1
|
Thomou C, Nussbaumer M, Grammenou E, Komini C, Vlaikou AM, Papageorgiou MP, Filiou MD. Early Handling Exerts Anxiolytic Effects and Alters Brain Mitochondrial Dynamics in Adult High Anxiety Mice. Mol Neurobiol 2024; 61:10593-10612. [PMID: 38761326 PMCID: PMC11584496 DOI: 10.1007/s12035-024-04116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/09/2024] [Indexed: 05/20/2024]
Abstract
Early handling (EH), the brief separation of pups from their mother during early life, has been shown to exert beneficial effects. However, the impact of EH in a high anxiety background as well as the role of brain mitochondria in shaping EH-driven responses remain elusive.Here, we used a high (HAB) vs. normal (NAB) anxiety-related behavior mouse model to study how EH affects pup and dam behavior in divergent anxiety backgrounds. We also investigated EH-induced effects at the protein and mRNA levels in adult male HAB mice in the hypothalamus, the prefrontal cortex, and the hippocampus by examining the same mitochondrial/energy pathways and mitochondrial dynamics mechanisms (fission, fusion, biogenesis, and mitophagy) in all three brain regions.EH exerts anxiolytic effects in adult HAB but not NAB male mice and does not affect HAB or NAB maternal behavior, although basal HAB vs. NAB maternal behaviors differ. In adult HAB male mice, EH does not impact oxidative phosphorylation (OXPHOS) and oxidative stress in any of the brain regions studied but leads to increased protein expression of glycolysis enzymes and a correlation of anxiety-related behavior with Krebs cycle enzymes in HAB mice in the hypothalamus. Intriguingly, EH alters mitochondrial dynamics by increasing hypothalamic DRP1, OPA1, and PGC1a protein levels. At the mRNA level, we observe altered, EH-driven mitochondrial dynamics mRNA signatures which predominantly affect the prefrontal cortex.Taken together, our results show that EH exerts anxiolytic effects in adulthood in high anxiety and modulates mitochondrial dynamics pathways in a brain region-specific manner.
Collapse
Affiliation(s)
- Christina Thomou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Markus Nussbaumer
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Eleni Grammenou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Chrysoula Komini
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Angeliki-Maria Vlaikou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Maria P Papageorgiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Michaela D Filiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece.
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece.
- Institute of Biosciences, University of Ioannina, Ioannina, Greece.
| |
Collapse
|
2
|
Hosseini E. Ubiquitous extremely low frequency electromagnetic fields induces anxiety-like behavior: mechanistic perspectives. Electromagn Biol Med 2024; 43:220-235. [PMID: 39074042 DOI: 10.1080/15368378.2024.2380305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/10/2024] [Indexed: 07/31/2024]
Abstract
Anxiety is an adaptive condition characterized by heightened uneasiness, which in the long term can cause complications such as reducing the quality of life and problems related to the mental and physical health. Concerns have been raised regarding the potential dangers of extremely low frequency electromagnetic fields (ELF-EMF) ranging from 3 to 3000 Hz, which are omnipresent in our daily lives and there have been studies about the anxiogenic effects of these fields. Studies conducted in this specific area has revealed that ELF-EMF can have an impact on various brain regions, such as the hippocampus. In conclusion, studies have shown that ELF-EMF can interfere with hippocampus-prefrontal cortex pathway, inducing anxiety behavior. Also, ELF-EMF may initiate anxiety behavior by generating oxidative stress in hypothalamus and hippocampus. Moreover, ELF-EMF may induce anxiety behavior by reducing hippocampus neuroplasticity and increasing the NMDA2A receptor expression in the hippocampus. Furthermore, supplementation with antioxidants could serve as an effective protective measure against the adverse effects of FLF-FMF in relation to anxiety behavior.
Collapse
Affiliation(s)
- Ehsan Hosseini
- Division of Physiology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
3
|
Gaiaschi L, Priori EC, Mensi MM, Verri M, Buonocore D, Parisi S, Hernandez LNQ, Brambilla I, Ferrari B, De Luca F, Gola F, Rancati G, Capone L, Andriulo A, Visonà SD, Marseglia GL, Borgatti R, Bottone MG. New perspectives on the role of biological factors in anorexia nervosa: Brain volume reduction or oxidative stress, which came first? Neurobiol Dis 2024; 199:106580. [PMID: 38942323 DOI: 10.1016/j.nbd.2024.106580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024] Open
Abstract
Anorexia nervosa (AN) is an eating disorder (ED) that has seen an increase in its incidence in the last thirty years. Compared to other psychosomatic disorders, ED can be responsible for many major medical complications, moreover, in addition to the various systemic impairments, patients with AN undergo morphological and physiological changes affecting the cerebral cortex. Through immunohistochemical studies on portions of postmortem human brain of people affected by AN and healthy individuals, and western blot studies on leucocytes of young patients and healthy controls, this study investigated the role in the afore-mentioned processes of altered redox state. The results showed that the brain volume reduction in AN could be due to an increase in the rate of cell death, mainly by apoptosis, in which mitochondria, main cellular organelles affected by a decreased dietary intake, and a highly compromised intracellular redox balance, may play a pivotal role.
Collapse
Affiliation(s)
- Ludovica Gaiaschi
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Erica Cecilia Priori
- Laboratory of Neurophysiology and Integrated Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Martina Maria Mensi
- Department of Sciences of the Nervous System and of Behavior, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Manuela Verri
- Laboratory of Pharmacology and Toxicology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Daniela Buonocore
- Laboratory of Pharmacology and Toxicology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Sandra Parisi
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Lilian Nathalie Quintero Hernandez
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Ilaria Brambilla
- Department of Clinical surgical diagnostic and pediatric sciences, Foundation IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy
| | - Beatrice Ferrari
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Fabrizio De Luca
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Federica Gola
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Giulia Rancati
- High-Complexity Rehabilitation Unit, "Casa di Cura Villa Esperia", Viale dei Salici 35, 27052 Godiasco PV, Italy
| | - Luca Capone
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Adele Andriulo
- High-Complexity Rehabilitation Unit, "Casa di Cura Villa Esperia", Viale dei Salici 35, 27052 Godiasco PV, Italy
| | - Silvia Damiana Visonà
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Gian Luigi Marseglia
- Department of Clinical surgical diagnostic and pediatric sciences, Foundation IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy
| | - Renato Borgatti
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Maria Grazia Bottone
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy.
