1
|
Dabbousy R, Rima M, Roufayel R, Rahal M, Legros C, Sabatier JM, Fajloun Z. Plant Metabolomics: The Future of Anticancer Drug Discovery. Pharmaceuticals (Basel) 2024; 17:1307. [PMID: 39458949 PMCID: PMC11510165 DOI: 10.3390/ph17101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Drug development from medicinal plants constitutes an important strategy for finding natural anticancer therapies. While several plant secondary metabolites with potential antitumor activities have been identified, well-defined mechanisms of action remained uncovered. In fact, studies of medicinal plants have often focused on the genome, transcriptome, and proteome, dismissing the relevance of the metabolome for discovering effective plant-based drugs. Metabolomics has gained huge interest in cancer research as it facilitates the identification of potential anticancer metabolites and uncovers the metabolomic alterations that occur in cancer cells in response to treatment. This holds great promise for investigating the mode of action of target metabolites. Although metabolomics has made significant contributions to drug discovery, research in this area is still ongoing. In this review, we emphasize the significance of plant metabolomics in anticancer research, which continues to be a potential technique for the development of anticancer drugs in spite of all the challenges encountered. As well, we provide insights into the essential elements required for performing effective metabolomics analyses.
Collapse
Affiliation(s)
- Ranin Dabbousy
- Laboratory of Applied Biotechnology (LBA3B), Department of Cell Culture, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon;
| | - Mohamad Rima
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon;
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Mohamad Rahal
- School of Pharmacy, Lebanese International University, Beirut 146404, Lebanon;
| | - Christian Legros
- INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, Faculty of Medicine, University Angers, 49000 Angers, France;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Department of Cell Culture, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon;
- Department of Biology, Faculty of Sciences 3, Campus Michel Slayman Ras Maska, Lebanese University, Tripoli 1352, Lebanon
| |
Collapse
|
2
|
Chen A, Wan F, Ma G, Ma J, Xu Y, Zang Z, Ying X, Jia H, Huang X. Radio Frequency Vacuum Drying Study on the Drying Characteristics and Quality of Cistanche Slices and Analysis of Heating Uniformity. Foods 2024; 13:2672. [PMID: 39272440 PMCID: PMC11487376 DOI: 10.3390/foods13172672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
To fully leverage the advantages of both hot air drying and radio frequency vacuum drying, a segmented combination drying technique was applied to post-harvest Cistanche. This new drying method involves using hot air drying in the initial stage to remove the majority of free water, followed by radio frequency vacuum drying in the later stage to remove the remaining small amount of free water and bound water. During the radio frequency vacuum drying (RFV) phase, the effects of temperature (45, 55, and 65 °C), vacuum pressure (0.020, 0.030, and 0.040 MPa), plate spacing (65, 75, and 85 mm), and slice thickness (4, 5, and 6 mm) on the drying characteristics, quality, and microstructure of Cistanche slices were investigated. Additionally, infrared thermal imaging technology was used to examine the surface temperature distribution of the material during the drying process. The results showed that compared to radio frequency vacuum drying alone, the hot air-radio frequency combined drying significantly shortened the drying time. Under conditions of lower vacuum pressure (0.020 MPa), plate spacing (65 mm), and higher temperature (65 °C), the drying time was reduced and the drying rate increased. Infrared thermal imaging revealed that in the early stages of hot air-radio frequency vacuum combined drying, the center temperature of Cistanche was higher than the edge temperature. As drying progressed, the internal moisture of the material diffused from the inside out, resulting in higher edge temperatures compared to the center and the formation of overheating zones. Compared to natural air drying, the hot air-radio frequency vacuum combined drying effectively preserved the content of active components such as polysaccharides (275.56 mg/g), total phenols (38.62 mg/g), total flavonoids (70.35 mg/g), phenylethanoid glycosides, and iridoids. Scanning electron microscopy observed that this combined drying method reduced surface collapse and cracking of the material. This study provides theoretical references for future drying processes of Cistanche.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaopeng Huang
- College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China; (A.C.); (F.W.); (G.M.); (J.M.); (Y.X.); (Z.Z.); (X.Y.); (H.J.)
