. J Magn Reson Imaging 2024; 60:1027-1034. [PMID: 38050865 DOI: 10.1002/jmri.29170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Axial spondyloarthritis (axSpA) is a group of inflammatory diseases that may lead to ankylosis of the sacroiliac joint and spine. Fat lesion in the sacroiliac joint is an important feature in diagnosis and disease progression of axSpA. However, whether there is alteration of fatty acids (FAs) composition has not been investigated using MRI. PURPOSE To investigate bone marrow FA composition of the sacroiliac joint in patients with axSpA compared to controls. STUDY TYPE Prospective. SUBJECTS Eighty five participants (mean age, 32.3 ± 6.1 years): 48 axSpA (25 male, 23 female) and 37 non-SpA controls (18 male, 19 female). FIELD STRENGTH/SEQUENCE 3.0 T/Two multiple gradient-echo chemical shift-encoded (CSE) MRI which differed only in echo times (TEs) were scanned consecutively. ASSESSMENT Axial multi-echo CSE MRI was performed in the sacroiliac joints in vivo. Regions of interest (ROIs) were manually placed on subchondral bone with and without fat lesion in axSpA patients, and on subchondral bone without fat lesion in controls. FA composition was computed within the ROIs using a nonlinear least square method from literature. STATISTICAL TESTS Intergroup comparisons were performed using t tests. RESULTS In axSpA, male patients had significantly higher monounsaturated FA compared to controls in areas with fat lesion in the sacrum (+12%) and in the ilium (+9%), and in areas without fat lesion in the sacrum (+10%). Significantly lower polyunsaturated FAs were found in areas with fat lesion in the sacrum (-10%) and ilium (-11%), and lower saturated FAs were found in areas without fat lesion in the sacrum (-6%). In female, patients with axSpA had significantly higher saturated FAs in areas with fat lesion in the ilium (+7%) in comparison to controls. DATA CONCLUSION FA composition of the sacroiliac joint alters in patients with axSpA, and it can be detected using CSE MRI based analysis.
Collapse
Affiliation(s)
- Min Chen
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Radiology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Chuanli Cheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Imaging Research Institute of Innovative Medical Equipment, Shenzhen, China
| | - Hao Peng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yulong Qi
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guanxun Cheng
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chao Zou
- Department of Radiology, Southern University of Science and Technology Hospital, Shenzhen, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
2
|
Cheung SM, Chan KS, Zhou W, Husain E, Gagliardi T, Masannat Y, He J. Spatial heterogeneity of peri-tumoural lipid composition in postmenopausal patients with oestrogen receptor positive breast cancer. Sci Rep 2024; 14:4699. [PMID: 38409583 PMCID: PMC10897464 DOI: 10.1038/s41598-024-55458-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/23/2024] [Indexed: 02/28/2024] Open
Abstract
Deregulation of lipid composition in adipose tissue adjacent to breast tumour is observed in ex vivo and animal models. Novel non-invasive magnetic resonance imaging (MRI) allows rapid lipid mapping of the human whole breast. We set out to elucidate the spatial heterogeneity of peri-tumoural lipid composition in postmenopausal patients with oestrogen receptor positive (ER +) breast cancer. Thirteen participants (mean age, 62 ± [SD] 6 years) with ER + breast cancer and 13 age-matched postmenopausal healthy controls were scanned on MRI. The number of double bonds in triglycerides was computed from MRI images to derive lipid composition maps of monounsaturated, polyunsaturated, and saturated fatty acids (MUFA, PUFA, SFA). The spatial heterogeneity measures (mean, median, skewness, entropy and kurtosis) of lipid composition in the peri-tumoural region and the whole breast of participants and in the whole breast of controls were computed. The Ki-67 proliferative activity marker and CD163 antibody on tumour-associated macrophages were assessed histologically. Mann Whitney U or Wilcoxon tests and Spearman's coefficients were used to assess group differences and correlations, respectively. For comparison against the whole breast in