| |
Collapse
|
4
|
Moradnia M, Mohammadkhani N, Azizi B, Mohammadi M, Ebrahimpour S, Tabatabaei-Malazy O, Mirsadeghi S, Ale-Ebrahim M. The power of Punica granatum: A natural remedy for oxidative stress and inflammation; a narrative review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118243. [PMID: 38677577 DOI: 10.1016/j.jep.2024.118243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/18/2023] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pomegranate 'Punica granatum' offers multiple health benefits, including managing hypertension, dyslipidemia, hyperglycemia, insulin resistance, and enhancing wound healing and infection resistance, thanks to its potent antioxidant and anti-inflammatory properties. It has been symbolized by life, health, femininity, fecundity, and spirituality. AIM OF THE STUDY Although laboratory and animal studies have been conducted on the healing effects of pomegranate, there needs to be a comprehensive review on its anti-oxidative and anti-inflammatory effects in chronic disorders. We aim to provide a comprehensive review of these effects based on in-vitro, in-vivo, and clinical studies conducted in managing various disorders. MATERIALS AND METHODS A comprehensive search of in-vitro, in-vivo, and clinical findings of pomegranate and its derivatives focusing on the highly qualified original studies and systematic reviews are carried out in valid international web databases, including Web of Science, PubMed, Scopus, and Cochrane Library. RESULTS Relevant studies have demonstrated that pomegranate and its derivatives can modulate the expression and activity of several genes, enzymes, and receptors through influencing oxidative stress and inflammation pathways. Different parts of pomegranate; roots, bark, blossoms, fruits, and leaves contain various bioactive compounds, such as polyphenols, flavonoids, anthocyanins, and ellagitannins, that have preventive and therapeutic effects against many disorders such as cardiovascular diseases, diabetes, neurological diseases, and cancers without any serious adverse effects. CONCLUSIONS Most recent scientific evidence indicates that all parts of the pomegranate can be helpful in treating a wide range of chronic disorders due to its anti-oxidative and anti-inflammatory activities. Since the safety of pomegranate fruit, juice, and extracts is established, further investigations can be designed by targeting its active antioxidant and anti-inflammatory constituents to discover new drugs.
Collapse
Affiliation(s)
- Mahdis Moradnia
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Niyoosha Mohammadkhani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bayan Azizi
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohammadi
- Department of Clinical Pharmacy, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Sholeh Ebrahimpour
- Department of Clinical Pharmacy, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Somayeh Mirsadeghi
- KonadHerbs Co., Sharif Innovation Area, Sharif University of Technology, Tehran, Iran.
| | - Mahsa Ale-Ebrahim
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Abi Sleiman M, Younes M, Hajj R, Salameh T, Abi Rached S, Abi Younes R, Daoud L, Doumiati JL, Frem F, Ishak R, Medawar C, Naim HY, Rizk S. Urtica dioica: Anticancer Properties and Other Systemic Health Benefits from In Vitro to Clinical Trials. Int J Mol Sci 2024; 25:7501. [PMID: 39000608 PMCID: PMC11242153 DOI: 10.3390/ijms25137501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
While conventional medicine has advanced in recent years, there are still concerns about its potential adverse reactions. The ethnopharmacological knowledge established over many centuries and the existence of a variety of metabolites have made medicinal plants, such as the stinging nettle plant, an invaluable resource for treating a wide range of health conditions, considering its minimal adverse effects on human health. The aim of this review is to highlight the therapeutic benefits and biological activities of the edible Urtica dioica (UD) plant with an emphasis on its selective chemo-preventive properties against various types of cancer, whereby we decipher the mechanism of action of UD on various cancers including prostate, breast, leukemia, and colon in addition to evaluating its antidiabetic, microbial, and inflammatory properties. We further highlight the systemic protective effects of UD on the liver, reproductive, excretory, cardiovascular, nervous, and digestive systems. We present a critical assessment of the results obtained from in vitro and in vivo studies as well as clinical trials to highlight the gaps that require further exploration for future prospective studies.
Collapse
Affiliation(s)
- Marc Abi Sleiman
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Maria Younes
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Roy Hajj
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Tommy Salameh
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Samir Abi Rached
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Rimane Abi Younes
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Lynn Daoud
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Jean Louis Doumiati
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Francesca Frem
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Ramza Ishak
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Christopher Medawar
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Hassan Y Naim
- Department of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| |
Collapse
|
6
|
Strekalova T, Radford-Smith D, Dunstan IK, Gorlova A, Svirin E, Sheveleva E, Burova A, Morozov S, Lyundup A, Berger G, Anthony DC, Walitza S. Omega-3 alleviates behavioral and molecular changes in a mouse model of stress-induced juvenile depression. Neurobiol Stress 2024; 31:100646. [PMID: 38912378 PMCID: PMC11190747 DOI: 10.1016/j.ynstr.2024.100646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/29/2024] [Accepted: 05/19/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Depression is increasingly diagnosed in adolescence, necessitating specific prevention and treatment methods. However, there is a lack of animal models mimicking juvenile depression. This study explores a novel model using ultrasound (US) stress in juvenile mice. Methods We employed the US stress model in one-month-old C57/BL6 mice, exposing them to alternating ultrasound frequencies (20-25 kHz and 25-45 kHz) for three weeks. These frequencies correspond to negative and neutral emotional states in rodents and can induce a depressive-like syndrome. Concurrently, mice received either an omega-3 food supplement (FS) containing eicosapentaenoic acid (EPA; 0.55 mg/kg/day) and docosahexaenoic acid (DHA; 0.55 mg/kg/day) or a vehicle. Post-stress, we evaluated anxiety- and depressive-like behaviors, blood corticosterone levels, brain expression of pro-inflammatory cytokines, and conducted metabolome analysis of brain, liver and blood plasma. Results US-exposed mice treated with vehicle exhibited decreased sucrose preference, a sign of anhedonia, a key feature of depression, increased anxiety-like behavior, elevated corticosterone levels, and enhanced TNF and IL-1β gene expression in the brain. In contrast, US-FS mice did not display these changes. Omega-3 supplementation also reduced anxiety-like behavior in non-stressed mice. Metabolomic analysis revealed US-induced changes in brain energy metabolism, with FS increasing brain sphingomyelin. Liver metabolism was affected by both US and FS, while plasma metabolome changes were exclusive to FS. Brain glucose levels correlated positively with activity in anxiety tests. Conclusion Chronic omega-3 intake counteracted depressive- and anxiety-like behaviors in a US model of juvenile depression in mice. These effects likely stem from the anti-inflammatory properties of the supplement, suggesting potential therapeutic applications in juvenile depression.