| |
Collapse
|
3
|
Cao Q, Liu C, Chen L, Qin Y, Wang T, Wang C. Synergistic impacts of antibiotics and heavy metals on Hermetia illucens: Unveiling dynamics in larval gut bacterial communities and microbial metabolites. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121632. [PMID: 38950506 DOI: 10.1016/j.jenvman.2024.121632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Hermetia illucens larvae showcases remarkable bioremediation capabilities for both antibiotics and heavy metal contaminants. However, the distinctions in larval intestinal microbiota arising from the single and combined effects of antibiotics and heavy metals remain poorly elucidated. In this study, we delved into the details of larval intestinal bacterial communities and microbial metabolites when exposed to single and combined contaminants of oxytetracycline (OTC) and hexavalent chromium (Cr(VI)). After conversion, single contaminant-spiked substrate showed 75.5% of OTC degradation and 95.2% of Cr(VI) reductiuon, while combined contaminant-spiked substrate exhibited 71.3% of OTC degradation and 93.4% of Cr(VI) reductiuon. Single and combined effects led to differences in intestinal bacterial communities, mainly reflected in the genera of Enterococcus, Pseudogracilibacillus, Gracilibacillus, Wohlfahrtiimonas, Sporosarcina, Lysinibacillus, and Myroide. Moreover, these effects also induced differences across various categories of microbial metabolites, which categorized into amino acid and its metabolites, benzene and substituted derivatives, carbohydrates and its metabolites, heterocyclic compounds, hormones and hormone-related compounds, nucleotide and its metabolites, and organic acid and its derivatives. In particular, the differences induced OTC was greater than that of Cr(VI), and combined effects increased the complexity of microbial metabolism compared to that of single contaminant. Correlation analysis indicated that the bacterial genera, Preudogracilibacillus, Enterococcus, Sporosarcina, Lysinibacillus, Wohlfahrtiimonas, Ignatzschineria, and Fusobacterium exhibited significant correlation with significant differential metabolites, these might be used as indicators for the resistance and bioremediation of OTC and Cr(VI) contaminants. These findings are conducive to further understanding that the metabolism of intestinal microbiota determines the resistance of Hermetia illucens to antibiotics and heavy metals.
Collapse
Affiliation(s)
- Qingcheng Cao
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Cuncheng Liu
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China; Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Li Chen
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yuanhang Qin
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Tielin Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Cunwen Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
4
|
Peng Z, Zhang Y, Ai Z, Wei L, Liu Y. Effect of radio frequency roasting on the lipid profile of peanut oil and the mechanism of lipids transformation: Revealed by untargeted lipidomics approach. Food Res Int 2024; 190:114592. [PMID: 38945611 DOI: 10.1016/j.foodres.2024.114592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/14/2024] [Accepted: 06/01/2024] [Indexed: 07/02/2024]
Abstract
Radio frequency (RF) heating has been proved an alternative roasting method for peanuts, which could effectively degrade aflatoxins and possesses the advantages of greater heating efficiency and penetration depth. This study aimed to investigate the influences of RF roasting on the lipid profile of peanut oil under 150 °C target temperature with varied peanut moisture contents (8.29 % and 20 %) and holding times (0, 7.5, and 15 min), using ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS/MS)-based lipidomics. In total, 2587 lipid species from 35 subclasses were identified. After roasting, the contents of sterol lipid (ST) and subclasses of glycerophospholipids (GPs) and glycoglycerolipids increased significantly, while fatty acid (FA), Oxidized (Ox-) FA, cholesterol (CE), and all subclasses of glycerolipids (GLs) decreased, and 1084 differential lipids were screened. The highest ST and lowest CE contents in peanut oil were achieved by medium roasting (7.5 min). The raise in moisture content of peanut simply affected a few GPs subclasses adversely. Compared with hot air (HA) roasting, RF decelerated lipid oxidation, showing higher levels of diacylglycerol, triacylglycerol and FA, with no additional negative impact and only 69 exclusive differential lipids. During RF roasting, hydrolysis and oxidation of fatty acyl chains into secondary oxides were the central behaviors of lipids transformation. This study could provide insights into the lipid changes and transformation mechanism of peanut oil by RF roasting processing.
Collapse
Affiliation(s)
- Zekang Peng
- College of Engineering, China Agricultural University, P. O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Yue Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Ziping Ai
- College of Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lixuan Wei
- College of Engineering, China Agricultural University, P. O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Yanhong Liu
- College of Engineering, China Agricultural University, P. O. Box 194, 17 Qinghua Donglu, Beijing 100083, China.
| |
Collapse
|
5
|
Liu W, Yu A, Xie Y, Yao H, Sun C, Gao H, He J, Ao C, Tang D. Drying enhances the antioxidant activity of Allium mongolicum Regel through the phenylpropane and AA-MA pathway as shown by metabolomics. Food Chem X 2024; 22:101436. [PMID: 38742170 PMCID: PMC11089305 DOI: 10.1016/j.fochx.2024.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Fresh Allium mongolicum Regel (FA) and dried A. mongolicum Regel (DA) are significantly different in antioxidant activity. However, the relevant mechanisms have not yet been explored. We evaluated the antioxidant activities of two varieties of FA and DA and characterized their metabolites using targeted metabolomics. The effect of different metabolites on the antioxidant activity of A. mongolicum Regel was investigated by multivariate analysis. A total of 713 metabolites were detected in all samples. Pearson correlation analysis demonstrated that the key primary metabolites were directly and significantly correlated with the total phenolic content (TPC) and total flavonoid content (TFC), while the secondary metabolites were directly correlated with antioxidant activity. The higher antioxidant activity of DA may be mainly attributed to the higher TPC and TFC. This study revealed the potential mechanism by which drying enhances the antioxidant activity of A. mongolicum Regel.