participants, peri-tumoural MUFA had a lower mean (median (IQR), 0.40 (0.02), p < .001), lower median (0.42 (0.02), p < .001), a negative skewness with lower magnitude (- 1.65 (0.77), p = .001), higher entropy (4.35 (0.64), p = .007) and lower kurtosis (5.13 (3.99), p = .001). Peri-tumoural PUFA had a lower mean (p < .001), lower median (p < .001), a positive skewness with higher magnitude (p = .005) and lower entropy (p = .002). Peri-tumoural SFA had a higher mean (p < .001), higher median (p < .001), a positive skewness with lower magnitude (p < .001) and lower entropy (p = .012). For comparison against the whole breast in controls, peri-tumoural MUFA had a negative skewness with lower magnitude (p = .01) and lower kurtosis (p = .009), however there was no difference in PUFA or SFA. CD163 moderately correlated with peri-tumoural MUFA skewness (rs = - .64), PUFA entropy (rs = .63) and SFA skewness (rs = .59). There was a lower MUFA and PUFA while a higher SFA, and a higher heterogeneity of MUFA while a lower heterogeneity of PUFA and SFA, in the peri-tumoural region in comparison with the whole breast tissue. The degree of lipid deregulation was associated with inflammation as indicated by CD163 antibody on macrophages, serving as potential marker for early diagnosis and response to therapy.
Collapse
Affiliation(s)
- Sai Man Cheung
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| | - Kwok-Shing Chan
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Wenshu Zhou
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Ehab Husain
- Department of Pathology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Tanja Gagliardi
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
- Department of Radiology, Royal Marsden Hospital, London, UK
| | - Yazan Masannat
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
- Broomfield Breast Unit, Broomfield Hospital, Mid and South Essex NHS Trust, Chelmsford, UK
- London Breast Institute, Princess Grace Hospital, London, UK
| | - Jiabao He
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
- Faculty of Medical Sciences, Newcastle Magnetic Resonance Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
3
|
Willis SA, Malaikah S, Parry S, Bawden S, Ennequin G, Sargeant JA, Yates T, Webb DR, Davies MJ, Stensel DJ, Aithal GP, King JA. The effect of acute and chronic exercise on hepatic lipid composition. Scand J Med Sci Sports 2023; 33:550-568. [PMID: 36610000 DOI: 10.1111/sms.14310] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Exercise is recommended for those with, or at risk of nonalcoholic fatty liver disease (NAFLD), owing to beneficial effects on hepatic steatosis and cardiometabolic risk. Whilst exercise training reduces total intrahepatic lipid in people with NAFLD, accumulating evidence indicates that exercise may also modulate hepatic lipid composition. This metabolic influence is important as the profile of saturated (SFA), monounsaturated (MUFA), and polyunsaturated fatty acids (PUFA) dramatically affect the metabolic consequences of hepatic lipid accumulation; with SFA being especially lipotoxic. Relatedly, obesity and NAFLD are associated with hepatic PUFA depletion and elevated SFA. This review summarizes the acute (single bout) and chronic (exercise training) effects of exercise on hepatic lipid composition in rodents (acute studies: n = 3, chronic studies: n = 13) and humans (acute studies: n = 1, chronic studies: n = 3). An increased proportion of hepatic PUFA after acute and chronic exercise is the most consistent finding of this review. Mechanistically, this may relate to an enhanced uptake of adipose-derived PUFA (reflecting habitual diet), particularly in rodents. A relative decrease in the proportion of hepatic MUFA after chronic exercise is also documented repeatedly, particularly in rodent models with elevated hepatic MUFA. This outcome is related to decreased hepatic stearoyl-CoA desaturase-1 activity in some studies. Findings regarding hepatic SFA are less consistent and limited by the absence of metabolic challenge in rodent models. These findings require confirmation in well-controlled interventions in people with NAFLD. These studies will be facilitated by recently validated magnetic resonance spectroscopy techniques, able to precisely quantify hepatic lipid composition in vivo.
