1
|
Li S, Wang S, Zhu Y, Mu R, Wang T, Zhen Y, Si H, Du R, Li Z. In vitro dynamics of rumen microbiota and fermentation profiles with Antler growth of Sika deer. Microbiol Spectr 2025:e0282924. [PMID: 39873531 DOI: 10.1128/spectrum.02829-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025] Open
Abstract
The rumen microbiota plays a vital role in the nutrient metabolism affecting the growth of velvet antler. However, the fermentation patterns and dynamics of the rumen microbiota across growth stages of velvet antler remain largely unexplored. Here, we employed an in vitro fermentation approach to assess fermentation parameters and microbial composition in the rumen liquid of sika deer during the early growth (EG), metaphase growth (MG), and fast growth (FG) phases . Our findings indicated that the levels of short-chain fatty acids (SCFAs), ammonia nitrogen, and gas production increased over fermentation time in all three groups. The concentrations of total SCFAs, ammonia nitrogen, and gas production, along with the proportions of butyrate, isobutyrate, and isovalerate, were markedly higher in the MG and FG groups compared with the EG group. Principal coordinate analysis highlighted significant variations in microbial communities among the EG, MG, and FG groups during the fermentation process. The abundances of Stomatobaculum and Blautia across the three groups increased over fermentation time, whereas Bacteroides, Lawsonibacter, Sporobacter, Papillibacter, Butyricicoccus, and Succiniclasticum exhibited higher abundances in MG or FG groups than in the EG group after 24 hours of fermentation. Co-occurrence network analysis uncovered positive correlations between butyrate levels and butyrate-producing bacteria (Stomatobaculum, Butyrivibrio) in the MG and FG groups. Additionally, there were positive correlations between proteolytic bacteria (Clostridium and Roseburia) and branched-chain volatile fatty acids in the FG group. These findings shed light on the fermentation patterns and microbial dynamics within the rumen of sika deer during different growth periods of velvet antler.IMPORTANCEVelvet antlers are distinctive and rapidly growing organs that hold significant value in traditional medicine. Through in vitro analysis, our study characterized the dynamics of microbiota and metabolites within the rumen liquid fermentation of sika deer throughout the different antler growth phase. We identified distinct microbial communities at various fermentation time points and observed shifts in fermentation patterns that paralleled antler development. These findings suggest a potentially pivotal role for these microbial dynamics in facilitating the growth process of velvet antlers.
Collapse
Affiliation(s)
- Songze Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Shaoying Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuhang Zhu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ruina Mu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Tao Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yuguo Zhen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Huazhe Si
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Rui Du
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun, China
| | - Zhipeng Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun, China
| |
Collapse
|
2
|
Shen Y, Li W, Kai L, Fan Y, Wu Y, Wang F, Wang Y, Lu Z. Effects of dietary metabolizable energy and crude protein levels on production performance, meat quality and cecal microbiota of Taihe Silky Fowl during growing period. Poult Sci 2025; 104:104654. [PMID: 39693962 PMCID: PMC11719373 DOI: 10.1016/j.psj.2024.104654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024] Open
Abstract
This experiment aimed to investigate the effects of dietary metabolizable energy (ME) and crude protein (CP) levels and their interaction on the performance, meat quality, and cecal microbiota of Taihe Silky Fowl (Gallus gallus domesticus Brisson) during the growing period. A total of 2160 55-day-old Taihe Silky Fowl (half male and half female) were randomly divided into 9 groups with 6 replicates per group and 40 chickens per replicate. The fowl were fed with a 3 × 3 factor diet (ME: 11.7 MJ/kg, 12.1 MJ/kg, 12.6 MJ/kg; CP: 17.0%, 18.0%, 19.0%). The results showed as follows: with the increase of dietary ME level, the average daily feed intake (ADFI) and feed conversion ratio (FCR) of Taihe Silky Fowl during the growing period were significantly decreased (P < 0.05), reaching the lowest value in 12.6 MJ/kg group, which were decreased by 5.86% and 8.41% compared with 11.7 MJ/kg group, respectively. The dressing percentage and half-eviscerated yield rate were significantly increased (P < 0.01), with no significant difference between 12.1 and 12.6 MJ/kg groups. Dietary CP level and the interaction between ME and CP had no significant effects on growth performance, slaughter performance, organ index, serum biochemical indexes and meat quality of Taihe Silky Fowl during growing period. The richness and diversity of cecal microbiota decreased gradually with the increase of dietary ME level, and the community structure changed significantly (P < 0.05). High ME diet (12.6 MJ/kg) significantly increased the abundance of Bacteroides (P < 0.05), especially the genus Alistipes, which may indirectly improve nutrient absorption efficiency and overall health status of Taihe Silky Fowl through its metabolites and effects on intestinal microbial community structure, thereby reducing FCR. In conclusion, the optimal production performance and economic benefits can be obtained when the diet ME is 12.6 MJ/kg and CP is 17.0%.