Collapse
Affiliation(s)
- Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
- Department of Pharmacology, Oxford University, Oxford, UK
| | | | | | - Anna Gorlova
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia
- RUDN University, 6 Miklukho-Maklaya Str, Moscow, Russia
| | - Evgeniy Svirin
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Elisaveta Sheveleva
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Department of Normal Physiology, Sechenov Moscow State Medical University, Moscow, Russia
| | - Alisa Burova
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Sergey Morozov
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Aleksey Lyundup
- RUDN University, 6 Miklukho-Maklaya Str, Moscow, Russia
- Endocrinology Research Centre, Dmitry Ulyanov str. 19, Moscow, 117036, Russia
| | - Gregor Berger
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Zuerich, Zuerich, Switzerland
| | | | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Zuerich, Zuerich, Switzerland
| |
Collapse
|
7
|
Knox D, Parikh V. Basal forebrain cholinergic systems as circuits through which traumatic stress disrupts emotional memory regulation. Neurosci Biobehav Rev 2024; 159:105569. [PMID: 38309497 PMCID: PMC10948307 DOI: 10.1016/j.neubiorev.2024.105569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Contextual and spatial systems facilitate changes in emotional memory regulation brought on by traumatic stress. Cholinergic basal forebrain (chBF) neurons provide input to contextual/spatial systems and although chBF neurons are important for emotional memory, it is unknown how they contribute to the traumatic stress effects on emotional memory. Clusters of chBF neurons that project to the prefrontal cortex (PFC) modulate fear conditioned suppression and passive avoidance, while clusters of chBF neurons that project to the hippocampus (Hipp) and PFC (i.e. cholinergic medial septum and diagonal bands of Broca (chMS/DBB neurons) are critical for fear extinction. Interestingly, neither Hipp nor PFC projecting chMS/DBB neurons are critical for fear extinction. The retrosplenial cortex (RSC) is a contextual/spatial memory system that receives input from chMS/DBB neurons, but whether this chMS/DBB-RSC circuit facilitates traumatic stress effects on emotional memory remain unexplored. Traumatic stress leads to neuroinflammation and the buildup of reactive oxygen species. These two molecular processes may converge to disrupt chBF circuits enhancing the impact of traumatic stress on emotional memory.
Collapse
Affiliation(s)
- Dayan Knox
- Department of Psychological and Brain Sciences, Behavioral Neuroscience Program, University of Delaware, Newark, DE, USA.
| | - Vinay Parikh
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA, USA
| |
Collapse
|
8
|
Hasan HM, Alkass SY, Persike DS. Post-traumatic Stress Disorder: The Influence of the Environmental Context and Analysis of Oxidative Stress and Inflammatory and Glycemic Markers in Women Living in Kurdistan Regional Government-Iraq. Cureus 2024; 16:e56661. [PMID: 38646205 PMCID: PMC11032698 DOI: 10.7759/cureus.56661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Background Internally displaced persons (IDP) camps are still home to a large number of female survivors of the Yazidi genocide carried out in Iraq in 2014 by the Islamic organization known as the Islamic State of Iraq and Syria (ISIS). Many of these women suffer from a persistent form of post-traumatic stress disorder (PTSD), which can last for many years. On the other hand, little is known about the intricate etiology of PTSD. Objectives In this observational cross-sectional study, the biochemical parameters, including inflammatory and oxidative stress (OXS) markers, were evaluated in two groups: the case group (women with newly diagnosed PTSD) and the control group (apparently healthy women). Furthermore, how the environment impacts the biochemical and OXS parameters of people not diagnosed with PTSD but living in IDP camps was also analyzed. Materials and methods The PTSD group (n=55, age=30.0 years) was made up of women survivors of genocide-related events living in IDP camps in the Kurdistan region of Iraq. The studied parameters in the PTSD group have been compared to two healthy control groups: (1) internal control group (n=55, age=28.1 years): healthy women living inside the IDP camps; and (2) external control group (n=55, age=28.3 years): healthy women living outside the IDP camps. The diagnosis of PTSD was conducted using a validated Kurdish version of the PTSD Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) (PCL-5) scale. Blood samples were collected to determine the level of glycated hemoglobin (HbA1c) and the concentrations of fasting serum glucose (FSG), C-reactive protein (CRP), ceruloplasmin (CP), 8-hydroxydeoxyguanosine (8-OHdG), glutathione (GSH), malondialdehyde (MDA), protein carbonyls (PC), and catalase (CAT) activity. Results Women with PTSD presented increased values of FSG (4.41%, p<0.05), HbA1c (4.74%, p<0.05), and CRP (114.29%, p<0.05), as well as increased levels of 8-OHdG (185.97%, p<0.001), CP (27.08%, p<0.001), MDA (141.97%, p<0.001), and PC (63.01%, p<0.001), besides increased CAT activity (121.5%, p<0.001), when compared with the control groups. A significant reduction of GSH (-20.33%, p<0.05) was observed in PTSD patients as compared to the external control group. In relation to the internal control group, women diagnosed with PTSD presented significantly increased levels of FSG (3.88%, p<0.05), HbA1c (2.83%, p<0.05), CRP (77.97%, p<0.05), and PC (41.3%, p<0.05), as well as increased levels of 8-OHdG (118.84%, p<0.001), CP (22.72%, p<0.001), MDA (90.67%, p<0.001), and CAT activity (55.31%, p<0.001). Healthy individuals residing in IDP camps, compared with external healthy control, presented significantly elevated levels of 8-OHdG (30.68%, p<0.001), MDA (26.91%, p<0.001), PC (15.37%, p<0.001), and CAT activity (42.62%, p<0.001). Conclusion Our findings indicate that PTSD significantly influences glycemic, inflammatory, oxidant, and antioxidant parameters, as evidenced by increased levels of FSG, HbA1C, CRP, PC, MDA, 8-OHdG, and CP, as well as increased CAT activity and a reduced GSH concentration in the PTSD group in comparison to the external control group. Additionally, our results suggest that the environmental context in IDP camps by itself can potentially affect oxidant and antioxidant parameters, as evidenced by the increased concentrations of 8-OHdG, MDA, and PC and increased CAT activity found in individuals not diagnosed with PTSD but living inside the camps.
Collapse
Affiliation(s)
- Husni M Hasan
- Department of Medicinal Chemistry, Department of Chemistry, College of Pharmacy, College of Science, University of Duhok, Duhok, IRQ
| | - Suad Y Alkass
- Department of Medicinal Chemistry, College of Pharmacy, University of Duhok, Duhok, IRQ
| | - Daniele S Persike
- Department of Medicinal Chemistry, College of Pharmacy, University of Duhok, Duhok, IRQ
| |
Collapse
|
9
|
Hao W, Gan H, Wang L, Huang J, Chen J. Polyphenols in edible herbal medicine: targeting gut-brain interactions in depression-associated neuroinflammation. Crit Rev Food Sci Nutr 2023; 63:12207-12223. [PMID: 35838146 DOI: 10.1080/10408398.2022.2099808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Supplementing with edible herbal medicine is an important strategy because of its role in nutrition. Many polyphenols, which are universal components in edible herbal medicines, have low bioavailability. Therefore, gut microbiota is a key determinant of polyphenol bioactivity. Polyphenols can alter the abundance of flora associated with neuroinflammation by reversing intestinal microbiota dysbiosis. Intestinal flora-mediated chemical modification of polyphenols can result in their conversion into active secondary metabolites. The current review summarizes the main edible medicines used in anti-depression and details the interactions between polyphenols and gut microbiota; in addition, it provides insights into the mechanisms underlying the possible suppression of neuroinflammation associated with depression, by polyphenols in edible herbal medicine. A better understanding of polyphenols with bioactivities that are crucial in edible herbal medicine may facilitate their use in the prevention and treatment of neuroinflammation associated with depression.