Collapse
Affiliation(s)
- Wangjing Liu
- College of Animal Science and Technology, Gansu Agricultural University, No.1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| | - Aihuan Yu
- College of Animal Science and Technology, Gansu Agricultural University, No.1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| | - Yaodi Xie
- College of Animal Science and Technology, Gansu Agricultural University, No.1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| | - Haibo Yao
- College of Animal Science and Technology, Gansu Agricultural University, No.1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| | - Chenxu Sun
- College of Animal Science and Technology, Gansu Agricultural University, No.1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| | - Huixia Gao
- College of Animal Science and Technology, Gansu Agricultural University, No.1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| | - Jianjian He
- College of Animal Science and Technology, Gansu Agricultural University, No.1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| | - Changjin Ao
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, People's Republic of China
| | - Defu Tang
- College of Animal Science and Technology, Gansu Agricultural University, No.1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| |
Collapse
|
6
|
Xie J, Xiong S, Li Y, Xia B, Li M, Zhang Z, Shi Z, Peng Q, Li C, Lin L, Liao D. Phenolic acids from medicinal and edible homologous plants: a potential anti-inflammatory agent for inflammatory diseases. Front Immunol 2024; 15:1345002. [PMID: 38975345 PMCID: PMC11224438 DOI: 10.3389/fimmu.2024.1345002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Inflammation has been shown to trigger a wide range of chronic diseases, particularly inflammatory diseases. As a result, the focus of research has been on anti-inflammatory drugs and foods. In recent years, the field of medicinal and edible homology (MEH) has developed rapidly in both medical and food sciences, with 95% of MEH being associated with plants. Phenolic acids are a crucial group of natural bioactive substances found in medicinal and edible homologous plants (MEHPs). Their anti-inflammatory activity is significant as they play a vital role in treating several inflammatory diseases. These compounds possess enormous potential for developing anti-inflammatory drugs and functional foods. However, their development is far from satisfactory due to their diverse structure and intricate anti-inflammatory mechanisms. In this review, we summarize the various types, structures, and distribution of MEHP phenolic acids that have been identified as of 2023. We also analyze their anti-inflammatory activity and molecular mechanisms in inflammatory diseases through NF-κB, MAPK, NLRP3, Nrf2, TLRs, and IL-17 pathways. Additionally, we investigate their impact on regulating the composition of the gut microbiota and immune responses. This analysis lays the groundwork for further exploration of the anti-inflammatory structure-activity relationship of MEHP phenolic acids, aiming to inspire structural optimization and deepen our understanding of their mechanism, and provides valuable insights for future research and development in this field.
Collapse
Affiliation(s)
- Jingchen Xie
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Suhui Xiong
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yamei Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Bohou Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Minjie Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhimin Zhang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhe Shi
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Qiuxian Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Chun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Limei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Duanfang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
7
|
Yang X, Zhang W, Lan Y, Zhang J, Zheng W, Wu J, Zhang C, Dang B. An investigation into the effects of various processing methods on the characteristic compounds of highland barley using a widely targeted metabolomics approach. Food Res Int 2024; 180:114061. [PMID: 38395553 DOI: 10.1016/j.foodres.2024.114061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
This study explored the influence of diverse processing methods (cooking (CO), extrusion puffing (EX), and steam explosion puffing (SE), stir-frying (SF) and fermentation (FE)) on highland barley (Qingke) chemical composition using UHPLC-MS/MS based widely targeted metabolomics. Overall, 827 metabolites were identified and categorized into 16 classes, encompassing secondary metabolites, amino acids, nucleotides, lipids, etc. There 43, 85, 131, 51 and 98 differential metabolites were respectively selected from five comparative groups (raw materials (RM) vs CO/EX/SE/SF/FE), mainly involved in amino acids, nucleotides, flavonoids, and alkaloids. Compared to other treated groups, FE group possessed the higher content of crude protein (15.12 g/100 g DW), and the relative levels of free amino acids (1.32 %), key polyphenols and arachidonic acid (0.01 %). EX group had the higher content of anthocyanins (4.22 mg/100 g DW), and the relative levels of free amino acids (2.02 %) and key polyphenols. SE group showed the higher relative levels of phenolic acids (0.14 %), flavonoids (0.20 %) and alkaloids (1.17 %), but the lowest free amino acids (0.75 %). Different processing methods all decreased Qingke's antioxidant capacity, with the iron reduction capacity (988.93 μmol/100 g DW) in SE group was the lowest. On the whole, FE and EX were alleged in improving Qingke's nutritional value. CO and SF were also suitable for Qingke processing since fewer differential metabolites were identified in CO vs RM and SF vs RM groups. Differential metabolites were connected to 14 metabolic pathways, with alanine, aspartate, and glutamate metabolism being central. This study contributed theoretical groundwork for the scientific processing and quality control of Qingke products.