Collapse
Affiliation(s)
- Yutian Shen
- National Engineering Research Centre for Green Feed and Healthy Farming, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310058, China; College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Taihe Silky Fowl Industrial Technology Joint Research Center of Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wentao Li
- National Engineering Research Centre for Green Feed and Healthy Farming, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310058, China; College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Taihe Silky Fowl Industrial Technology Joint Research Center of Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lixia Kai
- National Engineering Research Centre for Green Feed and Healthy Farming, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310058, China; College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Taihe Silky Fowl Industrial Technology Joint Research Center of Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuqing Fan
- Taihe Silky Fowl Industry Development Center of Taihe County, Jian, Jiangxi 343700, China
| | - Youping Wu
- Taihe Aoxin Silky Fowl Development Co., Ltd, Taihe County, Ji'an, Jiangxi 343700, China
| | - Fengqin Wang
- National Engineering Research Centre for Green Feed and Healthy Farming, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310058, China; College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Taihe Silky Fowl Industrial Technology Joint Research Center of Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yizhen Wang
- National Engineering Research Centre for Green Feed and Healthy Farming, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310058, China; College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Taihe Silky Fowl Industrial Technology Joint Research Center of Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zeqing Lu
- National Engineering Research Centre for Green Feed and Healthy Farming, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310058, China; College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Taihe Silky Fowl Industrial Technology Joint Research Center of Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
3
|
Li S, Mu R, Zhu Y, Zhao F, Qiu Q, Si H, Wright ADG, Li Z. Shifts in the microbial community and metabolome in rumen ecological niches during antler growth. Comput Struct Biotechnol J 2024; 23:1608-1618. [PMID: 38680874 PMCID: PMC11047195 DOI: 10.1016/j.csbj.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 05/01/2024] Open
Abstract
Antlers are hallmark organ of deer, exhibiting a relatively high growth rate among mammals, and requiring large amounts of nutrients to meet its development. The rumen microbiota plays key roles in nutrient metabolism. However, changes in the microbiota and metabolome in the rumen during antler growth are largely unknown. We investigated rumen microbiota (liquid, solid, ventral epithelium, and dorsal epithelium) and metabolic profiles of sika deer at the early (EG), metaphase (MG) and fast growth (FG) stages. Our data showed greater concentrations of acetate and propionate in the rumens of sika deer from the MG and FG groups than in those of the EG group. However, microbial diversity decreased during antler growth, and was negatively correlated with short-chain fatty acid (SCFA) levels. Prevotella, Ruminococcus, Schaedlerella and Stenotrophomonas were the dominant bacteria in the liquid, solid, ventral epithelium, and dorsal epithelium fractions. The proportions of Stomatobaculum, Succiniclasticum, Comamonas and Anaerotruncus increased significantly in the liquid or dorsal epithelium fractions. Untargeted metabolomics analysis revealed that the metabolites also changed significantly, revealing 237 significantly different metabolites, among which the concentrations of γ-aminobutyrate and creatine increased during antler growth. Arginine and proline metabolism and alanine, aspartate and glutamate metabolism were enhanced. The co-occurrence network results showed that the associations between the rumen microbiota and metabolites different among the three groups. Our results revealed that the different rumen ecological niches were characterized by distinct microbiota compositions, and the production of SCFAs and the metabolism of specific amino acids were significantly changed during antler growth.
Collapse
Affiliation(s)
- Songze Li
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Ruina Mu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yuhang Zhu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Fei Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710100, China
| | - Huazhe Si
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| | | | - Zhipeng Li
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
4
|
Pinto MMF, Lima PDO, Gonçalves JDS, Costa TF, de Araújo TLAC, Souza ITDN, Melo VLDL, de Macedo MF, Van Cleef EHCB, de Lima Júnior DM. Growth performance and body composition of feedlot lambs fed refused melon fruit. Trop Anim Health Prod 2024; 56:378. [PMID: 39527159 DOI: 10.1007/s11250-024-04228-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
This study aimed to evaluate the effect of replacing corn grain with refused melon fruit (RMF) in the diet on the intake and digestibility of nutrients, performance, carcass characteristics, and physical-chemical attributes of meat from lambs finished in feedlot. We used 30 male lambs of the Santa Inês breed, not castrated, with 18.3 ± 1.1 kg body weight and 120 days of life, feedlot in individual stalls for 71 days. The animals were fed at will with treatment diets containing 0 g/kg (control, without RMF), 100, 200, 300, or 400 g/kg of RMF in the dry matter of the total diet, in a forage: concentrate ratio of 30:70. There was a significant decrease (P < 0.05) in the intake of dry matter, neutral detergent fiber, non-fibrous carbohydrates, and metabolizable energy of the lambs receiving diets with the inclusion of RMF. The inclusion of RMF significantly decreased (P < 0.05) the final weight, average daily gain, and gross feed efficiency but did not influence (P > 0.05) the carcass weight and tissue composition of the shoulder. There was no significant effect (P > 0.05) of the inclusion of RMF on the physical-chemical characteristics of the meat, but the moisture content of the meat increased significantly (P < 0.05) with increasing RMF in the diet. We recommend including up to 300 g/kg of RMF in diets for lambs formulated to gain 0.2 kg/day and with a 30:70 forage: concentrate ratio.