Collapse
Affiliation(s)
- Wenzhi Hao
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Hua Gan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Lu Wang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Junqing Huang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Malik H, Usman M, Arif M, Ahmed Z, Ali G, Rauf K, Sewell RDE. Diosgenin normalization of disrupted behavioral and central neurochemical activity after single prolonged stress. Front Pharmacol 2023; 14:1232088. [PMID: 37663254 PMCID: PMC10468593 DOI: 10.3389/fphar.2023.1232088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction: Post-traumatic stress disorder (PTSD) is a chronic mental illness triggered by traumatic experiences such as wars, natural disasters, or catastrophes, and it is characterized by anxiety, depression and cognitive impairment. Diosgenin is a steroidal sapogenin with known neuroprotective and antioxidant properties. This study aimed to assess the pharmacological potential of diosgenin in a single prolonged stress (SPS) model of PTSD, plus other behavioral models along with any consequent alterations in brain neurochemistry in male mice. Methodology: SPS was induced by restraining animals for 2 h, followed by 20 min of forced swim, recuperation for 15 min, and finally, exposure to ether to induce anesthesia. The SPS-exposed animals were treated with diosgenin (20, 40, and 60 mg/kg) and compared with the positive controls, fluoxetine or donepezil, then they were observed for any changes in anxiety/depression-like behaviors, and cognitive impairment. After behavioral screening, postmortem serotonin, noradrenaline, dopamine, vitamin C, adenosine and its metabolites inosine and hypoxanthine were quantified in the frontal cortex, hippocampus, and striatum by high-performance liquid chromatography. Additionally, animal serum was screened for changes in corticosterone levels. Results: The results showed that diosgenin reversed anxiety- and depression-like behaviors, and ameliorated cognitive impairment in a dose-dependent manner. Additionally, diosgenin restored monoamine and vitamin C levels dose-dependently and modulated adenosine and its metabolites in the brain regions. Diosgenin also reinstated otherwise increased serum corticosterone levels in SPS mice. Conclusion: The findings suggest that diosgenin may be a potential candidate for improving symptoms of PTSD.
Collapse
Affiliation(s)
- Hurmat Malik
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Muhammad Usman
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Mehreen Arif
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Zainab Ahmed
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Robert D. E. Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
11
|
Rao D, Zhao R, Hu Y, Li H, Chun Z, Zheng S. Revealing of Intracellular Antioxidants in Dendrobium nobile by High Performance Liquid Chromatography-Tandem Mass Spectrometry. Metabolites 2023; 13:702. [PMID: 37367860 DOI: 10.3390/metabo13060702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
The medicinal plant Dendrobium nobile is an important natural antioxidant resource. To reveal the antioxidants of D. nobile, high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was employed for metabolic analysis. The H2O2-induced oxidative damage was used in human embryonic kidney 293T (H293T) cells to assess intracellular antioxidant activities. Cells incubated with flower and fruit extracts showed better cell survival, lower levels of reactive oxygen species (ROS), and higher catalase and superoxide dismutase activities than those incubated with root, stem, and leaf extracts (p < 0.01). A total of 13 compounds were newly identified as intracellular antioxidants by association analysis, including coniferin, galactinol, trehalose, beta-D-lactose, trigonelline, nicotinamide-N-oxide, shikimic acid, 5'-deoxy-5'-(methylthio)adenosine, salicylic acid, isorhamnetin-3-O-neohespeidoside, methylhesperidin, 4-hydroxybenzoic acid, and cis-aconitic acid (R2 > 0.8, Log2FC > 1, distribution > 0.1%, and p < 0.01). They showed lower molecular weight and higher polarity, compared to previously identified in vitro antioxidants in D. nobile (p < 0.01). The credibility of HPLC-MS/MS relative quantification was verified by common methods. In conclusion, some saccharides and phenols with low molecular weight and high polarity helped protect H293T cells from oxidative damage by increasing the activities of intracellular antioxidant enzymes and reducing intracellular ROS levels. The results enriched the database of safe and effective intracellular antioxidants in medicinal plants.
Collapse
Affiliation(s)
- Dan Rao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration, Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100041, China
| | - Ruoxi Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration, Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yadong Hu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration, Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Hongjie Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration, Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100041, China
| | - Ze Chun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration, Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Xiong'an Institute of Innovation, Chinese Academy of Sciences, Baoding 071000, China
| | - Shigang Zheng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration, Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
12
|
Chernukha I, Vasilevskaya E, Klimina K, Yunes R, Kupaeva N, Tolmacheva G, Kibitkina A, Danilenko V, Karabanov S, Fedulova L. Effects of ultrasound-induced stress on gut microbiota of mice. Vet World 2023; 16:929-938. [PMID: 37576770 PMCID: PMC10420703 DOI: 10.14202/vetworld.2023.929-938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/10/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Prolonged stress causes deleterious effects on both the organism and its microbiota. In this study, we examined the effects of exposure to variable frequency ultrasound (US) on the gut microbiota-liver-brain axis of mice. Materials and Methods This study was conducted on 20 mature clinically healthy sexually naive C57BL/6J male mice (42-45 days old). Group 1 (Normal) consisted of healthy intact mice (n = 10). Group 2 (Stress) consisted of mice subjected to US-induced stress (n = 10) for 20 days with alternating frequencies (20-45 kHz). Stool samples were collected on days 0, 10, and 20, and the corresponding DNA was later subjected to 16SrRNA sequencing. After mice were sacrificed on day 21, the leukocyte count, blood serum biochemical parameters, and liver and brain antioxidant status were measured. Behavioral testing was performed on days 17, 18, and 19. Results Ultrasound lead to higher stress and anxiety levels; increase in creatinine by 8.29% and gamma-glutamyltransferase activity by 5 times, a decrease in alkaline phosphatase activity by 38.23%, increase of de Ritis coefficient by 21.34%; increased liver and brain superoxide dismutase level by 20.8% and 21.5%, respectively; the stress-related changes in the gut microbiota composition - Bacteroidaceae and Firmicutes. Conclusion Subjecting mice to 20 days of US-induced stress leads to systemic disorders due to oxidative stress and a decrease in the diversity of the gut microbiota.