Collapse
Affiliation(s)
- Scott A Willis
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
| | - Sundus Malaikah
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
| | - Siôn Parry
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Stephen Bawden
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Gaël Ennequin
- Laboratory of Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P), Université of Clermont Auvergne, Clermont-Ferrand, France
| | - Jack A Sargeant
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK.,Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Thomas Yates
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK.,Diabetes Research Centre, University of Leicester, Leicester, UK
| | - David R Webb
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK.,Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Melanie J Davies
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK.,Diabetes Research Centre, University of Leicester, Leicester, UK
| | - David J Stensel
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK.,Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Guruprasad P Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK.,Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - James A King
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
| |
Collapse
|
4
|
Grundler F, Viallon M, Mesnage R, Ruscica M, von Schacky C, Madeo F, Hofer SJ, Mitchell SJ, Croisille P, Wilhelmi de Toledo F. Long-term fasting: Multi-system adaptations in humans (GENESIS) study-A single-arm interventional trial. Front Nutr 2022; 9:951000. [PMID: 36466423 PMCID: PMC9713250 DOI: 10.3389/fnut.2022.951000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/31/2022] [Indexed: 09/10/2024] Open
Abstract
Fasting provokes fundamental changes in the activation of metabolic and signaling pathways leading to longer and healthier lifespans in animal models. Although the involvement of different metabolites in fueling human fasting metabolism is well known, the contribution of tissues and organs to their supply remains partly unclear. Also, changes in organ volume and composition remain relatively unexplored. Thus, processes involved in remodeling tissues during fasting and food reintroduction need to be better understood. Therefore, this study will apply state-of-the-art techniques to investigate the effects of long-term fasting (LF) and food reintroduction in humans by a multi-systemic approach focusing on changes in body composition, organ and tissue volume, lipid transport and storage, sources of protein utilization, blood metabolites, and gut microbiome profiles in a single cohort. This is a prospective, single-arm, monocentric trial. One hundred subjects will be recruited and undergo 9 ± 3 day-long fasting periods (250 kcal/day). We will assess changes in the composition of organs, bones and blood lipid profiles before and after fasting, as well as high-density lipoprotein (HDL) transport and storage, untargeted metabolomics of peripheral blood mononuclear cells (PBMCs), protein persulfidation and shotgun metagenomics of the gut microbiome. The first 32 subjects, fasting for 12 days, will be examined in more detail by magnetic resonance imaging (MRI) and spectroscopy to provide quantitative information on changes in organ volume and function, followed by an additional follow-up examination after 1 and 4 months. The study protocol was approved by the ethics board of the State Medical Chamber of Baden-Württemberg on 26.07.2021 and registered at ClinicalTrials.gov (NCT05031598). The results will be disseminated through peer-reviewed publications, international conferences and social media. Clinical trial registration [ClinicalTrials.gov], identifier [NCT05031598].
