1
|
Wang X, Li J, Zhou D, Qin J, Xu Y, Lu Q, Tian X. Effects of Rosa roxburghii Tratt seed on the growth performance, meat quality, and sensory evaluation characteristics in growing rabbits. Meat Sci 2024; 208:109394. [PMID: 37980816 DOI: 10.1016/j.meatsci.2023.109394] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
The objective of this study was to observe the effects of Rosa roxburghii Tratt seed (RRTS) on growth performance, meat quality, and sensory characteristic parameters in rabbits. Ninety-six New Zealand White rabbits were allotted to four dietary treatments containing 0 (CON), 120 (LR), 240 (MR), and 360 mg/kg (HR) RRTS. The experimental period lasted for 11 weeks. Thirty-two fattened rabbits were slaughtered, and the Longissimus thoracis et lumborum (LTL) muscle was used for analyses. The feeding of RRTS was significantly (P < 0.05) decreased the feed conversion ratio (FCR). pH45min, pH24h, lightness, redness, drip loss, and percentage of water loss were unaffected (P > 0.05) by dietary treatments, whereas MR and HR treatments resulted in lower (P < 0.05) levels of yellowness and higher (P < 0.05) levels of shear force. LR showed significantly higher (P < 0.05) meat polyphenol compounds and vitamin E relative to the CON. Moreover, compared to the CON, HR treatment showed significantly higher (P < 0.05) vitamin C and glutathione peroxidase, and LR and MR displayed lower (P < 0.05) superoxide anion radicals, and all treatments had higher levels catalase (CAT). C18:2n-6 t, C20:2, C20:3n-6, C20:4n-6, C20:5n-3, C22:5n-3, and C22:6n-3 in LTL meat were higher (P < 0.05) in MR than CON rabbits. Moreover, the LTL muscle sensory evaluation parameters of appearance and fibrousness were improved (P < 0.05). Overall, dietary supplementation with RRTS is a valid strategy for decreasing FCR, and improving meat CAT concentration, C20:5n-3 and C22:5n-3 profiles, and sensory characteristics parameters of rabbits.
Collapse
Affiliation(s)
- Xu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jiaxuan Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Di Zhou
- Guizhou Testing Center for Livestock and Poultry Germplasm, Guiyang 550018, China
| | - Jixiao Qin
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yiqing Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Qi Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China.
| | - Xingzhou Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Gamel TH, Saeed SMG, Ali R, Abdel-Aal ESM. Purple Wheat: Food Development, Anthocyanin Stability, and Potential Health Benefits. Foods 2023; 12:foods12071358. [PMID: 37048178 PMCID: PMC10093297 DOI: 10.3390/foods12071358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Colored wheats such as black, blue, or purple wheat are receiving a great interest as healthy food ingredients due to their potential health-enhancing attributes. Purple wheat is an anthocyanin-pigmented grain that holds huge potential in food applications since wheat is the preferred source of energy and protein in human diet. Purple wheat is currently processed into a variety of foods with potent antioxidant properties, which have been demonstrated by in vitro studies. However, the health impacts of purple wheat foods in humans still require further investigations. Meanwhile, anthocyanins are vulnerable molecules that require special stabilization treatments during food preparation and processing. A number of stabilization methods such as co-pigmentation, self-association, encapsulation, metal binding, and adjusting processing conditions have been suggested as a means to diminish the loss of anthocyanins in processed foods and dietary supplements. The present review was intended to provide insights about purple wheat food product development and its roles in human health. In addition, methods for stabilizing anthocyanins during processing were briefly discussed.