Collapse
Affiliation(s)
- Marcia Marcila Fernandes Pinto
- Universidade Federal Rural do Semi-Árido, Francisco Mota Street, Costa e Silva, Mossoró, Rio Grande do Norte, 59625-900, Brazil
| | - Patrícia de Oliveira Lima
- Universidade Federal Rural do Semi-Árido, Francisco Mota Street, Costa e Silva, Mossoró, Rio Grande do Norte, 59625-900, Brazil
| | - Josemir de Souza Gonçalves
- Universidade Federal Rural do Semi-Árido, Francisco Mota Street, Costa e Silva, Mossoró, Rio Grande do Norte, 59625-900, Brazil
| | - Thais Freitas Costa
- Universidade Federal Rural do Semi-Árido, Francisco Mota Street, Costa e Silva, Mossoró, Rio Grande do Norte, 59625-900, Brazil
| | | | | | - Vitor Lucas de Lima Melo
- Universidade Federal Rural do Semi-Árido, Francisco Mota Street, Costa e Silva, Mossoró, Rio Grande do Norte, 59625-900, Brazil
| | - Michelly Fernandes de Macedo
- Universidade Federal Rural do Semi-Árido, Francisco Mota Street, Costa e Silva, Mossoró, Rio Grande do Norte, 59625-900, Brazil
| | | | - Dorgival Morais de Lima Júnior
- Universidade Federal Rural do Semi-Árido, Francisco Mota Street, Costa e Silva, Mossoró, Rio Grande do Norte, 59625-900, Brazil.
| |
Collapse
|
5
|
Palmonari A, Federiconi A, Formigoni A. Animal board invited review: The effect of diet on rumen microbial composition in dairy cows. Animal 2024; 18:101319. [PMID: 39305824 DOI: 10.1016/j.animal.2024.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024] Open
Abstract
Ruminants play an important part in the food supply chain, and manipulating rumen microbiota is important to maximising ruminants' production. Rumen microbiota through rumen fermentation produces as major end products volatile fatty acids that provide animal's energy requirements, and microbial CP. Diet is a key factor that can manipulate rumen microbiota, and each variation of the physical and chemical composition creates a specific niche that selects specific microbes. Alteration in the chemical composition of forage, the addition of concentrates in the diet, or the inclusion of plant extract and probiotics, can induce a change in rumen microbiota. High-throughput sequencing technologies are the approaches utilised to investigate the microbial system. Also, the application of omics technologies allows us to understand rumen microbiota composition and these approaches are useful to improve selection programmes. The aim of this review was to summarise the knowledge about rumen microbiota, its role in nutrient metabolism, and how diet can influence its composition.
Collapse
Affiliation(s)
- A Palmonari
- Department of Veterinary Medical Science, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy.
| | - A Federiconi
- Department of Veterinary Medical Science, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy
| | - A Formigoni
- Department of Veterinary Medical Science, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy
| |
Collapse
|
6
|
Nehra C, Harshini V, Shukla N, Chavda P, Savaliya K, Patil S, Shah T, Pandit R, Patil NV, Patel AK, Kachhawaha S, Kumawat RN, Joshi M, Joshi CG. Moringa leaf meal exerts growth benefits in small ruminants through modulating the gastrointestinal microbiome. Appl Microbiol Biotechnol 2024; 108:438. [PMID: 39133323 PMCID: PMC11319387 DOI: 10.1007/s00253-024-13265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
This study investigated the impact of feeding 17% moringa leaf meal (MLM) on the ruminal and fecal microbial composition and body weight gain (BWG) performance of lambs (Ovis aries) and kids (Capra hircus). A total of n = 28 lambs (n = 14, no-moringa, n = 14, 17% moringa) and 24 kids (n = 12, no-moringa, n = 12, 17% moringa) were involved in the experiment and body weight was recorded fortnightly. Metagenomic shotgun sequencing was performed on 28, 22, and 26 ruminal solid, liquid fraction, and fecal samples from lambs, and 23, 22, and 23 samples from kids. Moringa supplementation significantly increased BWG in lambs (21.09 ± 0.78 to 26.12 ± 0.81 kg) and kids (14.60 ± 1.29 to 18.28 ± 1.09 kg) (p-value ≤ 0.01). Microbiome analysis revealed an elevated Firmicutes:Bacteroidetes ratio in the moringa diet group. Moringa-fed animals exhibited increased microbial genera associated with volatile fatty acids (VFAs) production (Prevotella, Anaerovibrio, Lachnospiraceae, Butyrivibrio, Christensenella) and starch and fiber digesters (Proteobacteria, Ruminococcus). The increase in the bacterial genus Sharpea suggested possible methane reduction and decreased proportion of pathogens, Aliarcobacter_ID28198, Campylobacter_ID194 and Campylobacter_ID1660076 suggest health benefits. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated significant alterations in microbial gene pool and metabolic pathways related to carbohydrate, protein, lipid and energy metabolism, indicating potential improvements in animal health. Overall, moringa feeding showed higher energy recovery, improved growth, and potential benefits in methane reduction and reduced pathogenic bacteria.