Collapse
Affiliation(s)
| | - Magalie Viallon
- UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, F-42023, Université de Lyon, Saint-Étienne, France
- Department of Radiology, University Hospital Saint-Étienne, Saint-Étienne, France
| | - Robin Mesnage
- Buchinger Wilhelmi Clinic, Überlingen, Germany
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioHealth Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Sebastian J. Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioHealth Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Sarah J. Mitchell
- Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Pierre Croisille
- UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, F-42023, Université de Lyon, Saint-Étienne, France
- Department of Radiology, University Hospital Saint-Étienne, Saint-Étienne, France
| | | |
Collapse
|
5
|
Fat unsaturation measures in tibial, subcutaneous and breast adipose tissue using short and long TE MRS at 3 T. Magn Reson Imaging 2021; 86:61-69. [PMID: 34808305 DOI: 10.1016/j.mri.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
Fat unsaturation and poly-unsaturation measures can be obtained in vivo with magnetic resonance spectroscopy (MRS) through the olefinic (≈5.4 ppm) and diallylic (≈2.8 ppm) resonances, respectively. Long echo time (TE) MRS sequences have been previously optimized for olefinic/methylene (≈1.3 ppm) or olefinic/methyl (≈0.9 ppm) measures. The objectives of this work, using a Point RESolved Spectroscopy (PRESS) sequence, are to: 1) Investigate olefinic, methyl and methylene resonance decay in subcutaneous, tibial, and breast adipose tissue to determine if a direct comparison of unsaturation measures can be made without correction for T2 losses. 2) Assess intra-individual fat unsaturation and poly-unsaturation measures in the three adipose tissues. 3) Estimate correction factors for olefinic to methylene ratios to compensate for J-coupling and T2 relaxation losses that take place when increasing PRESS TE from 40 ms to 200 ms (previously optimized long-TE). 4) Investigate the utility of an inversion recovery for resolving the olefinic resonance from water in adipose tissue. PRESS spectra were acquired from the three adipose regions (breast in female only) in healthy volunteers at 3 T. It was found that olefinic and methyl signal decays faster in breast tissue compared to in tibial bone marrow. Poly-unsaturation measures (diallylic/methylene) differ for tibial bone marrow compared to subcutaneous and breast adipose tissue, with average values of 1.7 ± 0.4, 2.2 ± 0.4, and 2.3 ± 0.8%, respectively. PRESS (TE = 40 ms) with an inversion recovery resolves the olefinic and water resonances in breast tissue with a signal to noise ratio approximately six times greater than that using PRESS with a TE of 200 ms. Stimulated Echo Acquisition Mode (STEAM) with a TE of 20 ms (mixing time of 20 ms) was also combined with IR to resolve the olefinic resonance from that of water is spinal bone marrow.
Collapse
|
6
|
Grundler F, Séralini GE, Mesnage R, Peynet V, Wilhelmi de Toledo F. Excretion of Heavy Metals and Glyphosate in Urine and Hair Before and After Long-Term Fasting in Humans. Front Nutr 2021; 8:708069. [PMID: 34651007 PMCID: PMC8505741 DOI: 10.3389/fnut.2021.708069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/02/2021] [Indexed: 12/05/2022] Open
Abstract
Background: Dietary exposure to environmental pollutants in humans is an important public health concern. While long-term fasting interrupts the dietary exposure to these substances, fat mobilization as an energy source may also release bioaccumulated substances. This was, to our knowledge, only investigated in obese people decades ago. This study explored the effects of 10-days fasting on the excretion of heavy metals and glyphosate. Methods: Urinary levels of arsenic, chromium, cobalt, lead, nickel, mercury and glyphosate were measured before and after 10 fasting days in 109 healthy subjects. Additionally, hair analysis was done before and ten weeks after fasting in 22 subjects. Results: Fasting caused a decrease in body weight, and in urinary arsenic (by 72%) and nickel (by 15%) concentrations. A decrease in lead hair concentrations (by 30%) was documented. Urinary mercury levels were unchanged for chromium, cobalt and glyphosate, which were undetectable in most of the subjects. Additionally, fatigue, sleep disorders, headache and hunger were reduced. Body discomfort symptoms diminished four weeks after food reintroduction. Conclusions: The results of this study provide the first insights into the changes in heavy metal excretion caused by long-term fasting. Further studies focusing on the kinetics of efflux between different compartments of the body are needed. Clinical Trial Registration:https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00016657, identifier: DRKS00016657.
