1
|
Triantafyllou E, Karydis-Messinis A, Moschovas D, Kyriakaki C, Vasilopoulos KC, Giannakas AE, Karakassides MA, Avgeropoulos A, Zafeiropoulos NE, Salmas CE. Microwave-Assisted Extraction of Cellulose from Aloe Vera Plant Residue and Preparation of Cellulose Nanocrystal-Poly(vinyl alcohol) Hydrogels. Molecules 2024; 29:6012. [PMID: 39770097 PMCID: PMC11680054 DOI: 10.3390/molecules29246012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Biomass valorization and bio-based material development are of major research interest following the spirit of the circular economy. Aloe vera cultivation is a widespread agricultural activity oriented toward supplement production because of its well-known antioxidant and antimicrobial properties. Aloe vera juice production also produces a large amount of biomass byproducts that are usually landfilled. On the other hand, cellulose nanocrystals are widely used in several applications, such as biomaterials, bio-compatible polymers, nanocomposites, food packaging, medicines, cosmetics, and sensors, due to their unique physical, mechanical, optical, electrical, and healing properties as well as their compatibility with biological tissues. This study introduces a novel approach combining the microwave-assisted extraction (MAE) of cellulose from this residue with the subsequent isolation of cellulose nanocrystals (CNCs). The MAE process, which exhibits a rapid heating and penetrating ability, was optimized to maximize the cellulose yield under various conditions (microwave power, solvent ratio, and time). Analysis using FTIR, XRD, SEM, and DMA indicated that isolated pure cellulose nanocrystals and a stable PVA-CNC porous hydrogel network were produced. The PVA-CNC hydrogel was synthesized to enable the formation of a semi-crystalline network that imparts the material with enhanced mechanical properties. Both final products of this study could potentially be used for various applications.
Collapse
Affiliation(s)
- Eleni Triantafyllou
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (A.K.-M.); (D.M.); (C.K.); (K.C.V.); (M.A.K.); (A.A.)
| | - Andreas Karydis-Messinis
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (A.K.-M.); (D.M.); (C.K.); (K.C.V.); (M.A.K.); (A.A.)
| | - Dimitrios Moschovas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (A.K.-M.); (D.M.); (C.K.); (K.C.V.); (M.A.K.); (A.A.)
| | - Christina Kyriakaki
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (A.K.-M.); (D.M.); (C.K.); (K.C.V.); (M.A.K.); (A.A.)
| | - Konstantinos C. Vasilopoulos
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (A.K.-M.); (D.M.); (C.K.); (K.C.V.); (M.A.K.); (A.A.)
| | - Aris E. Giannakas
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece;
| | - Michael A. Karakassides
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (A.K.-M.); (D.M.); (C.K.); (K.C.V.); (M.A.K.); (A.A.)
| | - Apostolos Avgeropoulos
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (A.K.-M.); (D.M.); (C.K.); (K.C.V.); (M.A.K.); (A.A.)
| | - Nikolaos E. Zafeiropoulos
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (A.K.-M.); (D.M.); (C.K.); (K.C.V.); (M.A.K.); (A.A.)
| | - Constantinos E. Salmas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (A.K.-M.); (D.M.); (C.K.); (K.C.V.); (M.A.K.); (A.A.)
| |
Collapse
|
2
|
Kassie BB, Getahun MJ, Azanaw A, Ferede BT, Tassew DF. Surface modification of cellulose nanocrystals for biomedical and personal hygiene applications. Int J Biol Macromol 2024; 282:136949. [PMID: 39490486 DOI: 10.1016/j.ijbiomac.2024.136949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The increasing demand for sustainable and effective materials in biomedical and personal hygiene applications has driven the exploration of cellulose nanocrystals (CNCs) derived from biomass. These nanomaterials are highly valued for their exceptional mechanical properties, biocompatibility, and renewable nature. Researchers are exploring CNCs for advancing medical and hygiene products, but surface modification is often needed to maximize their benefits. Techniques such as chemical functionalization, physical coating, and hybridization can significantly enhance CNCs dispersibility, stability, and interaction with biological systems. This versatility makes CNCs suitable for a variety of applications, including drug delivery systems, wound dressings, and personal hygiene products. Despite their advantages, maintaining the inherent properties of CNCs while integrating new functionalities through modification poses a challenge. Understanding the impact of various modification techniques on CNC performance is crucial for optimizing their effectiveness. This review aimed to consolidate current knowledge on the surface modification of biomass-derived CNCs, offering insights into different methods and their implications for biomedical and personal hygiene applications. By highlighting advancements, challenges, and prospects, it served as a crucial resource for advancing the development and application of CNCs in these critical fields.