Collapse
Affiliation(s)
- Irina Chernukha
- Department of Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V.M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Ekaterina Vasilevskaya
- Department of Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V.M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Ksenia Klimina
- Department of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Roman Yunes
- Department of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda Kupaeva
- Department of Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V.M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Galina Tolmacheva
- Department of Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V.M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Anastasiya Kibitkina
- Department of Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V.M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Valery Danilenko
- Department of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Sergey Karabanov
- Department of Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V.M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Liliya Fedulova
- Department of Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V.M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| |
Collapse
|
13
|
Jîtcă G, Ősz BE, Vari CE, Rusz CM, Tero-Vescan A, Pușcaș A. Cannabidiol: Bridge between Antioxidant Effect, Cellular Protection, and Cognitive and Physical Performance. Antioxidants (Basel) 2023; 12:antiox12020485. [PMID: 36830042 PMCID: PMC9952814 DOI: 10.3390/antiox12020485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The literature provides scientific evidence for the beneficial effects of cannabidiol (CBD), and these effects extend beyond epilepsy treatment (e.g., Lennox-Gastaut and Dravet syndromes), notably the influence on oxidative status, neurodegeneration, cellular protection, cognitive function, and physical performance. However, products containing CBD are not allowed to be marketed everywhere in the world, which may ultimately have a negative effect on health as a result of the uncontrolled CBD market. After the isolation of CBD follows the discovery of CB1 and CB2 receptors and the main enzymatic components (diacylglycerol lipase (DAG lipase), monoacyl glycerol lipase (MAGL), fatty acid amino hydrolase (FAAH)). At the same time, the antioxidant potential of CBD is due not only to the molecular structure but also to the fact that this compound increases the expression of the main endogenous antioxidant systems, superoxide dismutase (SOD), and glutathione peroxidase (GPx), through the nuclear complex erythroid 2-related factor (Nrf2)/Keep1. Regarding the role in the control of inflammation, this function is exercised by inhibiting (nuclear factor kappa B) NF-κB, and also the genes that encode the expression of molecules with a pro-inflammatory role (cytokines and metalloproteinases). The other effects of CBD on cognitive function and physical performance should not be excluded. In conclusion, the CBD market needs to be regulated more thoroughly, given the previously listed properties, with the mention that the safety profile is a very good one.
Collapse
Affiliation(s)
- George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Bianca E. Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
- Correspondence:
| | - Camil E. Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Carmen-Maria Rusz
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Amelia Tero-Vescan
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Amalia Pușcaș
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| |
Collapse
|
14
|
Oyagbemi AA, Adebayo AK, Adebiyi OE, Adigun KO, Folarin OR, Esan OO, Ajibade TO, Ogunpolu BS, Falayi OO, Ogunmiluyi IO, Olutayo Omobowale T, Ola-Davies OE, Olopade JO, Saba AB, Adedapo AA, Nkadimeng SM, McGaw LJ, Yakubu MA, Nwulia E, Oguntibeju OO. Leaf extract of Anacardium occidentale ameliorates biomarkers of neuroinflammation, memory loss, and neurobehavioral deficit in N(ω)-nitro-L-arginine methyl ester (L-NAME) treated rats. Biomarkers 2023; 28:263-272. [PMID: 36632742 DOI: 10.1080/1354750x.2022.2164354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE Anacardium occidentale commonly known as Cashew is a plant that is widely used in African traditional medicine. It is endowed with phytochemical constituents that are responsible for its medicinal properties. METHODS Twenty-five male Wistar rats were grouped as follows: Control (Group A), Group B (L-NAME 40 mg/kg), Group C (100 mg/kg Anacardium occidentale extract plus 40 mg/kg L-NAME), Group D (200 mg/kg extract plus 40 mg/kg L-NAME) and Group E (10 mg/kg of Lisinopril plus 40 mg/kg L-NAME). The animals were treated with oral administration of either the extracts or Lisnopril daily for 4 weeks. Neuro-behavioural tests such as the Morris Water Maze and Hanging Wire Grip tests were carried out to evaluate memory/spatial learning and muscular strength, respectively. Makers of oxidative stress, antioxidant enzymes and immunohistochemical staining of Glial Fibrillary Acidic Protein and Ionised Calcium Binding Adaptor molecule 1 were assessed. RESULTS L-NAME administration caused significant increases in biomarkers of oxidative stress, decreased antioxidant status, acetylcholinesterase activity, altered neuro-behavioural changes, astrocytosis, and microgliosis. However, Anacardium occidentale reversed exaggerated oxidative stress biomarkers and improved neuro-behavioural changes. CONCLUSIONS Combining all, Anacardium occidentale enhanced brain antioxidant defence status, improved memory and muscular strength, thus, suggesting the neuroprotective properties of Anacardium occidentale.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adedeji Kolawole Adebayo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olamide Elizabeth Adebiyi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Kabirat Oluwaseun Adigun
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwabusayo Racheal Folarin
- Department of Biomedical Laboratory Sciences, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwaseun Olanrewaju Esan
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Blessing Seun Ogunpolu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Olubunmi Falayi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Iyanuoluwa Omolola Ogunmiluyi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - James Olukayode Olopade
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adebowale Benard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sanah Malomile Nkadimeng
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa Florida Campus, University of South Africa, Roodepoort, South Africa
| | - Lyndy Joy McGaw
- Phytomedicine Programme, Department of Paraclinical Science, University of Pretoria, Faculty of Veterinary Science, Pretoria, South Africa
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, Vascular Biology Unit, Center for Cardiovascular Diseases, COPHS, Texas Southern University, Houston, Texas, USA
| | - Evaristus Nwulia
- Department of Psychiatry and Behavioral Sciences, College of Medicine, Howard University Hospital, Howard University, Washington, District of Columbia, USA
| | - Oluwafemi Omoniyi Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| |
Collapse
|
15
|
Gorlova A, Svirin E, Pavlov D, Cespuglio R, Proshin A, Schroeter CA, Lesch KP, Strekalova T. Understanding the Role of Oxidative Stress, Neuroinflammation and Abnormal Myelination in Excessive Aggression Associated with Depression: Recent Input from Mechanistic Studies. Int J Mol Sci 2023; 24:915. [PMID: 36674429 PMCID: PMC9861430 DOI: 10.3390/ijms24020915] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Aggression and deficient cognitive control problems are widespread in psychiatric disorders, including major depressive disorder (MDD). These abnormalities are known to contribute significantly to the accompanying functional impairment and the global burden of disease. Progress in the development of targeted treatments of excessive aggression and accompanying symptoms has been limited, and there exists a major unmet need to develop more efficacious treatments for depressed patients. Due to the complex nature and the clinical heterogeneity of MDD and the lack of precise knowledge regarding its pathophysiology, effective management is challenging. Nonetheless, the aetiology and pathophysiology of MDD has been the subject of extensive research and there is a vast body of the latest literature that points to new mechanisms for this disorder. Here, we overview the key mechanisms, which include neuroinflammation, oxidative stress, insulin receptor signalling and abnormal myelination. We discuss the hypotheses that have been proposed to unify these processes, as many of these pathways are integrated for the neurobiology of MDD. We also describe the current translational approaches in modelling depression, including the recent advances in stress models of MDD, and emerging novel therapies, including novel approaches to management of excessive aggression, such as anti-diabetic drugs, antioxidant treatment and herbal compositions.