Collapse
Affiliation(s)
- Tamer H Gamel
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | | | - Rashida Ali
- Department of Food Science and Technology, University of Karachi, Karachi 75270, Pakistan
| | - El-Sayed M Abdel-Aal
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| |
Collapse
|
3
|
Shiekh KA, Luanglaor T, Hanprerakriengkrai N, Jafari S, Kijpatanasilp I, Asadatorn N, Worobo RW, Bekhit AEDA, Assatarakul K. Antioxidants and Quality Changes of Thermally Processed Purple Corn ( Zea mays L.) Milk Fortified with Low Sucrose Content during Cold Storage. Foods 2023; 12:277. [PMID: 36673368 PMCID: PMC9857751 DOI: 10.3390/foods12020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023] Open
Abstract
Purple corn kernels were subjected to boiling and steaming times of 5-15 min to extract purple corn milk (PCM). Pasteurized and unpasteurized PCM samples were investigated for changes in anthocyanins, antioxidants, and physicochemical properties. Anthocyanins, total phenolics, antioxidant activity, color and viscosity values showed promising results in pasteurized PCM samples extracted from kernels steamed for 5 min (PPCM-S5) compared to other samples (p ≤ 0.05). Changes in L*, a* and b* values, total phenolics and DPPH activity were lowered in PPCM-S5 samples with higher retention of anthocyanins compared to the PCM extracted from boiled kernels (p ≤ 0.05). PCM extracted from 5 min steamed kernels fortified with 4% sucrose (PCM5-S4) after pasteurization revealed the lowest changes in color, pH, total soluble solid and viscosity during 12 days of storage at 4 °C compared to the unpasteurized PCM without sucrose and pasteurized PCM fortified with 6% sucrose. Additionally, pasteurized PCM5-S4 samples marked the highest anthocyanins, total phenolics and antioxidant activity during storage. Microbial load was lowest in pasteurized PCM5-S4 samples stored at 4 °C for 12 days. However, coliforms, yeast or mold and Escherichia coli were not present in the thermally processed PCM samples. The highest sensory scores were obtained in PCM5-S4 at day 12 of storage compared to PCM without any treatment. Therefore, pasteurized PCM extracted from 5 min steamed purple corn kernels retained bioactivity along with 4% sucrose fortification resulted in higher sensory acceptability. As a consequence the shelf-life of PCM5-S4 sample was extended up to 12 days at 4 °C.
Collapse
Affiliation(s)
- Khursheed Ahmad Shiekh
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- School of Agro-Industry, Mae Fah Luang University, Thasud, Chiang Rai 57100, Thailand
| | - Thitirat Luanglaor
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Saeid Jafari
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Isaya Kijpatanasilp
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nicha Asadatorn
- International Programme in Hazardous Substance and Environmental Management (IP-HSM), Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Randy W. Worobo
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853-5701, USA
| | | | - Kitipong Assatarakul
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853-5701, USA
| |
Collapse
|
4
|
Li J, Zhou D, Li H, Luo Q, Wang X, Qin J, Xu Y, Lu Q, Tian X. Effect of purple corn extract on performance, antioxidant activity, egg quality, egg amino acid, and fatty acid profiles of laying hen. Front Vet Sci 2023; 9:1083842. [PMID: 36686183 PMCID: PMC9853176 DOI: 10.3389/fvets.2022.1083842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
The objective of this study was to investigate the effects of anthocyanin-rich purple corn extract (PCE) on performance, antioxidant potential, egg quality, egg amino acid and fatty acid profiles of laying hens during the late laying period. A total of 360 88-wk-old laying hens were randomly divided into 4 groups, and fed a basal diet (CON) or a basal diet supplemented with 120 (LP), 240 (MP), and 360 mg/kg (HP) PCE, respectively. No significant difference (P > 0.05) was observed in the ADFI or average egg weight among the groups. However, the mean feed to egg ratio was quadratically decreased (P < 0.05) in the LP and HP treatments. The mean TAC was linearly and quadratically increased (P < 0.05) in all PCE supplemented treatments. The mean SOD was linearly and quadratically increased (P < 0.05) in the HP treatment compared with CON and MP groups. The GPX was linearly and quadratically lower in the HP treatment compared to the CON and LP groups. Differently, the MDA was linearly and quadratically lower (P < 0.05) in the PCE treatments compared with the CON. The eggshell thickness value in MP and HP treatments were linearly and quadratically higher (P < 0.05) than that of the CON and LP groups. Hens fed PCE was linearly and quadratically increased (P < 0.05) most individual amino acids, essential amino acid and umami amino acid profiles in egg. The PCE treatments showed linearly and quadratic (P < 0.05) effect on the myristoleate, heptadecenoic acid, elaidic acid, eicosenoic acid, heneicosanoic acid, and eicosatrienoic acid concentrations. Moreover, dietary supplementation of PCE was quadratically increased egg stearic acid, oleic acid, arachidic acid, linolenic acid methyl ester, arachidonic acid, diphenylamine, docosahexaenoic acid, monounsaturated fatty acid, and polyunsaturated fatty acid compared to the CON. Therefore, dietary anthocyanin-rich PCE can enhance plasma antioxidant potential, is beneficial to egg production, and improves amino acids and fatty acids in hen eggs during the late laying period.