Collapse
Affiliation(s)
- Franziska Grundler
- Buchinger Wilhelmi Clinic, Überlingen, Germany.,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Gilles-Eric Séralini
- Department of Biology and Network on Risks, Quality and Sustainable Environment MRSH, University of Caen Normandy, Caen, France
| | - Robin Mesnage
- Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Vincent Peynet
- Institut de Recherche et d'Expertise Scientifique, Europarc, Strasbourg, France
| | | |
Collapse
|
7
|
Grundler F, Mesnage R, Michalsen A, Wilhelmi de Toledo F. Blood Pressure Changes in 1610 Subjects With and Without Antihypertensive Medication During Long-Term Fasting. J Am Heart Assoc 2020; 9:e018649. [PMID: 33222606 PMCID: PMC7763762 DOI: 10.1161/jaha.120.018649] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background We investigated daily blood pressure (BP) changes during fasting periods ranging from 4 to 41 (10.0±3.8) days in a cohort of 1610 subjects, including 920 normotensive, 313 hypertensive nonmedicated, and 377 hypertensive medicated individuals. Methods and Results Subjects underwent a multidisciplinary fasting program with a daily intake of ≈250 kcal. Weight and stress scores decreased during fasting, and the well‐being index increased, documenting a good tolerability. BP mean values decreased from 126.2±18.6/81.4±11.0 to 119.7±15.9/77.6±9.8 mm Hg (mean change, −6.5/3.8 mm Hg). BP changes were larger for hypertensive nonmedicated subjects (>140/90 mm Hg) and reduced by 16.7/8.8 mm Hg. This reduction reached 24.7/13.1 mm Hg for hypertensive nonmedicated subjects (n=76) with the highest BP (>160/100 mm Hg). In the normotensive group, BP decreased moderately by 3.0/1.9 mm Hg. Interestingly, we documented an increase of 6.3/2.2 mm Hg in a subgroup of 69 female subjects with BP <100/60 mm Hg. In the hypertensive medicated group, although BP decreased from 134.6/86.0 to 127.3/81.3 mm Hg, medication was stopped in 23.6% of the subjects, whereas dosage was reduced in 43.5% and remained unchanged in 19.4%. The decrease in BP was larger in subjects fasting longer. Baseline metabolic parameters, such as body mass index and glucose levels, as well as age, can be used to predict the amplitude of the BP decrease during fasting with a machine learning model. Conclusions Long‐term fasting tends to decrease BP in subjects with elevated BP values. This effect persisted during the 4 days of stepwise food reintroduction, even when subjects stopped their antihypertensive medication. Registration URL: https://www.drks.de/drks_web/; Unique identifier: DRKS00010111.
Collapse
Affiliation(s)
- Franziska Grundler
- Buchinger Wilhelmi Clinic Überlingen Germany.,Charité-Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Robin Mesnage
- Gene Expression and Therapy Group Department of Medical and Molecular Genetics Faculty of Life Sciences and Medicine King's College LondonGuy's Hospital London United Kingdom
| | - Andreas Michalsen
- Institute of Social Medicine, Epidemiology and Health Economics Charité- Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany.,Department of Internal and Integrative Medicine Immanuel Krankenhaus Berlin Berlin Germany
| | | |
Collapse
|
8
|
Peterson P, Trinh L, Månsson S. Quantitative 1 H MRI and MRS of fatty acid composition. Magn Reson Med 2020; 85:49-67. [PMID: 32844500 DOI: 10.1002/mrm.28471] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/08/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022]
Abstract
Adipose tissue as well as other depots of fat (triglycerides) are increasingly being recognized as active contributors to the human function and metabolism. In addition to the fat concentration, also the fatty acid chemical composition (FAC) of the triglyceride molecules may play an important part in diseases such as obesity, insulin resistance, hepatic steatosis, osteoporosis, and cancer. MR spectroscopy and chemical-shift-encoded imaging (CSE-MRI) are established methods for non-invasive quantification of fat concentration in tissue. More recently, similar techniques have been developed for assessment also of the FAC in terms of the number of double bonds, the fraction of saturated, monounsaturated, and polyunsaturated fatty acids, or semi-quantitative unsaturation indices. The number of papers focusing on especially CSE-MRI-based techniques has steadily increased during the past few years, introducing a range of acquisition protocols and reconstruction algorithms. However, a number of potential sources of bias have also been identified. Furthermore, the measures used to characterize the FAC using both MRI and MRS differ, making comparisons between different techniques difficult. The aim of this paper is to review MRS- and MRI-based methods for in vivo quantification of the FAC. We describe the chemical composition of triglycerides and discuss various potential FAC measures. Furthermore, we review acquisition and reconstruction methodology and finally, some existing and potential applications are summarized. We conclude that both MRI and MRS provide feasible non-invasive alternatives to the gold standard gas chromatography for in vivo measurements of the FAC. Although both are associated with gas chromatography, future studies are warranted.