Collapse
Affiliation(s)
- Xijuan Yang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Wengang Zhang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Yongli Lan
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Jie Zhang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Wancai Zheng
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Jing Wu
- Qinghai Tianyoude Technology Investment Management Group Co., Ltd., Xining 810016, China
| | - Chengping Zhang
- Qinghai Tianyoude Technology Investment Management Group Co., Ltd., Xining 810016, China
| | - Bin Dang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China.
| |
Collapse
|
8
|
Qingyang L, Ruohui W, Shiman S, Danyu S, Runhong M, Yihua L. Comparison of different drying technologies for walnut ( Juglans regia L.) pellicles: Changes from phenolic composition, antioxidant activity to potential application. Food Chem X 2023; 20:101037. [PMID: 38144737 PMCID: PMC10739750 DOI: 10.1016/j.fochx.2023.101037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/06/2023] [Accepted: 11/25/2023] [Indexed: 12/26/2023] Open
Abstract
The analysis of the phenolic profile in the walnut pellicle (WP) and its exploitability can help to promote the valorization of the industrial waste from walnut production. Three forms of 33 monomeric phenols in WPs were quantified based on our previously established LC-MS/MS method. The levels of protocatechuic acid and 4-hydroxybenzoic acid in the WPs were the highest, exceeding 400 μg/g. Antioxidant tests revealed that all three phenolic forms of WPs were effective antioxidants (IC50: 2.12-35.05 µg/mL). The findings also revealed that drying temperature had a substantial type-dependent effect on phenolics and their antioxidant ability in WPs. KEGG enrichment analysis found that drying method has the greatest impact on WPs phenols in six metabolic pathways. Besides, 11 active substances in WPs were identified by a compound-targeted activity screening approach, indicating that WPs could be used as a natural antioxidant source in the development of medical and nutraceutical products.
Collapse
Affiliation(s)
- Li Qingyang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Wang Ruohui
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Sun Shiman
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Shen Danyu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Mo Runhong
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Liu Yihua
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| |
Collapse
|
9
|
Xia T, Xiong Z, Sun X, Chen J, Wang C, Chen Y, Zheng D. Metabolomic profiles and health-promoting functions of Camellia drupifera mature-seeds were revealed relate to their geographical origins using comparative metabolomic analysis and network pharmacology approach. Food Chem 2023; 426:136619. [PMID: 37329789 DOI: 10.1016/j.foodchem.2023.136619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/31/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
To insight into the chemical components and their health-promoting function of Camellia drupifera mature-seeds (CMS) in Hainan and Liangguang, UPLC-MS/MS- and HS-SPME/GC-MS-based metabolomic analyses and network pharmacology approaches were combined preformed to Camellia drupifera mature-seeds samples (CMSSs). Totally, 1057 metabolites were identified, of which 76 and 99 metabolites were annotated as key active ingredients in Traditional Chinese Medicines and the active pharmaceutical ingredients for seven human disease-resistance, respectively. Comparative analysis revealed different metabolomic profiles of CMSSs from Hainan and Liangguang. KEGG annotation and enrichment analysis showed secondary metabolic pathways, especially "flavone and flavonol biosynthesis", were played important roles. Finally, 22 metabolites that only detected in CMSSs from Hainan or Liangguang were explored as potential indicators to separate CMS from Hainan out of Liangguang. Our findings enhanced the understanding of chemical compositions of CMS and provided valuable information for the healthy development of oil-tea Camellia industry in Hainan.
Collapse
Affiliation(s)
- Tengfei Xia
- The Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou 571100, China; Sanya Institute of Hainan Academy of Agricultural Sciences, Sanya 572025, China.
| | - Zijun Xiong
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiuxiu Sun
- The Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Jiali Chen
- The Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Chunmei Wang
- The Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Yeguang Chen
- The Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou 571100, China; Sanya Institute of Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Daojun Zheng
- The Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou 571100, China; Sanya Institute of Hainan Academy of Agricultural Sciences, Sanya 572025, China.
| |
Collapse
|
10
|
Zhou S, Feng D, Zhou Y, Duan H, Jiang Y, Yan W. Analysis of the active ingredients and health applications of cistanche. Front Nutr 2023; 10:1101182. [PMID: 36992906 PMCID: PMC10042234 DOI: 10.3389/fnut.2023.1101182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023] Open
Abstract
Cistanche is a tonic Chinese medicine commonly used in traditional Chinese medicine, with 2016, CFSA through the alxa desert cistanche safety evaluation, cistanche began to officially enter the food field. At present, the research on cistanche mainly focuses on the extraction, isolation and purification and pharmacological effects, and its pharmacological effects such as neuroprotective effects, immunomodulation, antioxidant anticancer and hepatoprotective liver protection have attracted the attention of researchers. This review mainly reviews the research status, chemical composition and health benefits, analyzes its application prospects in food, and aims to provide certain theoretical support for the safe application of cistanche in functional food.