Collapse
Affiliation(s)
- Jiaxuan Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Di Zhou
- Testing Center for Livestock and Poultry Germplasm, Guizhou Agricultural and Rural Affairs Office, Guiyang, China
| | - Hui Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Qingyuan Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Xu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Jixiao Qin
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Yiqing Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Qi Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China,Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, China
| | - Xingzhou Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China,Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, China,*Correspondence: Xingzhou Tian ✉ ; ✉
| |
Collapse
|
5
|
Taethaisong N, Paengkoum S, Nakharuthai C, Onjai-uea N, Thongpea S, Sinpru B, Surakhunthod J, Meethip W, Paengkoum P. Effect of Purple Neem Foliage as a Feed Supplement on Nutrient Apparent Digestibility, Nitrogen Utilization, Rumen Fermentation, Microbial Population, Plasma Antioxidants, Meat Quality and Fatty Acid Profile of Goats. Animals (Basel) 2022; 12:2985. [PMID: 36359109 PMCID: PMC9654559 DOI: 10.3390/ani12212985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/02/2022] [Accepted: 10/08/2022] [Indexed: 12/03/2022] Open
Abstract
The purpose of this experiment was to investigate the effect of Purple Neem foliage as a feed supplement on nutrient apparent digestibility, nitrogen utilization, rumen fermentation, microbial population, plasma antioxidants, meat quality and fatty acid profile of goats. Eighteen Boer male goats (approximately 20 ± 2 kg body weight; mean ± standard deviation (SD)) were randomly allocated into three treatments. All goats were fed a 60 d daily feeding with three treatments: (1) control, (2) 3% Purple Neem foliage (PNF) + 3% sunflower oil (SFO) in concentrate, and (3) 6% Purple Neem foliage (PNF) + 3% sunflower oil (SFO) in concentrate. The findings indicate that goat feed containing 6% PNF + 3% SFO in concentrate increased feed consumption, nutrient intake, nutrient apparent digestibility and nitrogen utilization compared to the goat feed at 3% PNF + 3% SFO and the control group. The feeding of goats with 6% PNF + 3% SFO in concentrate resulted in high ammonia nitrogen, BUN, acetic acid, propionic acid, butyric acid, and the total VFA levels were increased at 2 and 4 h after feeding (p < 0.01). The individual microbial population with 6% PNF + 3% SFO had higher (p < 0.01) total bacteria, higher Butyrivibrio fibrisolven, Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefacises, and Streptococcus bovis, decreased protozoa and methanogen levels at 2 and 4 h after feeding. The antioxidant in plasma indices varied, with 6% PNF + 3% SFO having higher total antioxidant (TAC), superoxide dismutase (SOD), glutathione peroxidase (GPX), 2, 2-diphenyl-1-picrylhydrazyl (DPPH), and catalase (CAT) antioxidant activity and lower malondialdehyde (MDA) in plasma at 2 and 4 h after feeding. Additionally, goat fed 6% PNF + 3% SFO can improve meat quality by lowering drip loss, cooking loss, shear force, and saturated fatty acid as well as increase the fatty acid profile (monounsaturated and polyunsaturated fatty acids) in goat meat. Our findings suggest that Purple Neem foliage might be an excellent alternative additive for goat feed.