Collapse
Affiliation(s)
- Chitra Nehra
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Vemula Harshini
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Nitin Shukla
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Priyank Chavda
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Kaksha Savaliya
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Sonal Patil
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Tejas Shah
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Ramesh Pandit
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Niteen V Patil
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - Ashutosh K Patel
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | | | - Ram N Kumawat
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | | |
Collapse
|
7
|
Dong JN, Zhao ZK, Wang ZQ, Li SZ, Zhang YP, Sun Z, Qin GX, Zhang XF, Zhao W, Aschalew ND, Wang T, Zhen YG. Impact of deoxynivalenol on rumen function, production, and health of dairy cows: Insights from metabolomics and microbiota analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133376. [PMID: 38159518 DOI: 10.1016/j.jhazmat.2023.133376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/17/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Deoxynivalenol contamination in feed and food, pervasive from growth, storage, and processing, poses a significant risk to dairy cows, particularly when exposed to a high-starch diet; however, whether a high-starch diet exacerbates these negative effects remains unclear. Therefore, we investigated the combined impact of deoxynivalenol and dietary starch on the production performance, rumen function, and health of dairy cows using metabolomics and 16 S rRNA sequencing. Our findings suggested that both high- and low-starch diets contaminated with deoxynivalenol significantly reduced the concentration of propionate, isobutyrate, valerate, total volatile fatty acids (TVFA), and microbial crude protein (MCP) concentrations, accompanied by a noteworthy increase in NH3-N concentration in vitro and in vivo (P < 0.05). Deoxynivalenol altered the abundance of microbial communities in vivo, notably affecting Oscillospiraceae, Lachnospiraceae, Desulfovibrionaceae, and Selenomonadaceae. Additionally, it significantly downregulated lecithin, arachidonic acid, valine, leucine, isoleucine, arginine, and proline metabolism (P < 0.05). Furthermore, deoxynivalenol triggered oxidative stress, inflammation, and dysregulation in immune system linkage, ultimately compromising the overall health of dairy cows. Collectively, both high- and low-starch diets contaminated with deoxynivalenol could have detrimental effects on rumen function, posing a potential threat to production performance and the overall health of cows. Notably, the negative effects of deoxynivalenol are more pronounced with a high-starch diet than a low-starch diet.
Collapse
Affiliation(s)
- Jia-Nan Dong
- College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Zhi-Kun Zhao
- College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Zhan-Qing Wang
- College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Song-Ze Li
- College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Yong-Peng Zhang
- College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China; Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science & Technology Co., Ltd, Changchun 130118, PR China
| | - Zhe Sun
- College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China; Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science & Technology Co., Ltd, Changchun 130118, PR China; College of Life Science, Jilin Agricultural University, Changchun 130118, PR China
| | - Gui-Xin Qin
- College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Xue-Feng Zhang
- College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China; Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science & Technology Co., Ltd, Changchun 130118, PR China
| | - Wei Zhao
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science & Technology Co., Ltd, Changchun 130118, PR China
| | - Natnael Demelash Aschalew
- College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Tao Wang
- College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China; Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science & Technology Co., Ltd, Changchun 130118, PR China.
| | - Yu-Guo Zhen
- College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China; Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science & Technology Co., Ltd, Changchun 130118, PR China.
| |
Collapse
|
8
|
Alam MA, Hossain MJ, Sohidullah M, Khan MSR, Islam KMS. Isolation and characterization of strictly anaerobic cellulolytic rumen bacterial species from Sahiwal cattle. J Adv Vet Anim Res 2024; 11:1-8. [PMID: 38680814 PMCID: PMC11055587 DOI: 10.5455/javar.2024.k740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 05/01/2024] Open
Abstract
Objective To isolate and characterize cellulolytic rumen bacteria from the rumen of Sahiwal cattle using rumen bacterial inoculum to increase the nutritional value of rice bran used as broiler feed. Materials and Methods The ruminal liquid was kept at an optimal pH of 6.9 and a redox potential of less than -300 mV while being incubated anaerobically at 39°C in a medium containing rumen fluid glucose cellobiose agar. By using the Hungate technique, the organisms were detected based on their morphological, physiological, biochemical, and molecular testing. Results The findings revealed that the isolated Ruminococcus albus, and Ruminococcus flavifaciens were obligate anaerobic, generally Gram-positive, nonmotile cocci or rod, single or pair, occasionally short chain, producing yellow pigment when grown on cellulose, and having a clear zone around the colonies. Both isolate fermented sugars such as cellobiose, glucose, and lactose, as well as decomposed xylan. The results also showed that the isolates recognized as Ruminococcus spp., a cellulolytic rumen bacterium, were catalase-negative, indole-negative, and gelatin liquefaction-positive. Conclusion Isolation and characterization of Ruminococcus spp. may be helpful for Bangladesh in reducing the cost of producing poultry feed and circumventing restrictions on rice bran use. We can also develop more efficient and long-lasting plans to enhance poultry performance and feed efficiency, as well as increase the nutritional value of rice bran used as broiler feed, by understanding how various Ruminococcus spp. function in this process.
Collapse
Affiliation(s)
- Muhammad Ashiqul Alam
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Department of Microbiology and Public Health, Khulna Agricultural University, Khulna, Bangladesh
| | - Md. Jannat Hossain
- Department of Microbiology and Public Health, Khulna Agricultural University, Khulna, Bangladesh
| | - M. Sohidullah
- Department of Microbiology and Public Health, Khulna Agricultural University, Khulna, Bangladesh
| | - Md. Shahidur Rahman Khan
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Khan Md. Shaiful Islam
- Department of Animal Nutrition, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
9
|
Meng X, Shu Q. Novel primers to identify a wider diversity of butyrate-producing bacteria. World J Microbiol Biotechnol 2024; 40:76. [PMID: 38252387 DOI: 10.1007/s11274-023-03872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
Butyrate-producing bacteria are a functionally important part of the intestinal tract flora, and the resulting butyric acid is essential for maintaining host intestinal health, regulating the immune system, and influencing energy metabolism. However, butyrate-producing bacteria have not been defined as a coherent phylogenetic group. They are primarily identified using primers for key genes in the butyrate-producing pathway, and their use has been limited to the Bacillota and Bacteroidetes phyla. To overcome this limitation, we developed functional gene primers able to identify butyrate-producing bacteria through the butyrate kinase gene, which encodes the enzyme involved in the final step of the butyrate-producing pathway. Genomes extracted from human and rat feces were used to amplify the target genes through PCR. The obtained sequences were analyzed using BLASTX to construct a developmental tree using the MEGA software. The newly designed butyrate kinase gene primers allowed to recognize a wider diversity of butyrate-producing bacteria than that recognized using currently available primers. Specifically, butyrate-producing bacteria from the Synergistota and Spirochaetota phyla were identified for the first time using these primers. Thus, the developed primers provide a more accurate method for researchers and doctors to identify potential butyrate-producing bacteria and deepen our understanding of butyrate-producing bacterial species.