Collapse
Affiliation(s)
- Shiqi Zhou
- College of Biochemical Engineering, Beijing Union University, Beijing, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Duo Feng
- College of Biochemical Engineering, Beijing Union University, Beijing, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, Beijing, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Hao Duan
- College of Biochemical Engineering, Beijing Union University, Beijing, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Yongjun Jiang
- Inner Mongolia Sankou Biotechnology Co., Ltd., Ordos City, Inner Mongolia, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
- *Correspondence: Wenjie Yan, ✉
| |
Collapse
|
11
|
Migdadi L, Sharar N, Jafar H, Telfah A, Hergenröder R, Wöhler C. Machine Learning in Automated Monitoring of Metabolic Changes Accompanying the Differentiation of Adipose-Tissue-Derived Human Mesenchymal Stem Cells Employing 1H- 1H TOCSY NMR. Metabolites 2023; 13:352. [PMID: 36984792 PMCID: PMC10055867 DOI: 10.3390/metabo13030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/12/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
The ability to monitor the dynamics of stem cell differentiation is a major goal for understanding biochemical evolution pathways. Automating the process of metabolic profiling using 2D NMR helps us to understand the various differentiation behaviors of stem cells, and therefore sheds light on the cellular pathways of development, and enhances our understanding of best practices for in vitro differentiation to guide cellular therapies. In this work, the dynamic evolution of adipose-tissue-derived human Mesenchymal stem cells (AT-derived hMSCs) after fourteen days of cultivation, adipocyte and osteocyte differentiation, was inspected based on 1H-1H TOCSY using machine learning. Multi-class classification in addition to the novelty detection of metabolites was established based on a control hMSC sample after four days' cultivation and we successively detected the changes of metabolites in differentiated MSCs following a set of 1H-1H TOCSY experiments. The classifiers Kernel Null Foley-Sammon Transform and Kernel Density Estimation achieved a total classification error between 0% and 3.6% and false positive and false negative rates of 0%. This approach was successfully able to automatically reveal metabolic changes that accompanied MSC cellular evolution starting from their undifferentiated status to their prolonged cultivation and differentiation into adipocytes and osteocytes using machine learning supporting the research in the field of metabolic pathways of stem cell differentiation.
Collapse
Affiliation(s)
- Lubaba Migdadi
- Image Analysis Group, TU Dortmund, 44227 Dortmund, Germany
- Leibniz-Institut für Analytische Wissenschaften—ISAS-e.V., 44139 Dortmund, Germany
| | - Nour Sharar
- Leibniz-Institut für Analytische Wissenschaften—ISAS-e.V., 44139 Dortmund, Germany
- Cell Therapy Center, University of Jordan, Amman 11942, Jordan
| | - Hanan Jafar
- Cell Therapy Center, University of Jordan, Amman 11942, Jordan
- Department of Anatomy and Histology, College of Medicine, University of Jordan, Amman 11942, Jordan
| | - Ahmad Telfah
- Leibniz-Institut für Analytische Wissenschaften—ISAS-e.V., 44139 Dortmund, Germany
- Nanotechnology Center, The University of Jordan, Amman 11942, Jordan
| | - Roland Hergenröder
- Leibniz-Institut für Analytische Wissenschaften—ISAS-e.V., 44139 Dortmund, Germany
| | | |
Collapse
|
12
|
Liu XT, Sun DM, Yu WX, Lin WX, Liu LY, Zeng Y. A Novel Strategy for Screening Active Components in Cistanche tubulosa Based on Spectrum-Effect Relationship Analysis and Network Pharmacology. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2023; 2023:9030015. [PMID: 36760656 PMCID: PMC9904937 DOI: 10.1155/2023/9030015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Cistanche tubulosa (Schenk) R. Wight is a valuable herbal medicine in China. The study aimed to explore the potential mechanisms of C. tubulosa on antioxidant activity using spectrum-effect relationship and network pharmacology and the possibilities of utilizing herbal dregs. In this work, different extracts of C. tubulosa, including herbal materials, water extracts, and herbal residues, were evaluated using high-performance liquid chromatography (HPLC) technology. In addition, the antioxidant activities were estimated in vitro, including 2, 2-diphenyl-1-picrylhydrazyl; superoxide anion; and hydroxyl radical scavenging assays. The spectrum-effect relationships between the HPLC fingerprints and the biological capabilities were analyzed via partial least squares regression, bivariate correlation analysis, and redundancy analysis. Furthermore, network pharmacology was used to predict potential mechanisms of C. tubulosa in the treatment of antioxidant-related diseases. According to the results, eleven common peaks were shared by different extracts. Geniposidic acid, echinacoside, verbascoside, tubuloside A, and isoacteoside were quantified and compared among different forms of C. tubulosa. The spectrum-effect relationship study indicated that peak A 6 might be the most decisive component among the three forms. Based on network pharmacology, there were 159 target genes shared by active components and antioxidant-related diseases. Targets related to antioxidant activity and relevant pathways were discussed. Our results provide a theoretical basis for recycling the herbal residues and the potential mechanisms of C. tubulosa in the treatment of antioxidant-related diseases.