Collapse
Affiliation(s)
- Anna Gorlova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Evgeniy Svirin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
- Neuroplast BV, 6222 NK Maastricht, The Netherlands
| | - Dmitrii Pavlov
- Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Raymond Cespuglio
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Centre de Recherche en Neurosciences de Lyon (CRNL), 69500 Bron, France
| | - Andrey Proshin
- P.K. Anokhin Research Institute of Normal Physiology, 125315 Moscow, Russia
| | - Careen A. Schroeter
- Preventive and Environmental Medicine, Kastanienhof Clinic, 50858 Köln-Junkersdorf, Germany
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
16
|
Aberrant Ganglioside Functions to Underpin Dysregulated Myelination, Insulin Signalling, and Cytokine Expression: Is There a Link and a Room for Therapy? Biomolecules 2022; 12:biom12101434. [PMID: 36291644 PMCID: PMC9599472 DOI: 10.3390/biom12101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Gangliosides are molecules widely present in the plasma membranes of mammalian cells, participating in a variety of processes, including protein organization, transmembrane signalling and cell adhesion. Gangliosides are abundant in the grey matter of the brain, where they are critically involved in postnatal neural development and function. The common precursor of the majority of brain gangliosides, GM3, is formed by the sialylation of lactosylceramide, and four derivatives of its a- and b-series, GM1, GD1a, GD1b and GT1b, constitute 95% of all the brain gangliosides. Impairments in ganglioside metabolism due to genetic abnormalities of GM-synthases are associated with severe neurological disorders. Apart from that, the latest genome-wide association and translational studies suggest a role of genes involved in brain ganglioside synthesis in less pervasive psychiatric disorders. Remarkably, the most recent animal studies showed that abnormal ganglioside functions result in dysregulated neuroinflammation, aberrant myelination and altered insulin receptor signalling. At the same time, these molecular features are well established as accompanying developmental psychiatric disorders such as attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). This led us to hypothesize a role of deficient ganglioside function in developmental neuropsychiatric disorders and warrants further gene association clinical studies addressing this question. Here, we critically review the literature to discuss this hypothesis and focus on the recent studies on ST3GAL5-deficient mice. In addition, we elaborate on the therapeutic potential of various anti-inflammatory remedies for treatment of developmental neuropsychiatric conditions related to aberrant ganglioside functions.
Collapse
|
17
|
Schapovalova O, Gorlova A, de Munter J, Sheveleva E, Eropkin M, Gorbunov N, Sicker M, Umriukhin A, Lyubchyk S, Lesch KP, Strekalova T, Schroeter CA. Immunomodulatory effects of new phytotherapy on human macrophages and TLR4- and TLR7/8-mediated viral-like inflammation in mice. Front Med (Lausanne) 2022; 9:952977. [PMID: 36091684 PMCID: PMC9450044 DOI: 10.3389/fmed.2022.952977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Background While all efforts have been undertaken to propagate the vaccination and develop remedies against SARS-CoV-2, no satisfactory management of this infection is available yet. Moreover, poor availability of any preventive and treatment measures of SARS-CoV-2 in economically disadvantageous communities aggravates the course of the pandemic. Here, we studied a new immunomodulatory phytotherapy (IP), an extract of blackberry, chamomile, garlic, cloves, and elderberry as a potential low-cost solution for these problems given the reported efficacy of herbal medicine during the previous SARS virus outbreak. Methods The key feature of SARS-CoV-2 infection, excessive inflammation, was studied in in vitro and in vivo assays under the application of the IP. First, changes in tumor-necrosis factor (TNF) and lnteurleukin-1 beta (IL-1β) concentrations were measured in a culture of human macrophages following the lipopolysaccharide (LPS) challenge and treatment with IP or prednisolone. Second, chronically IP-pre-treated CD-1 mice received an agonist of Toll-like receptors (TLR)-7/8 resiquimod and were examined for lung and spleen expression of pro-inflammatory cytokines and blood formula. Finally, chronically IP-pre-treated mice challenged with LPS injection were studied for "sickness" behavior. Additionally, the IP was analyzed using high-potency-liquid chromatography (HPLC)-high-resolution-mass-spectrometry (HRMS). Results LPS-induced in vitro release of TNF and IL-1β was reduced by both treatments. The IP-treated mice displayed blunted over-expression of SAA-2, ACE-2, CXCL1, and CXCL10 and decreased changes in blood formula in response to an injection with resiquimod. The IP-treated mice injected with LPS showed normalized locomotion, anxiety, and exploration behaviors but not abnormal forced swimming. Isoquercitrin, choline, leucine, chlorogenic acid, and other constituents were identified by HPLC-HRMS and likely underlie the IP immunomodulatory effects. Conclusions Herbal IP-therapy decreases inflammation and, partly, "sickness behavior," suggesting its potency to combat SARS-CoV-2 infection first of all via its preventive effects.