Collapse
Affiliation(s)
- Xianbin Meng
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Qinglong Shu
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
| |
Collapse
|
10
|
Nayohan S, Sekoguchi M, Nishikawa Y, Matamura M, Jayanegara A, Matsui H, Kondo M. In vitro rumen fermentation characteristics of bakery by-products containing high starch and sugar. Anim Sci J 2024; 95:e14000. [PMID: 39340206 DOI: 10.1111/asj.14000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/10/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Abstract
The objectives of this study were to evaluate the nutritional characteristics of bakery by-products (castella, pancake, baumkuchen) and their effect on rumen fermentation in vitro as compared with steam-flaked corn and barley as human-edible grains. The fermentation pattern of sugar and starch as pure components was also investigated. Additionally, rumen pH was evaluated using a low-capacity buffer. Bakery by-products contained high sugar (212-590 g/kg DM) and starch (262-545 g/kg DM). Castella exhibited the highest sugar content, whereas pancake and baumkuchen were rich in starch and ether extract within bakery by-products, respectively. The gas production rate at the early phase of incubation was higher in bakery by-products than in grains, and the highest in castella among all feeds. Bakery by-products produced higher total organic acids and propionate than grains. Bakery by-products also exhibited a lower rumen pH than grains during twenty-four hours of incubation with a low-capacity buffer. As pure components, sucrose showed a higher gas production rate and lower pH than starch. Overall, compared with grains, bakery by-products have the potential not only to supply more energy to ruminants but also decrease rumen pH because sugar and starch in bakery by-products ferment rapidly and produce higher organic acids in the rumen.
Collapse
Affiliation(s)
- Sandi Nayohan
- Department of Bioresources, Mie University, Tsu, Mie, Japan
| | - Miyu Sekoguchi
- Department of Bioresources, Mie University, Tsu, Mie, Japan
| | | | | | - Anuraga Jayanegara
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor, West Java, Indonesia
| | - Hiroki Matsui
- Department of Bioresources, Mie University, Tsu, Mie, Japan
| | - Makoto Kondo
- Department of Bioresources, Mie University, Tsu, Mie, Japan
| |
Collapse
|
11
|
Dos Santos IJ, Junior PCGD, Vicente ACS, Alves AL, de Assis RG, Biava JS, Nogueira MVVA, Pires AV, Ferreira EM. Orange molasses as a new energy ingredient for feedlot lambs in Brazil. Trop Anim Health Prod 2023; 55:257. [PMID: 37395953 DOI: 10.1007/s11250-023-03675-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
The objectives of this experiment were to evaluate the effects of increasing levels of orange molasses in replacement of flint corn grain in high-concentrate diets on dry matter intake (DMI), average daily gain (ADG), and feed efficiency (FE) of feedlot lambs. Thirty male lambs without defined racial pattern (30.3 ± 5.3 kg of initial BW; mean ± SD) were used in a randomized complete block design with 10 blocks and 3 treatments. The treatments were defined by partial replacement of flint corn by orange molasses in the diet with 90% of concentrate and 10% of Cynodon spp. hay, as follows: 0OM-control diet without orange molasses; 20OM-20% of orange molasses replacing flint corn; and 40OM-40% of orange molasses replacing flint corn (DM basis). The experiment lasted 72 days divided into 3 subperiods, with 1 subperiod of 16 days and 2 subperiods of 28 days. Animals were weighed after a 16-h fast on days 1, 16, 44, and 72 of the experimental periods to determine the ADG and FE. The DMI, ADG, and FE showed an interaction between treatments and experimental periods. The DMI in the first period decreased linearly (P < 0.01); in the third period, there was no effect of treatments (P > 0.05) on DMI. The ADG decreased linearly (P < 0.01) in the first period as the orange molasses increased. Otherwise, in the third period, ADG increased linearly (P = 0.05) as flint corn was replacement by orange molasses. The FE showed an interaction between treatment and period (P = 0.09). The first period had a decreased linear effect; in the third period, there was a trend (P = 0.07) of increased linear effect. There was no difference between the diets regarding the final BW of the lambs. In conclusion, the orange molasses can replace up to 40% of flint corn in diets for feedlot lambs without affecting final BW. However, it is important to consider the adaptation time proved to be very important for better use of orange molasses as a source of energy in diets for lambs.