Collapse
Affiliation(s)
- Xiao-Tong Liu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dong-Mei Sun
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Formula Granule, Guangdong E-Fong Pharmaceutical Co. Ltd., Foshan 528244, China
| | - Wen-Xin Yu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wei-Xiong Lin
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Formula Granule, Guangdong E-Fong Pharmaceutical Co. Ltd., Foshan 528244, China
| | - Liao-Yuan Liu
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Formula Granule, Guangdong E-Fong Pharmaceutical Co. Ltd., Foshan 528244, China
| | - Yu Zeng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
13
|
Ai Z, Xie Y, Li X, Lei D, Ambrose K, Liu Y. Revealing color change and drying mechanisms of pulsed vacuum steamed Cistanche deserticola through bioactive components, microstructural and starch gelatinization properties. Food Res Int 2022; 162:112079. [PMID: 36461329 DOI: 10.1016/j.foodres.2022.112079] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/16/2022] [Accepted: 10/22/2022] [Indexed: 11/17/2022]
Abstract
Cistanche deserticola is a famous herbal medicine and has been used worldwide for its kidney-tonifying and anti-aging values. This study investigated the effects of pulsed vacuum steaming (PVS) on bioactive phenylethanoid glycosides (PhGs), total soluble sugars, polysaccharides, color, drying characteristics, microstructure, and starch gelatinization properties of Cistanche deserticola. PVS pretreatment significantly increased PhGs and soluble sugar content while reduced the polysaccharides content. And increasing the material core temperature to 75 °C at the largest diameter was proposed as the optimal steaming condition and the PhGs content was increased by 1.11 times compared with that by atmospheric steaming. The color of steamed samples changed to oily black due to Maillard reaction. PhGs content was significantly (P < 0.05) positively correlated with total color difference (ΔE). Steaming until the ΔE value of 15.95 could achieve the maximum accumulation of PhGs, corresponding to the highest increasing ratio of echinacoside and acteoside. Starch was completely gelatinized and formed a barrier layer adhering to the cell surface when the material core temperature reached 75 °C at the largest diameter, explaining why after steaming the Cistanche deserticola drying time was prolonged by 85.71 %. The study can provide an innovative steaming technology and optimal process parameters for obtaining high-quality Cistanche deserticola decoction pieces, as well as propose a non-destructive testing method to quickly predict PhGs content based on color parameters during the steaming process.
Collapse
Affiliation(s)
- Ziping Ai
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China.
| | - Yongkang Xie
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China; Agricultural Products Processing Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Xingyi Li
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China; Agricultural Products Processing Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Dengwen Lei
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China.
| | - Kingsly Ambrose
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-2093, USA.
| | - Yanhong Liu
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China.
| |
Collapse
|
14
|
Integrated Lipidomic and Metabolomics Analysis Revealing the Effects of Frozen Storage Duration on Pork Lipids. Metabolites 2022; 12:metabo12100977. [PMID: 36295879 PMCID: PMC9609991 DOI: 10.3390/metabo12100977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Frozen storage is an important strategy to maintain meat quality for long-term storage and transportation. Lipid oxidation is one of the predominant causes of the deterioration of meat quality during frozen storage. Untargeted lipidomic and targeted metabolomics were employed to comprehensively evaluate the effect of frozen duration on pork lipid profiles and lipid oxidative products including free fatty acids and fatty aldehydes. A total of 688 lipids, 40 fatty acids and 14 aldehydes were successfully screened in a pork sample. We found that ether-linked glycerophospholipids, the predominant type of lipids, gradually decreased during frozen storage. Of these ether-linked glycerophospholipids, ether-linked phosphatidylethanolamine and phosphatidylcholine containing more than one unsaturated bond were greatly influenced by frozen storage, resulting in an increase in free polyunsaturated fatty acids and fatty aldehydes. Among these lipid oxidative products, decanal, cis-11,14-eicosenoic acid and cis-5,8,11,14,17-dicosapentaenoic acid can be considered as potential indicators to calculate the freezing time of unknown frozen pork samples. Moreover, over the three-month frozen storage, the first month was a rapid oxidation stage while the other two months were a slow oxidation stage.