Collapse
Affiliation(s)
- Pernilla Peterson
- Medical Radiation Physics, Malmö, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden.,Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Lena Trinh
- Medical Radiation Physics, Malmö, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Sven Månsson
- Medical Radiation Physics, Malmö, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
9
|
Wilhelmi de Toledo F, Grundler F, Sirtori CR, Ruscica M. Unravelling the health effects of fasting: a long road from obesity treatment to healthy life span increase and improved cognition. Ann Med 2020; 52:147-161. [PMID: 32519900 PMCID: PMC7877980 DOI: 10.1080/07853890.2020.1770849] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent years a revival of interest has emerged in the health benefits of intermittent fasting and long-term fasting, as well as of other related nutritional strategies. In addition to meal size and composition a new focus on time and frequency of meals has gained attention. The present review will investigate the effects of the main forms of fasting, activating the metabolic switch from glucose to fat and ketones (G-to-K), starting 12-16 h after cessation or strong reduction of food intake. During fasting the deactivation of mTOR regulated nutrient signalling pathways and activation of the AMP protein kinase trigger cell repair and inhibit anabolic processes. Clinical and animal studies have clearly indicated that modulating diet and meal frequency, as well as application of fasting patterns, e.g. intermittent fasting, periodic fasting, or long-term fasting are part of a new lifestyle approach leading to increased life and health span, enhanced intrinsic defences against oxidative and metabolic stresses, improved cognition, as well as a decrease in cardiovascular risk in both obese and non-obese subjects. Finally, in order to better understand the mechanisms beyond fasting-related changes, human studies as well as non-human models closer to human physiology may offer useful clues.KEY-MESSAGESBiochemical changes during fasting are characterised by a glucose to ketone switch, leading to a rise of ketones, advantageously used for brain energy, with consequent improved cognition.Ketones reduce appetite and help maintain effective fasting.Application of fasting patterns increases healthy life span and defences against oxidative and metabolic stresses.Today's strategies for the use of therapeutic fasting are based on different protocols, generally relying on intermittent fasting, of different duration and calorie intake.Long-term fasting, with durations between 5 and 21 days can be successfully repeated in the course of a year.
Collapse
Affiliation(s)
| | - Franziska Grundler
- Buchinger Wilhelmi Clinic, Wilhelm-Beck-Straße 27, Überlingen, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Cesare R Sirtori
- Dyslipidemia Center, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
10
|
Evangelista EB, Kwee SA, Sato MM, Wang L, Rettenmeier C, Xie G, Jia W, Wong LL. Phospholipids are A Potentially Important Source of Tissue Biomarkers for Hepatocellular Carcinoma: Results of a Pilot Study Involving Targeted Metabolomics. Diagnostics (Basel) 2019; 9:diagnostics9040167. [PMID: 31671805 PMCID: PMC6963224 DOI: 10.3390/diagnostics9040167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) pathogenesis involves the alteration of multiple liver-specific metabolic pathways. We systematically profiled cancer- and liver-related classes of metabolites in HCC and adjacent liver tissues and applied supervised machine learning to compare their potential yield for HCC biomarkers. Methods: Tumor and corresponding liver tissue samples were profiled as follows: Bile acids by ultra-performance liquid chromatography (LC) coupled to tandem mass spectrometry (MS), phospholipids by LC-MS/MS, and other small molecules including free fatty acids by gas chromatography—time of flight MS. The overall classification performance of metabolomic signatures derived by support vector machine (SVM) and random forests machine learning algorithms was then compared across classes of metabolite. Results: For each metabolite class, there was a plateau in classification performance with signatures of 10 metabolites. Phospholipid signatures consistently showed the highest discrimination for HCC followed by signatures derived from small molecules, free fatty acids, and bile acids with area under the receiver operating characteristic curve (AUC) values of 0.963, 0.934, 0.895, 0.695, respectively, for SVM-generated signatures comprised of 10 metabolites. Similar classification performance patterns were observed with signatures derived by random forests. Conclusion: Membrane phospholipids are a promising source of tissue biomarkers for discriminating between HCC tumor and liver tissue.