Collapse
Affiliation(s)
- Isabela Jorge Dos Santos
- Department of Animal Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Pádua Dias Avenue, n 11 PO Box 09, Piracicaba, 13418-900, São Paulo, Brazil
| | - Paulo César Gonzales Dias Junior
- Department of Animal Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Pádua Dias Avenue, n 11 PO Box 09, Piracicaba, 13418-900, São Paulo, Brazil
| | - Ana Carolina Silva Vicente
- Department of Animal Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Pádua Dias Avenue, n 11 PO Box 09, Piracicaba, 13418-900, São Paulo, Brazil
| | - Adrielly Lais Alves
- Department of Animal Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Pádua Dias Avenue, n 11 PO Box 09, Piracicaba, 13418-900, São Paulo, Brazil
| | - Rhaissa Garcia de Assis
- Department of Animal Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Pádua Dias Avenue, n 11 PO Box 09, Piracicaba, 13418-900, São Paulo, Brazil
| | - Janaina Socolovski Biava
- Department of Animal Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Pádua Dias Avenue, n 11 PO Box 09, Piracicaba, 13418-900, São Paulo, Brazil
| | | | - Alexandre Vaz Pires
- Department of Animal Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Pádua Dias Avenue, n 11 PO Box 09, Piracicaba, 13418-900, São Paulo, Brazil
- CP Kelco Brazil Company, Limeira, Brazil
| | - Evandro Maia Ferreira
- Department of Animal Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Pádua Dias Avenue, n 11 PO Box 09, Piracicaba, 13418-900, São Paulo, Brazil.
- Department of Nutrition and Animal Production, FMVZ, University of São Paulo, Pirassununga, São Paulo, 13635-000, Brazil.
| |
Collapse
|
12
|
Wang X, Hao W, Huang X, Duan Z. Lower blood lipid level from the administration of plant tannins via altering the gut microbiota diversity and structure. Food Funct 2023; 14:4847-4858. [PMID: 37129242 DOI: 10.1039/d2fo03206f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Twenty-four Tan sheep were randomly assigned into 4 groups to study the capability of tannin supplementation (0.5% in dietary DM) to lower blood lipid levels mediated through the gut microbiota. The control (NC) group was offered a basic diet, while the 3 treatment groups were the TA group, which received supplementary tannic acid (TA); GSPE group, which received supplementary procyanidins (GSPE); and the TA + GSPE group, which received supplementary TA and GSPE, besides being supplied with the basic diet for 8 weeks feeding. At the end of the experiment, the serum glucose, insulin, lipids, and cytokines were measured, and the short-chain fatty acids (SCFAs) in the colon were tested by GC/MS. Moreover, the jejunal and colonic microbiota were detected by 16S rRNA sequencing. Significant reductions in serum triacylglycerol, cholesterol, and high density lipoprotein were found in all treatments. The total SCFAs decreased, while the iso-acids were significantly increased in the TA and TA + GSPE groups. The sheep showed noticeably lower MCP-1 and higher COX-2 levels in the GSPE group than that in the NC group. IL-6 was increased in the sheep fed with TA. The tannins still caused a noticeable shift in the colonic microbiota, with significant increases in the abundances of Adlercreutzia and Oscillospira. Ultimately, it was found that the diet with low levels of tannin could reduce blood triacylglycerol and cholesterol in sheep significantly by affecting the composition of the gut microbiota.
Collapse
Affiliation(s)
- Xiaoqi Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wenjing Hao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xinyi Huang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ziyuan Duan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
13
|
Palangi V. Identification of Ruminal Fermentation Curves of Some Legume Forages Using Particle Swarm Optimization. Animals (Basel) 2023; 13:ani13081339. [PMID: 37106901 PMCID: PMC10135319 DOI: 10.3390/ani13081339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The modeling process has a wide range of applications in animal nutrition. The purpose of this work is to determine whether particle swarm optimization (PSO) could be used to explain the fermentation curves of some legume forages. The model suited the fermentation data with minor statistical differences (R2 > 0.98). In addition, reducing the number of iterations enhanced this method's benefits. Only Models I and II could successfully fit the fermentability data (R2 > 0.98) in the vetch and white clover fermentation curve because the negative parameters (calculated in Models III and IV) were not biologically acceptable. Model IV could only fit the alfalfa fermentation curve, which had higher R values and demonstrated the model's dependability. In conclusion, it is advised to use PSO to match the fermentation curves. By examining the fermentation curves of feed materials, animal nutritionists can obtain a broader view of what ruminants require in terms of nutrition.