Collapse
Affiliation(s)
- Nittaya Taethaisong
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Siwaporn Paengkoum
- Program in Agriculture, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Muang, Nakhon Ratchasima 30000, Thailand
| | - Chatsirin Nakharuthai
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Narawich Onjai-uea
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Sorasak Thongpea
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Boontum Sinpru
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Jariya Surakhunthod
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Weerada Meethip
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Pramote Paengkoum
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
6
|
Lu Q, Luo Q, Li J, Wang X, Ban C, Qin J, Tian Y, Tian X, Chen X. Evaluation of the Chemical Composition, Bioactive Substance, Gas Production, and Rumen Fermentation Parameters of Four Types of Distiller's Grains. Molecules 2022; 27:molecules27186134. [PMID: 36144867 PMCID: PMC9504821 DOI: 10.3390/molecules27186134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Distiller’s grain is rich in natural active ingredients and can be used as an excellent antioxidant feed for goats. The current study aimed to assess the feeding value of four different types of distiller’s grains with an in vitro gas production trial. The chemical composition, total phenols, total anthocyanins, dry matter degradability, methane, hydrogen, and rumen fermentation parameters were evaluated. The results indicated that red distiller’s grain and glutinous rice distiller’s grain had higher (p < 0.05) levels of crude protein than the other two types. There were significantly (p < 0.05) higher concentrations of dry matter, ether extract, hemicellulose, and total carbohydrate in corn distiller’s grain than in the other three types of distiller’s grain. In addition, red distiller’s grain showed a higher (p < 0.05) gas production rate constant (c) and ruminal outflow rate, as well as higher (p < 0.05) concentrations of total phenol, total anthocyanins and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, than the other three types of distiller’s grains. In contrast, red distiller’s grain displayed the lowest (p < 0.05) immediately soluble fraction (a) and half the time of maximum gas production relative to the other samples. In particular, the levels of methane (%) in white distiller’s grain and glutinous rice distiller’s grain were greater (p < 0.05) than that in red distiller’s grain. Moreover, the ammonia nitrogen content in red distiller’s grain was greater (p < 0.05) than that in white distiller’s grain and corn distiller’s grain. In contrast, red distiller’s grain exhibited a lower (p < 0.05) level of ruminal fluid acetic acid relative to that found in white distiller’s grain and corn distiller’s grain. Taken together, the results showed that red distiller’s grain and glutinous rice distiller’s grain could be used as protein feed, red distiller’s grain had higher levels of total phenols and total anthocyanins and a high DPPH scavenging activity; corn distiller’s grain might be considered as an alternative energy source feed, and white distiller’s grain exhibited higher total gas production.
Collapse
Affiliation(s)
- Qi Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Qingyuan Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jiaxuan Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Chao Ban
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jixiao Qin
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yayuan Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xingzhou Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
- Correspondence: or (X.T.); (X.C.)
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
- Correspondence: or (X.T.); (X.C.)
| |
Collapse
|
7
|
The Effects of Purple Corn Pigment on Growth Performance, Blood Biochemical Indices, Meat Quality, Muscle Amino Acids, and Fatty Acids of Growing Chickens. Foods 2022; 11:foods11131870. [PMID: 35804685 PMCID: PMC9265630 DOI: 10.3390/foods11131870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/18/2022] Open
Abstract
This study investigated the effects of dietary supplementation with different levels of purple corn pigment (PCP) on the growth performance, blood biochemical indices, meat quality, muscle amino acids, and fatty acids of growing chickens. A total of 288 (8 weeks of age) growing Chishui black-bone chickens (body weight, 940 ± 80 g; mean ± standard deviation) were randomly divided into 4 groups using a completely randomized design. The four diet groups were as follows: (1) control, basal diet; (2) treatment 1, treatment 2, and treatment 3, which were basal diet with 80, 160, and 240 mg/kg PCP, respectively. The results showed that compared with the control group, the feeding of anthocyanins significantly (p < 0.05) increased the average daily feed intake and average daily gain in chickens. Moreover, chickens receiving 80 mg/kg PCP significantly increased (p < 0.05) plasma total antioxidant capacity, superoxide dismutase, glutathione peroxidase, catalase, high-density lipoprotein cholesterol, and albumin concentrations relative to the control group. For meat quality, dietary supplementation with PCP significantly (p < 0.05) reduced the drip loss and water loss rate in breast muscle. Additionally, chickens receiving PCP tended to increase (p < 0.05) the levels of most individual amino acids, essential amino acids, and umami amino acids in the muscle. Specifically, the addition of 80 mg/kg PCP significantly improved (p < 0.05) total polyunsaturated fatty acids in chicken muscle. Accordingly, the consumption of anthocyanin-rich PCP by the growing chickens had the potential to increase the growth performance, enhance antioxidant and immune capacities, increase meat quality, and improve essential and umami amino acids as well as unsaturated fatty acids in the muscle.