Collapse
Affiliation(s)
- Bantamlak Birlie Kassie
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia; Medical Textile Research Center, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia.
| | | | - Aklilu Azanaw
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| | - Bayu Teshome Ferede
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| | - Dehenenet Flatie Tassew
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| |
Collapse
|
3
|
Bhaduri A, Ha T. Biowaste-Derived Triboelectric Nanogenerators for Emerging Bioelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405666. [PMID: 39248387 PMCID: PMC11558148 DOI: 10.1002/advs.202405666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Triboelectric nanogenerators (TENGs) combine contact electrification and electrostatic induction effects to convert waste mechanical energy into electrical energy. As conventional devices contribute to electronic waste, TENGs based on ecofriendly and biocompatible materials have been developed for various energy applications. Owing to the abundance, accessibility, low cost, and biodegradability of biowaste (BW), recycling these materials has gained considerable attention as a green approach for fabricating TENGs. This review provides a detailed overview of BW materials, processing techniques for BW-based TENGs (BW-TENGs), and potential applications of BW-TENGs in emerging bioelectronics. In particular, recent progress in material design, fabrication methods, and biomechanical and environmental energy-harvesting performance is discussed. This review is aimed at promoting the continued development of BW-TENGs and their adoption for sustainable energy-harvesting applications in the field of bioelectronics.
Collapse
Affiliation(s)
- Abhisikta Bhaduri
- Dept. of Electronic Materials EngineeringKwangwoon UniversitySeoul01897Republic of Korea
| | - Tae‐Jun Ha
- Dept. of Electronic Materials EngineeringKwangwoon UniversitySeoul01897Republic of Korea
| |
Collapse
|
4
|
Gil-Guillén I, Freitas PAV, González-Martínez C, Chiralt A. Obtaining Cellulose Fibers from Almond Shell by Combining Subcritical Water Extraction and Bleaching with Hydrogen Peroxide. Molecules 2024; 29:3284. [PMID: 39064863 PMCID: PMC11279672 DOI: 10.3390/molecules29143284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/13/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Almond shell (AS) represents about 33% of the almond fruit, being a cellulose-rich by-product. The use of greener methods for separating cellulose would contribute to better exploitation of this biomass. Subcritical water extraction (SWE) at 160 and 180 °C has been used as a previous treatment to purify cellulose of AS, followed by a bleaching step with hydrogen peroxide (8%) at pH 12. For comparison purposes, bleaching with sodium chlorite of the extraction residues was also studied. The highest extraction temperature promoted the removal of hemicellulose and the subsequent delignification during the bleaching step. After bleaching with hydrogen peroxide, the AS particles had a cellulose content of 71 and 78%, with crystallinity index of 50 and 62%, respectively, for those treated at 160 and 180 °C. The use of sodium chlorite as bleaching agent improved the cellulose purification and crystallinity index. Nevertheless, cellulose obtained by both bleaching treatments could be useful for different applications. Therefore, SWE represents a promising green technique to improve the bleaching sensitivity of lignocellulosic residues, such as AS, allowing for a great reduction in chemicals in the cellulose purification processes.
Collapse
Affiliation(s)
- Irene Gil-Guillén
- Institute of Food Engineering—FoodUPV, Universitat Politècnica de València, 46022 Valencia, Spain; (P.A.V.F.); (C.G.-M.); (A.C.)
| | | | | | | |
Collapse
|
5
|
Plianwong S, Sirirak T. Cellulose nanocrystals from marine algae Cladophora glomerata by using microwave-assisted extraction. Int J Biol Macromol 2024; 260:129422. [PMID: 38219928 DOI: 10.1016/j.ijbiomac.2024.129422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Algae of the order Cladophorales are the source of a unique nanocellulose with high crystallinity and a large aspect ratio, enabling broad surface modification. Cellulose nanocrystals (CNCs) are obtained via acid hydrolysis of nanocellulose, which is highly crystalline. However, the production of CNCs from Cladophorales algae is limited and still uses a conventional heating method. Thus, this study aimed to develop a microwave-assisted extraction (MAE) method for fast and efficient extraction of CNCs from Cladophora glomerata algae. Additionally, we replaced the use of hypochlorite with H2O2, which is more environmentally friendly, and compared the CNCs obtained from the conventional methods with our new method. The functional structure of CNCs was confirmed by Fourier-transform infrared spectroscopy. Single-step H2O2 bleaching with MAE yielded the smallest-sized CNCs. Our developed method resulted in the production of CNCs with a high crystallinity index, high thermal stability, and high purity of native cellulose. Additionally, none of the CNCs were toxic to primary normal human dermal fibroblasts. The properties of the isolated CNCs may make them useful materials in pharmaceutical and cosmetic formulations.