Collapse
Affiliation(s)
- Valiollah Palangi
- Department of Animal Science, Faculty of Agriculture, Ege University, Bornova, Izmir 35100, Türkiye
| |
Collapse
|
14
|
Mhd Omar NA, Dicksved J, Kruger J, Zamaratskaia G, Michaëlsson K, Wolk A, Frank J, Landberg R. Effect of a diet rich in galactose or fructose, with or without fructooligosaccharides, on gut microbiota composition in rats. Front Nutr 2022; 9:922336. [PMID: 36034892 PMCID: PMC9412906 DOI: 10.3389/fnut.2022.922336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies suggest that a diet rich in sugars significantly affects the gut microbiota. Adverse metabolic effects of sugars may partly be mediated by alterations of gut microbiota and gut health parameters, but experimental evidence is lacking. Therefore, we investigated the effects of high intake of fructose or galactose, with/without fructooligosaccharides (FOS), on gut microbiota composition in rats and explored the association between gut microbiota and low-grade systemic inflammation. Sprague-Dawley rats (n = 6/group) were fed the following isocaloric diets for 12 weeks (% of the dry weight of the sugars or FOS): (1) starch (control), (2) fructose (50%), (3) galactose (50%), (4) starch+FOS (15%) (FOS control), (5) fructose (50%)+FOS (15%), (6) galactose (50%)+FOS (15%), and (7) starch+olive (negative control). Microbiota composition in the large intestinal content was determined by sequencing amplicons from the 16S rRNA gene; 341F and 805R primers were used to generate amplicons from the V3 and V4 regions. Actinobacteria, Verrucomicrobia, Tenericutes, and Cyanobacteria composition differed between diets. Bifidobacterium was significantly higher in all diet groups where FOS was included. Modest associations between gut microbiota and metabolic factors as well as with gut permeability markers were observed, but no associations between gut microbiota and inflammation markers were observed. We found no coherent effect of galactose or fructose on gut microbiota composition. Added FOS increased Bifidobacterium but did not mitigate potential adverse metabolic effects induced by the sugars. However, gut microbiota composition was associated with several metabolic factors and gut permeability markers which warrant further investigations.
Collapse
Affiliation(s)
- Nor Adila Mhd Omar
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johanita Kruger
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Galia Zamaratskaia
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Karl Michaëlsson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Alicja Wolk
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jan Frank
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Rikard Landberg
- Department of Public Health and Clinical Medicine, Nutritional Research. Umeå University, Umeå, Sweden.,Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
15
|
Wangui JC, Millner JP, Kenyon PR, Tozer PR, Morel PCH, Pain SJ. In Vitro Fermentation of Browsable Native Shrubs in New Zealand. PLANTS (BASEL, SWITZERLAND) 2022; 11:2085. [PMID: 36015390 PMCID: PMC9416311 DOI: 10.3390/plants11162085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Information on the nutritive value and in vitro fermentation characteristics of native shrubs in New Zealand is scant. This is despite their potential as alternatives to exotic trees and shrubs for supplementary fodder, and their mitigation of greenhouse gases and soil erosion on hill-country sheep and beef farms. The objectives of this study were to measure the in vitro fermentation gas production, predict the parameters of the in vitro fermentation kinetics, and estimate the in vitro fermentation of volatile fatty acids (VFA), microbial biomass (MBM), and greenhouse gases of four native shrubs (Coprosma robusta, Griselinia littoralis, Hoheria populnea, and Pittosporum crassifolium) and an exotic fodder tree species, Salix schwerinii. The total in vitro gas production was higher (p < 0.05) for the natives than for the S. schwerinii. A prediction using the single-pool model resulted in biologically incorrect negative in vitro total gas production from the immediately soluble fraction of the native shrubs. However, the dual pool model better predicted the in vitro total gas production and was in alignment with the measured in vitro fermentation end products. The in vitro VFA and greenhouse gas production from the fermentation of leaf and stem material was higher (p < 0.05), and the MBM lower (p < 0.05), for the native shrubs compared to the S. schwerinii. The lower in vitro total gas production, VFA, and greenhouse gases production and higher MBM of the S. schwerinii may be explained by the presence of condensed tannins (CT), although this was not measured and requires further study. In conclusion, the results from this study suggest that when consumed by ruminant livestock, browsable native shrubs can provide adequate energy and microbial protein, and that greenhouse-gas production from these species is within the ranges reported for typical New Zealand pastures.
Collapse
|
16
|
The Replacement of Ground Corn with Sugar Beet in the Diet of Pasture-Fed Lactating Dairy Cows and Its Effect on Productive Performance and Rumen Metabolism. Animals (Basel) 2022; 12:ani12151927. [PMID: 35953917 PMCID: PMC9367446 DOI: 10.3390/ani12151927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 01/17/2023] Open
Abstract
(1) Background: Sugars have a potential to provide great amounts of fermentable energy in the rumen. Feeding fresh sugar beet (SB) to dairy cattle to replace a portion of the grain in the ration has not received sufficient attention. This study determined dry matter intake (DMI), feeding behavior, rumen fermentation and milk production responses when replacing corn grain with increasing levels of SB in pasture-fed lactating dairy cow diets. (2) Methods: A total of 12 early-lactation cows were used in a replicated (n = 4) 3 × 3 Latin square design. The control diet consisted of 21 kg dry matter (DM) composed of 6.3 kg DM green chopped perennial ryegrass, 7 kg DM grass silage, 2 kg DM of concentrate, 1 kg DM soybean meal and 4.5 kg DM of ground corn. The other treatments replaced 50% or 100% of the ground corn with SB roots. (3) Results: The replacement of ground corn with sugar beet reduced DMI and milk yield (p < 0.05), but it increased milk fat concentration (p = 0.045), reduced feeding costs and increased margin over feed costs (p < 0.01). Urinary nitrogen was linearly reduced with SB supplementation (p = 0.026). (4) Conclusions: Using SB roots as energetic supplement can be a suitable alternative to ground corn in pasture-fed lactating dairy cows.