Collapse
|
15
|
Liu X, Chen Y, Zhang J, He Y, Ya H, Gao K, Yang H, Xie W, Li L. Widely targeted metabolomics reveals stamen petaloid tissue of Paeonia lactiflora Pall. being a potential pharmacological resource. PLoS One 2022; 17:e0274013. [PMID: 36054136 PMCID: PMC9439255 DOI: 10.1371/journal.pone.0274013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Paeonia lactiflflora Pall. has a long edible and medicinal history because of the very high content of biologically active compounds. However, little information is available about the metabolic basis of pharmacological values of P. lactiflora flowers. In this study, we investigated metabolites in the different parts of P. lactiflora flowers, including petal, stamen petaloid tissue and stamen, by widely targeted metabolomics approach. A total of 1102 metabolites were identified, among which 313 and 410 metabolites showed differential accumulation in comparison groups of petal vs. stamen petaloid tissue and stamen vs. stamen petaloid tissue. Differential accumulated metabolites analysis and KEGG pathway analysis showed that the flavonoids were the most critical differential metabolites. Furthermore, difference accumulation of flavonoids, phenolic acids, tannins and alkaloids might lead to the differences in antioxidant activities and tyrosinase inhibition effects. Indeed, stamen petaloid tissue displayed better antioxidant and anti-melanin production activities than petal and stamen through experimental verification. These results not only expand our understanding of metabolites in P. lactiflora flowers, but also reveal that the stamen petaloid tissues of P. lactiflora hold the great potential as promising ingredients for pharmaceuticals, functional foods and skincare products.
Collapse
Affiliation(s)
- Xianghui Liu
- School of Food and Drug, Henan Functional Cosmetics Engineering Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
| | - Ye Chen
- School of Food and Drug, Henan Functional Cosmetics Engineering Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
| | - Jingxiao Zhang
- School of Food and Drug, Henan Functional Cosmetics Engineering Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
| | - Yifan He
- Institute of Regulatory Science, Beijing Technology and Business University, Beijing, China
| | - Huiyuan Ya
- School of Food and Drug, Henan Functional Cosmetics Engineering Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
- * E-mail:
| | - Kai Gao
- Peony Institute, Luoyang Academy of Agriculture and Forestry Sciences, Luoyang, Henan, China
| | - Huizhi Yang
- School of Food and Drug, Henan Functional Cosmetics Engineering Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
| | - Wanyue Xie
- School of Food and Drug, Henan Functional Cosmetics Engineering Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
| | - Lingmei Li
- School of Food and Drug, Henan Functional Cosmetics Engineering Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
| |
Collapse
|
16
|
Zhou SQ, Feng D, Zhou YX, Zhao J, Zhao JY, Guo Y, Yan WJ. HS-GC-IMS detection of volatile organic compounds in cistanche powders under different treatment methods. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Effect of Different Processing Methods on the Chemical Constituents of Scrophulariae Radix as Revealed by 2D NMR-Based Metabolomics. Molecules 2022; 27:molecules27154687. [PMID: 35897871 PMCID: PMC9331298 DOI: 10.3390/molecules27154687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Scrophulariae Radix (SR) is one of the oldest and most frequently used Chinese herbs for oriental medicine in China. Before clinical use, the SR should be processed using different methods after harvest, such as steaming, “sweating”, and traditional fire-drying. In order to investigate the difference in chemical constituents using different processing methods, the two-dimensional (2D) 1H-13C heteronuclear single quantum correlation (1H-13C HSQC)-based metabolomics approach was applied to extensively characterize the difference in the chemical components in the extracts of SR processed using different processing methods. In total, 20 compounds were identified as potential chemical markers that changed significantly with different steaming durations. Seven compounds can be used as potential chemical markers to differentiate processing by sweating, hot-air drying, and steaming for 4 h. These findings could elucidate the change of chemical constituents of the processed SR and provide a guide for the processing. In addition, our protocol may represent a general approach to characterizing chemical compounds of traditional Chinese medicine (TCM) and therefore might be considered as a promising approach to exploring the scientific basis of traditional processing of TCM.