Collapse
Affiliation(s)
- Olesia Schapovalova
- Caparica Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa, NOVA Lisbon University, Lisbon, Portugal
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University and Neuroplast BV, Maastricht, Netherlands
| | - Anna Gorlova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University and Neuroplast BV, Maastricht, Netherlands
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Cognitive Dysfunctions, Federal Budgetary Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Johannes de Munter
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University and Neuroplast BV, Maastricht, Netherlands
| | - Elisaveta Sheveleva
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Cognitive Dysfunctions, Federal Budgetary Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Mikhail Eropkin
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, St. Petersburg State University, Saint Petersburg, Russia
| | - Nikita Gorbunov
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Michail Sicker
- Rehabilitation Research Unit of Clinic of Bad Kreuzbach, Bad Kreuzbach, Germany
| | - Aleksei Umriukhin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sergiy Lyubchyk
- Caparica Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa, NOVA Lisbon University, Lisbon, Portugal
- EIGES Center, Universidade Lusofona, Lisboa, Portugal
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University and Neuroplast BV, Maastricht, Netherlands
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University and Neuroplast BV, Maastricht, Netherlands
- Laboratory of Cognitive Dysfunctions, Federal Budgetary Institute of General Pathology and Pathophysiology, Moscow, Russia
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
18
|
Lawal SK, Olojede SO, Sulaiman SO, Aladeyelu OS, Moodley R, Naidu ECS, Rennie CO, Azu OO. Tenofovir-silver nanoparticles conjugate ameliorates neurocognitive disorders and protects ultrastructural and cytoarchitectonic properties of the prefrontal cortex in diabetic rats. Bosn J Basic Med Sci 2022; 22:569-579. [PMID: 35122679 PMCID: PMC9392981 DOI: 10.17305/bjbms.2021.6699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/05/2021] [Indexed: 11/16/2022] Open
Abstract
Tenofovir disoproxil fumarate (TDF) is the highly recommended antiretroviral drug in human immunodeficiency virus management. Although research has shown the neurological and metabolic disorders associated with TDF administration, the effect of TDF-silver nanoparticles conjugate (TDF-AgNPs) on the disorders has not been fully elucidated. Thus, this study evaluated the neuroprotective effects of TDF-AgNPs on ultrastructural and cytoarchitectonic properties of the prefrontal cortex (PFC) in diabetic rats. Forty-two adult male Sprague-Dawley rats (250 ± 13 g) were randomly divided into non-diabetic groups (1-3) and diabetic groups (4-6), each administered distilled water (0.5 ml/100g, p.o), TDF (26.8 mg/kg/bw, p.o) or TDF-AgNPs (6.7 mg/kg, i.p). After eight weeks of administration, cognitive function, oxidative injury and tissue inflammation were evaluated. Also, PFC ultrastructure was observed using transmission electron microscopy, Nissl staining and immunohistochemistry. Diabetic rats administered TDF exhibited cognitive deficits; and increases in blood glucose, malondialdehyde and interleukin-1 beta (IL-1β) levels, which correlate with decreases in glutathione level, and superoxide dismutase (SOD) and catalase activities. Furthermore, loss of PFC astrocytes and neuronal organelles was observed. Conversely, TDF-AgNPs administration to diabetic rats improved cognitive deficits; and increased glutathione, SOD, and catalase, but reduced PFC malondialdehyde and IL-1β concentrations. Notably, TDF-AgNPs prevented loss of PFC neurons and astrocytic cells, and morphology aberration of neuronal organelles. This study suggests that TDF-AgNPs attenuated cognitive deficits via silver nanoparticles' antioxidant and anti-inflammatory properties, preventing the loss of PFC astrocytes and neurons. The TDF-AgNPs may be utilized to ameliorate the neurological dysfunction caused by prolonged TDF administration.
Collapse
Affiliation(s)
- Sodiq Kolawole Lawal
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Samuel Oluwaseun Olojede
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Sheu Oluwadare Sulaiman
- Postgraduate Program in Cell Biology and Birbrair Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Minas Gerais, Belo Horizonte, Brazil
| | - Okikioluwa Stephen Aladeyelu
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Roshila Moodley
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Edwin C. Stephen Naidu
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Carmen Olivia Rennie
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Onyemaechi Okpara Azu
- Department of Anatomy, School of Medicine, University of Namibia, Windhoek, Private, Namibia
| |
Collapse
|
19
|
Najmi N, Megantara I, Andriani L, Goenawan H, Lesmana R. Importance of gut microbiome regulation for the prevention and recovery process after SARS-CoV-2 respiratory viral infection (Review). Biomed Rep 2022; 16:25. [PMID: 35251612 PMCID: PMC8889546 DOI: 10.3892/br.2022.1508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/09/2021] [Indexed: 01/08/2023] Open
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been reported to affect organs other than the lungs, including the liver, brain, kidneys and intestine, and gastrointestinal symptoms, such as nausea, vomiting, diarrhea and abdominal discomfort, have also been reported. Thus, SARS-CoV-2 could potentially directly or indirectly regulate the gut microbiome profile and its homeostasis. The abundance of Coprobacillus, Clostridium ramosum and Clostridium are associated with the severity of COVID-19, and Firmicutes, Bacteriodetes, Proteobacteria and Actinobacteria are also related to COVID-19 infection. The four phyla are correlated with the severity of COVID-19 infection in patients. The modulation of factors that control the physiological growth of the gut microbiome will determine the proportionate ratio of microbiome types (profile). Taken together, gut microbiome profile alterations in COVID-19 patients may have a cross effect with the modulation of cytokine levels in COVID-19 infection. With these findings, several factors that regulate gut microbiome homeostasis may support the degree of the clinical symptoms and hasten the recovery process after COVID-19 infection.
Collapse
Affiliation(s)
- Nuroh Najmi
- Department of Oral Biology, Faculty of Dentistry, Universitas Padjadjaran, Bandung, West Java 45363, Indonesia
- Division of Biological Activty Central Laboratory, Universitas Padjadjaran, Bandung, West Java 45363, Indonesia
| | - Imam Megantara
- Division of Biological Activty Central Laboratory, Universitas Padjadjaran, Bandung, West Java 45363, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java 45363, Indonesia
| | - Lovita Andriani
- Faculty of Animal Husbandry, Universitas Padjadjaran, Bandung, West Java 45363, Indonesia
| | - Hanna Goenawan
- Division of Biological Activty Central Laboratory, Universitas Padjadjaran, Bandung, West Java 45363, Indonesia
- Department of Biomedical Sciences, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java 45363, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Bandung, West Java 45363, Indonesia
| | - Ronny Lesmana
- Division of Biological Activty Central Laboratory, Universitas Padjadjaran, Bandung, West Java 45363, Indonesia
- Department of Biomedical Sciences, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java 45363, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Bandung, West Java 45363, Indonesia
| |
Collapse
|
20
|
Karbownik MS, Mokros Ł, Kowalczyk E. Who Benefits from Fermented Food Consumption? A Comparative Analysis between Psychiatrically Ill and Psychiatrically Healthy Medical Students. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3861. [PMID: 35409544 PMCID: PMC8997937 DOI: 10.3390/ijerph19073861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022]
Abstract
Probiotic therapies and fermented food diets hold promise for improving mental health. Although in this regard psychiatric patients appear to benefit more than healthy individuals, no research has been performed to directly evaluate this hypothesis. The present study examined a cohort of medical students facing a stressful event, and some of the students reported suffering from chronic psychiatric diseases. The amount of fermented food consumption was calculated with the use of seven-day dietary records, while depressive and anxiety symptoms were assessed with the use of the Patient Health Questionnaire-9 and Generalized Anxiety Disorder-7, respectively. In psychiatrically healthy medical students under psychological stress (n = 372), higher fermented food consumption was associated with more depressive and anxiety symptoms. In contrast, psychiatrically ill medical students (n = 25, 6.3% of all the participants) were found to present a negative association between the amount of fermented food consumed and the severity of depressive symptoms (adjusted β -0.52, 95% CI -0.85 to -0.19, p = 0.0042); however, this relationship was insignificant for anxiety symptoms (adjusted β -0.22, 95% CI -0.59 to 0.15, p = 0.22). A significant interaction was found between the consumption of fermented food and psychiatric diagnosis in predicting depressive symptoms (p = 0.0001), and a borderline significant interaction for anxiety symptoms (p = 0.053). In conclusion, psychiatrically ill people, but not healthy ones, may benefit from fermented food consumption in terms of alleviation of depressive symptoms. Our findings require cautious interpretation and further investigation.