Collapse
Affiliation(s)
- Samarwadee Plianwong
- Faculty of Pharmaceutical Sciences, Burapha University, Thailand; Pharmaceutical Innovations of Natural Products Unit (PhInNat), Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand
| | - Thanchanok Sirirak
- Faculty of Pharmaceutical Sciences, Burapha University, Thailand; The Research Unit in Synthetic Compounds and Synthetic Analogues from Natural Products for Drug Discovery, Burapha University, 169 Long Had Bangsaen Road, Chonburi 20131, Thailand.
| |
Collapse
|
6
|
Kim JH, Chan KL, Hart-Cooper WM, Ford D, Orcutt K, Palumbo JD, Tam CC, Orts WJ. Valorizing Tree-Nutshell Particles as Delivery Vehicles for a Natural Herbicide. Methods Protoc 2023; 7:1. [PMID: 38392682 PMCID: PMC10892353 DOI: 10.3390/mps7010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/27/2023] [Accepted: 12/18/2023] [Indexed: 02/24/2024] Open
Abstract
The United States is a principal producer of tree nuts (almonds, pistachios, and walnuts), resulting in the generation of excess of tree-nutshell by-products each year, with few market outlets. A nutshell is an essential, lignocellulosic layer that protects a kernel (seed) from the environment during cultivation. The objective of this study was to develop nutshell by-products as herbicide delivery systems, which would not only enable sustainable weed control in fields but also increases nutshell value and reduce the cost of waste disposal. We recently identified a natural salicylaldehyde (SA) that emits volatiles with both herbicidal and antifungal properties. In this study, walnut shell particles saturated with 0.8 to 1.6 M SA were developed as delivery vehicles for SA to soil, which allowed for the controlled release of an SA fumigant for weed control. The pre- and post-emergent herbicidal efficacy of SA was investigated using model monocot (Lolium arundinaceum (Schreb.) Darbysh; turfgrass) and dicot (Brassica rapa var. pekinensis; Chinese cabbage) plants. We compared (1) the effects of different types of solvents for dissolving SA (dimethyl sulfoxide (DMSO) and ethanol (60%, v/v)), and (2) the effect of covering soil with plastic layers (i.e., soil pasteurization) or not covering soil during SA fumigation using nutshells. Results: In the pre-emergent herbicidal testing with the soil covered, the dicot plants exhibited levels of higher susceptibility to SA in DMSO emitted from nutshells when compared to the monocot plants. The seed germination frequencies in the dicots were 15% and 1% with 0.8 and 1.6 M SA, respectively, while those in the monocots were 32% and 18%, respectively, under the same test conditions. In the post-emergent herbicidal testing with the soil covered, the growth of both the monocot and dicot plants was completely prevented after 5 to 7 days of SA fumigation, resulting in the deaths of entire plants. It was noteworthy that in the post-emergent herbicidal testing, SA dissolved in ethanol (60%, v/v) completely disrupted the growth of the monocot and dicot plants as early as 3 days after SA emission from the nutshells, even without the soil being covered. Tree-nutshell particles could serve as effective SA delivery vehicles with controlled release capabilities for SA. The SA exhibited pre- and post-emergent herbicidal activities against the monocot and dicot plants at most growth stages. SA (0.8 and 1.6 M) dissolved in ethanol (60%, v/v) might exert a synergism for higher herbicidal activity after emission from nutshells. Since tree nuts capture/store a substantial amount of carbon over their life-cycles, the new and sustainable utility of using nutshells not only reduces carbon emissions but also valorizes tree-nut by-products, thus benefitting the tree-nut industry.
Collapse
Affiliation(s)
- Jong H. Kim
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan St., Albany, CA 94710, USA; (K.L.C.); (D.F.); (J.D.P.); (C.C.T.)
| | - Kathleen L. Chan
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan St., Albany, CA 94710, USA; (K.L.C.); (D.F.); (J.D.P.); (C.C.T.)
| | - William M. Hart-Cooper
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan St., Albany, CA 94710, USA; (W.M.H.-C.); (K.O.); (W.J.O.)
| | - DeAngela Ford
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan St., Albany, CA 94710, USA; (K.L.C.); (D.F.); (J.D.P.); (C.C.T.)
| | - Kaydren Orcutt
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan St., Albany, CA 94710, USA; (W.M.H.-C.); (K.O.); (W.J.O.)
| | - Jeffrey D. Palumbo
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan St., Albany, CA 94710, USA; (K.L.C.); (D.F.); (J.D.P.); (C.C.T.)
| | - Christina C. Tam
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan St., Albany, CA 94710, USA; (K.L.C.); (D.F.); (J.D.P.); (C.C.T.)
| | - William J. Orts
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan St., Albany, CA 94710, USA; (W.M.H.-C.); (K.O.); (W.J.O.)
| |
Collapse
|