Collapse
|
18
|
Liu Y, Meng F, Tang P, Huang D, Li Q, Lin M. Widely Targeted Metabolomics Analysis of the Changes to Key Non-volatile Taste Components in Stropharia rugosoannulata Under Different Drying Methods. Front Nutr 2022; 9:884400. [PMID: 35662941 PMCID: PMC9161365 DOI: 10.3389/fnut.2022.884400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Stropharia rugosoannulata is an extremely perishable edible fungi product, and drying can delay its deterioration, however, drying will affect its flavor, especially the non-volatile taste substances dominated by amino acids, nucleotides, organic acids and carbohydrates. Currently, which drying method is the most suitable for the drying of S. rugosoannulata remains unknown, we need to fully consider the economic efficiency of the method and the impact on flavor. But we have limited comprehensive knowledge of the changed non-volatile taste metabolites as caused by drying processes. Here, an LC-MS/MS-based widely targeted metabolome analysis was conducted to investigate the transformation mechanism of S. rugosoannulata non-volatile taste components after undergoing hot air drying (HAD), vacuum freeze drying (VFD), and microwave vacuum drying (MVD). A total of 826 metabolites were identified, 89 of which—48 amino acids, 25 nucleotides, 8 organic acids, and 8 carbohydrates—were related to non-volatile taste. The drying method used and the parts of S. rugosoannulata (stipe and pileus) influenced the differences found in these metabolites. The possible mechanisms responsible for such chemical alterations by different drying methods were also investigated by a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Amino acid metabolism (alanine, aspartate, and glutamate metabolism; glycine, serine, and threonine metabolism; arginine and proline metabolism; valine, leucine, and isoleucine biosynthesis) was the main metabolic pathway involved. Pathway enrichment analysis also identified differences in non-volatile taste components among three drying methods that may be closely related to the applied drying temperature. Altogether, the results indicated that as an economical and convenient drying method, HAD is conducive to improving the flavor of S. rugosoannulata and thus it harbors promising potential for practical applications.
Collapse
Affiliation(s)
- Yi Liu
- Institute of Agricultural Products Processing, Guizhou Academy of Agricultural Sciences, Guiyang, China
- Guizhou Vocational College of Foodstuff Engineering, Guiyang, China
- Guizhou Characteristic Food Technology Co., Ltd, Guiyang, China
| | - Fangbo Meng
- Institute of Agricultural Products Processing, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Pengyu Tang
- Institute of Agricultural Products Processing, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Daomei Huang
- Institute of Agricultural Products Processing, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Qixing Li
- Institute of Agricultural Products Processing, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Mao Lin
- Institute of Agricultural Products Processing, Guizhou Academy of Agricultural Sciences, Guiyang, China
- Guizhou Characteristic Food Technology Co., Ltd, Guiyang, China
- *Correspondence: Mao Lin,
| |
Collapse
|
19
|
Ai Z, Lin Y, Xie Y, Mowafy S, Zhang Y, Li M, Liu Y. Effect of High-Humidity Hot Air Impingement Steaming on Cistanche deserticola Slices: Drying Characteristics, Weight Loss, Microstructure, Color, and Active Components. Front Nutr 2022; 9:824822. [PMID: 35571910 PMCID: PMC9094676 DOI: 10.3389/fnut.2022.824822] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/08/2022] [Indexed: 01/12/2023] Open
Abstract
Cistanche deserticola is one of the most precious herbal medicines and is widely used in the pharmaceutical and healthy food industries. Steaming is an important step prior to drying in the processing of C. deserticola. This research investigated the effects of high-humidity hot air impingement steaming (HHAIS) parameters such as temperature, time, and relative humidity (RH) on drying characteristics, weight loss, color, microstructure, and active components of C. deserticola slices. The results showed that the steaming process caused a weight loss in C. deserticola; however, increasing the RH reduced the weight loss. Starch gelatinization observed from the microstructure of the steamed samples explained their long drying time. The Page model can well fit the drying process with a high R2 (>0.956) under the drying conditions of 60°C and 6 m/s. Steaming increased the content of phenylethanoid glycosides, and the highest content was obtained at 95°C and 60% RH for 20 min, 75°C and 70% RH for 20 min, and 75°C and 60% RH for 30 min. The steamed samples appeared in an oil black color. When the color difference (ΔE) values were in the range of 16.79–20.12, the contents of echinacoside and acteoside reached the maximum. Steaming at 95°C and 60% RH for 20 min, 75°C and 70% RH for 20 min, and 75°C and 60% RH for 30 min are the optimum process conditions. The results from this work provide innovative steaming technology and suitable processing parameters for producing C. deserticola decoction pieces with a high quality, which will broaden its potential application in the functional health food industry.
Collapse
Affiliation(s)
- Ziping Ai
- College of Engineering, China Agricultural University, Beijing, China
| | - Yawen Lin
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Yongkang Xie
- Agricultural Products Processing Center, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Samir Mowafy
- College of Engineering, China Agricultural University, Beijing, China.,Agricultural and Bio-Systems Engineering Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Yue Zhang
- College of Engineering, China Agricultural University, Beijing, China
| | - Mengjia Li
- College of Engineering, China Agricultural University, Beijing, China
| | - Yanhong Liu
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|