Collapse
Affiliation(s)
- Michał Seweryn Karbownik
- Department of Pharmacology and Toxicology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland;
| | - Łukasz Mokros
- Department of Clinical Pharmacology, Medical University of Lodz, Kopcińskiego 22, 90-153 Lodz, Poland;
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland;
| |
Collapse
|
21
|
Svirin E, Veniaminova E, Costa-Nunes JP, Gorlova A, Umriukhin A, Kalueff AV, Proshin A, Anthony DC, Nedorubov A, Tse ACK, Walitza S, Lim LW, Lesch KP, Strekalova T. Predation Stress Causes Excessive Aggression in Female Mice with Partial Genetic Inactivation of Tryptophan Hydroxylase-2: Evidence for Altered Myelination-Related Processes. Cells 2022; 11:1036. [PMID: 35326487 PMCID: PMC8947002 DOI: 10.3390/cells11061036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
The interaction between brain serotonin (5-HT) deficiency and environmental adversity may predispose females to excessive aggression. Specifically, complete inactivation of the gene encoding tryptophan hydroxylase-2 (Tph2) results in the absence of neuronal 5-HT synthesis and excessive aggressiveness in both male and female null mutant (Tph2-/-) mice. In heterozygous male mice (Tph2+/-), there is a moderate reduction in brain 5-HT levels, and when they are exposed to stress, they exhibit increased aggression. Here, we exposed female Tph2+/- mice to a five-day rat predation stress paradigm and assessed their emotionality and social interaction/aggression-like behaviors. Tph2+/- females exhibited excessive aggression and increased dominant behavior. Stressed mutants displayed altered gene expression of the 5-HT receptors Htr1a and Htr2a, glycogen synthase kinase-3 β (GSK-3β), and c-fos as well as myelination-related transcripts in the prefrontal cortex: myelin basic protein (Mbp), proteolipid protein 1 (Plp1), myelin-associated glycoprotein (Mag), and myelin oligodendrocyte glycoprotein (Mog). The expression of the plasticity markers synaptophysin (Syp) and cAMP response element binding protein (Creb), but not AMPA receptor subunit A2 (GluA2), were affected by genotype. Moreover, in a separate experiment, naïve female Tph2+/- mice showed signs of enhanced stress resilience in the modified swim test with repeated swimming sessions. Taken together, the combination of a moderate reduction in brain 5-HT with environmental challenges results in behavioral changes in female mice that resemble the aggression-related behavior and resilience seen in stressed male mutants; additionally, the combination is comparable to the phenotype of null mutants lacking neuronal 5-HT. Changes in myelination-associated processes are suspected to underpin the molecular mechanisms leading to aggressive behavior.
Collapse
Affiliation(s)
- Evgeniy Svirin
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands; (E.S.); (K.-P.L.)
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Würzburg, Germany
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Ekaterina Veniaminova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
| | - João Pedro Costa-Nunes
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
- Institute of Molecular Medicine, New University of Lisbon, 1649-028 Lisbon, Portugal
| | - Anna Gorlova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
| | - Aleksei Umriukhin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
| | - Allan V. Kalueff
- Neuroscience Program, Sirius University, 354340 Sochi, Russia;
- Moscow Institute of Physics and Technology, School of Biological and Medical Physics, 141701 Dolgoprudny, Russia
- Institute of Natural Sciences, Ural Federal University, 620002 Yekaterinburg, Russia
| | - Andrey Proshin
- P.K. Anokhin Research Institute of Normal Physiology, 125315 Moscow, Russia;
| | - Daniel C. Anthony
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
- Department of Pharmacology, Oxford University, Oxford OX1 3QT, UK
| | - Andrey Nedorubov
- Institute of Translational Medicine and Biotechnology, Sechenov University, 119991 Moscow, Russia;
| | - Anna Chung Kwan Tse
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China;
| | - Susanne Walitza
- Department for Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, 8032 Zurich, Switzerland;
| | - Lee Wei Lim
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China;
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands; (E.S.); (K.-P.L.)
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Würzburg, Germany
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands; (E.S.); (K.-P.L.)
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
| |
Collapse
|
22
|
Strekalova T, Pavlov D, Trofimov A, Anthony DC, Svistunov A, Proshin A, Umriukhin A, Lyundup A, Lesch KP, Cespuglio R. Hippocampal Over-Expression of Cyclooxygenase-2 (COX-2) Is Associated with Susceptibility to Stress-Induced Anhedonia in Mice. Int J Mol Sci 2022; 23:2061. [PMID: 35216176 PMCID: PMC8879061 DOI: 10.3390/ijms23042061] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
The phenomenon of individual variability in susceptibility/resilience to stress and depression, in which the hippocampus plays a pivotal role, is attracting increasing attention. We investigated the potential role of hippocampal cyclooxygenase-2 (COX-2), which regulates plasticity, neuroimmune function, and stress responses that are all linked to this risk dichotomy. We used a four-week-long chronic mild stress (CMS) paradigm, in which mice could be stratified according to their susceptibility/resilience to anhedonia, a key feature of depression, to investigate hippocampal expression of COX-2, a marker of microglial activation Iba-1, and the proliferation marker Ki67. Rat exposure, social defeat, restraints, and tail suspension were used as stressors. We compared the effects of treatment with either the selective COX-2 inhibitor celecoxib (30 mg/kg/day) or citalopram (15 mg/kg/day). For the celecoxib and vehicle-treated mice, the Porsolt test was used. Anhedonic (susceptible) but not non-anhedonic (resilient) animals exhibited elevated COX-2 mRNA levels, increased numbers of COX-2 and Iba-1-positive cells in the dentate gyrus and the CA1 area, and decreased numbers of Ki67-positive cells in the subgranular zone of the hippocampus. Drug treatment decreased the percentage of anhedonic mice, normalized swimming activity, reduced behavioral despair, and improved conditioned fear memory. Hippocampal over-expression of COX-2 is associated with susceptibility to stress-induced anhedonia, and its pharmacological inhibition with celecoxib has antidepressant effects that are similar in size to those of citalopram.
Collapse
Affiliation(s)
- Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.T.); (K.-P.L.)
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
| | - Dmitrii Pavlov
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
- Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Alexander Trofimov
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.T.); (K.-P.L.)
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
| | - Daniel C. Anthony
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
| | - Andrei Svistunov
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
| | - Andrey Proshin
- P.K. Anokhin Research Institute of Normal Physiology, 125315 Moscow, Russia;
| | - Aleksei Umriukhin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
| | - Alexei Lyundup
- Research and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.T.); (K.-P.L.)
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Wuerzburg, Germany
| | - Raymond Cespuglio
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
- Centre de Recherche en Neurosciences de Lyon (CRNL), 69500 Bron, France
| |
Collapse
|