Collapse
Affiliation(s)
| | - Sandi A Kwee
- The Queen's Medical Center, Honolulu, HI 96813, USA.
- University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA.
- Departments of Medicine and Surgery, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA.
| | - Miles M Sato
- The Queen's Medical Center, Honolulu, HI 96813, USA.
| | - Lu Wang
- University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA.
| | - Christoph Rettenmeier
- Departments of Medicine and Surgery, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA.
| | - Guoxiang Xie
- University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA.
| | - Wei Jia
- University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA.
| | - Linda L Wong
- University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA.
- Departments of Medicine and Surgery, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA.
| |
Collapse
|
11
|
Kleimaier F, Klatte C, Stange R, Koppold-Liebscher D. [Fasting: the Switch of Life-report on the 18th International Congress of the Medical Association for Fasting and Nutrition (ÄGHE)]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2019; 62:1384-1390. [PMID: 31605166 DOI: 10.1007/s00103-019-03030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The international congress of the German Medical Association for Fasting and Nutrition (ÄGHE e. V.) was held in cooperation with the Maria Buchinger Foundation for the 18th time in June 2019 in Überlingen at Lake Constance. The congress offers a platform for physicians, fasting therapists, and all interested parties to exchange the latest scientific findings in fasting research. "Fasting: the Switch of Life" was the title of the congress, where well-known national and international fasting researchers spoke about health effects of fasting therapies, the indications and contraindications of fasting, and the latest biological, genetic, and neuroscientific findings related to it, such as protein diets and integrative fasting therapies. The religious and spiritual dimension of fasting were also considered in addition to the health-related aspects. Apart from the lectures and case reports, the aim of the congress was to discuss the current developments and challenges in fasting therapy with the participants.
Collapse
Affiliation(s)
- Felicia Kleimaier
- Abteilung für Naturheilkunde, Charité - Universitätsmedizin Berlin, Berlin, Deutschland.
- Immanuel Krankenhaus Berlin-Wannsee, Königstr. 63, 14109, Berlin-Wannsee, Deutschland.
| | - Caroline Klatte
- Abteilung für Naturheilkunde, Charité - Universitätsmedizin Berlin, Berlin, Deutschland
- Immanuel Krankenhaus Berlin-Wannsee, Königstr. 63, 14109, Berlin-Wannsee, Deutschland
| | - Rainer Stange
- Abteilung für Naturheilkunde, Charité - Universitätsmedizin Berlin, Berlin, Deutschland
- Immanuel Krankenhaus Berlin-Wannsee, Königstr. 63, 14109, Berlin-Wannsee, Deutschland
| | - Daniela Koppold-Liebscher
- Abteilung für Naturheilkunde, Charité - Universitätsmedizin Berlin, Berlin, Deutschland
- Immanuel Krankenhaus Berlin-Wannsee, Königstr. 63, 14109, Berlin-Wannsee, Deutschland
| |
Collapse
|