Collapse
|
17
|
Kheirandish P, Petri RM, Sener-Aydemir A, Schwartz-Zimmermann HE, Berthiller F, Zebeli Q, Pacífico C. Characterization of Microbial Intolerances and Ruminal Dysbiosis Towards Different Dietary Carbohydrate Sources Using an in vitro Model. J Appl Microbiol 2022; 133:458-476. [PMID: 35396778 PMCID: PMC9545568 DOI: 10.1111/jam.15573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 11/30/2022]
Abstract
AIM This study aimed to characterize the critical points for determining the development of dysbiosis associated with feed intolerances and ruminal acidosis. METHODS AND RESULTS A metabologenomics approach was used to characterize dynamic microbial and metabolomics shifts using the rumen simulation technique (RUSITEC) by feeding native cornstarch (ST), chemically-modified cornstarch (CMS), or sucrose (SU). SU and CMS elicited the most drastic changes as rapidly as 4 h after feeding. This was accompanied by a swift accumulation of D-lactate, and the decline of benzoic and malonic acid. A consistent increase in Bifidobacterium and Lactobacillus as well as a decrease in fibrolytic bacteria was observed for both CMS and ST after 24 h, indicating intolerances within the fiber degrading populations. However, an increase in Lactobacillus was already evident in SU after 8 h. An inverse relationship between Fibrobacter and Bifidobacterium was observed in ST. In fact, Fibrobacter was positively correlated with several short-chain fatty acids (SCFA), while Lactobacillus was positively correlated with lactic acid, hexoses, hexose-phosphates, pentose phosphate pathway (PENTOSE-P-PWY) and heterolactic fermentation (P122-PWY). CONCLUSIONS The feeding of sucrose and modified starches, followed by native cornstarch, had a strong disruptive effect in the ruminal microbial community. Feed intolerances were shown to develop at different rates based on the availability of glucose for ruminal microorganisms. SIGNIFICANCE OF THE STUDY These results can be used to establish patterns of early dysbiosis (biomarkers) and develop strategies for preventing undesirable shifts in the ruminal microbial ecosystem.
Collapse
Affiliation(s)
- Parisa Kheirandish
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Renee Maxine Petri
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Canada
| | - Arife Sener-Aydemir
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Heidi Elisabeth Schwartz-Zimmermann
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Austria
| | - Franz Berthiller
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Austria
| | - Qendrim Zebeli
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Cátia Pacífico
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
18
|
Omontese BO, Sharma AK, Davison S, Jacobson E, DiConstanzo A, Webb MJ, Gomez A. Microbiome network traits in the rumen predict average daily gain in beef cattle under different backgrounding systems. Anim Microbiome 2022; 4:25. [PMID: 35346381 PMCID: PMC8961956 DOI: 10.1186/s42523-022-00175-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/20/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Backgrounding (BKG), the stage between weaning and finishing, significantly impacts feedlot performance in beef cattle; however, the contributions of the rumen microbiome to this growth stage remain unexplored. A longitudinal study was designed to assess how BKG affects rumen bacterial communities and average daily gain (ADG) in beef cattle. At weaning, 38 calves were randomly assigned to three BKG systems for 55 days (d): a high roughage diet within a dry lot (DL, n = 13); annual cover crop within a strip plot (CC, n = 13); and perennial pasture vegetation within rotational paddocks (PP, n = 12), as before weaning. After BKG, all calves were placed in a feedlot for 142 d and finished with a high energy ration. Calves were weighed periodically from weaning to finishing to determine ADG. Rumen bacterial communities were profiled by collecting fluid samples via oral probe and sequencing the V4 region of the 16S rRNA bacterial gene, at weaning, during BKG and finishing. RESULTS Rumen bacterial communities diverged drastically among calves once they were placed in each BKG system, including sharp decreases in alpha diversity for CC and DL calves only (P < 0.001). During BKG, DL calves showed a substantial increase of Proteobacteria (Succinivibrionaceae family) (P < 0.001), which also corresponded with greater ADG (P < 0.05). At the finishing stage, Proteobacteria bloomed for all calves, with no previous alpha or beta diversity differences being retained between groups. However, at finishing, PP calves showed a compensatory ADG, particularly greater than that in calves coming from DL BKG (P = 0.02). Microbiome network traits such as lower average shortest path length, and increased neighbor connectivity, degree, number and strength of bacterial interactions between rumen bacteria better predicted ADG during BKG and finishing than variation in specific taxonomic profiles. CONCLUSIONS Bacterial co-abundance interactions, as measured by network theory approaches, better predicted growth performance in beef cattle during BKG and finishing, than the abundance of specific taxa. These findings underscore the importance of early post weaning stages as potential targets for feeding interventions that can enhance metabolic interactions between rumen bacteria, to increase productive performance in beef cattle.
Collapse
Affiliation(s)
- Bobwealth O Omontese
- Department of Animal Science, University of Minnesota, Saint Paul, MN, 55108, USA
- Department of Food and Animal Sciences, Alabama A&M University, Normal, AL, 35762, USA
| | - Ashok K Sharma
- Department of Animal Science, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Samuel Davison
- Department of Animal Science, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Emily Jacobson
- Department of Animal Science, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Alfredo DiConstanzo
- Department of Animal Science, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Megan J Webb
- Department of Animal Science, University of Minnesota, Saint Paul, MN, 55108, USA
- Community Engagement and Partnerships, Eastern West Virginia Community and Technical College, Moorefield, WV, 26836, USA
| | - Andres Gomez
- Department of Animal Science, University of Minnesota, Saint Paul, MN, 55108, USA.
| |
Collapse
|