Collapse
|
8
|
Abstract
This study evaluated the effects of selenium yeast (SY) on rumen fermentation parameters, rumen bacterial diversity, and expression pathways in goats. A total of 18 Qianbei-pockmarked weather goats from Guizhou (body weight, 25.75 ± 1.75 kg; mean ± standard deviation) were assigned to three groups according to a completely randomized design. Control group (CON, n = 6) kids were fed a basal diet, while treatment 1 (LS, n = 6) and treatment 2 (HS, n = 6) kids were fed a basal diet with 2.4 and 4.8 mg/kg SY, respectively. The feeding trial lasted for 74 days. The results indicated that the ruminal fluid of LS goats had significantly higher levels of propionic, caproic, isobutyric, and isovaleric acids than that of the CON. The levels of butyric and valeric acids were higher in the HS group than in the CON. The acetate:propionate ratio was significantly higher in the CON than in the two treatments. In addition, the inclusion of 2.4 mg/kg SY can lead to a significant decrease in the relative abundances of Euryarchaeota, and Proteobacteria at the phylum level compared to the CON and the HS groups. At the genus level, the LS group had a significant decrease in the relative abundance of Methanobrevibacter and Sarcina, whereas it could lead to a significant increase in the relative abundance of Clostridium in the ruminal fluid relative of the other two groups. At the species level, the LS group had a significant decrease in the relative abundance of bacterium_P3, bacterium_P201, and Sarcina_sp._DSM_11001 compared to the other groups. Moreover, the CON group had a significant decrease in the relative abundance of bacterium_P201 compared to the other two treatments. Compared to the CON, the addition of 2.4 mg/kg SY significantly enriched carbohydrate metabolism pathways in the ruminal fluid for gene encoding. Additionally, goats receiving SY showed a significant upregulation of glycosyl transferase and carbohydrate binding module pathways. These results suggest that dietary supplementation with SY modulates fermentation parameters, and it affects microbial diversity and microbial metagenome in the rumen of Qianbei-pockmarked goats.
Collapse
|
9
|
Effects of Purple Corn Anthocyanin on Growth Performance, Meat Quality, Muscle Antioxidant Status, and Fatty Acid Profiles in Goats. Foods 2022; 11:foods11091255. [PMID: 35563978 PMCID: PMC9102689 DOI: 10.3390/foods11091255] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
This study was conducted to examine the effect of purple corn anthocyanin on performance, meat quality, muscle antioxidant activity, antioxidant gene expression, and fatty acid profiles in goats. The feeding trial period lasted 74 d. The adaptation period was 14 d, and the formal experimental period was 60 d. Eighteen Qianbei-pockmarked goats (Guizhou native goat breed; body weight, 21.38 ± 1.61 kg; mean ± standard deviation) were randomly allotted into three equal groups, including a control with no purple corn pigment (PCP) and groups receiving either 0.5 g/d PCP or 1.0 g/d PCP. The inclusion of PCP did not affect (p > 0.05) the dry matter intake, average daily gain, or feed conversion ratio compared to the control group. The addition of PCP reduced (p < 0.05) shear force in the longissimus thoracis et lumborum muscle (LTL) during the growth phase of the goats. Goats receiving PCP showed higher (p < 0.05) levels of reduced glutathione, 2,2-diphenyl-1-picrylhydrazyl scavenging activity and peroxidase in LTL compared to the control. Moreover, compared to the control, the PCP group displayed lower (p < 0.05) concentrations of 12:0, C16:0, and total saturated fatty acids, but increased (p < 0.05) concentrations of various unsaturated fatty acids, including C18:1n9, C20:3n6, C20:4n6, C18:2n6 cis, C20:3n6, C22:5n3, C22:6n3, and total polyunsaturated fatty acids (PUFAs). The abundance of nuclear factor, erythroid 2 like 2, superoxide dismutase 1, glutathione peroxidase 1, and catalase was upregulated (p < 0.05) in the LTL of goats receiving 0.5 g/d PCP in comparison to the other groups. Collectively, result of the current study indicated that PCP anthocyanin could be used as a source of natural functional additive because anthocyanin-rich PCP has the potential to improve meat quality and enhance muscle antioxidant status as well as improve the proportions of PUFAs in goat muscle.
Collapse
|